RetroArch/deps/SPIRV-Cross/spirv_msl.hpp

1289 lines
59 KiB
C++

/*
* Copyright 2016-2021 The Brenwill Workshop Ltd.
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#ifndef SPIRV_CROSS_MSL_HPP
#define SPIRV_CROSS_MSL_HPP
#include "spirv_glsl.hpp"
#include <map>
#include <set>
#include <stddef.h>
#include <unordered_map>
#include <unordered_set>
namespace SPIRV_CROSS_NAMESPACE
{
// Indicates the format of a shader interface variable. Currently limited to specifying
// if the input is an 8-bit unsigned integer, 16-bit unsigned integer, or
// some other format.
enum MSLShaderVariableFormat
{
MSL_SHADER_VARIABLE_FORMAT_OTHER = 0,
MSL_SHADER_VARIABLE_FORMAT_UINT8 = 1,
MSL_SHADER_VARIABLE_FORMAT_UINT16 = 2,
MSL_SHADER_VARIABLE_FORMAT_ANY16 = 3,
MSL_SHADER_VARIABLE_FORMAT_ANY32 = 4,
// Deprecated aliases.
MSL_VERTEX_FORMAT_OTHER = MSL_SHADER_VARIABLE_FORMAT_OTHER,
MSL_VERTEX_FORMAT_UINT8 = MSL_SHADER_VARIABLE_FORMAT_UINT8,
MSL_VERTEX_FORMAT_UINT16 = MSL_SHADER_VARIABLE_FORMAT_UINT16,
MSL_SHADER_INPUT_FORMAT_OTHER = MSL_SHADER_VARIABLE_FORMAT_OTHER,
MSL_SHADER_INPUT_FORMAT_UINT8 = MSL_SHADER_VARIABLE_FORMAT_UINT8,
MSL_SHADER_INPUT_FORMAT_UINT16 = MSL_SHADER_VARIABLE_FORMAT_UINT16,
MSL_SHADER_INPUT_FORMAT_ANY16 = MSL_SHADER_VARIABLE_FORMAT_ANY16,
MSL_SHADER_INPUT_FORMAT_ANY32 = MSL_SHADER_VARIABLE_FORMAT_ANY32,
MSL_SHADER_VARIABLE_FORMAT_INT_MAX = 0x7fffffff
};
// Indicates the rate at which a variable changes value, one of: per-vertex,
// per-primitive, or per-patch.
enum MSLShaderVariableRate
{
MSL_SHADER_VARIABLE_RATE_PER_VERTEX = 0,
MSL_SHADER_VARIABLE_RATE_PER_PRIMITIVE = 1,
MSL_SHADER_VARIABLE_RATE_PER_PATCH = 2,
MSL_SHADER_VARIABLE_RATE_INT_MAX = 0x7fffffff,
};
// Defines MSL characteristics of a shader interface variable at a particular location.
// After compilation, it is possible to query whether or not this location was used.
// If vecsize is nonzero, it must be greater than or equal to the vecsize declared in the shader,
// or behavior is undefined.
struct MSLShaderInterfaceVariable
{
uint32_t location = 0;
uint32_t component = 0;
MSLShaderVariableFormat format = MSL_SHADER_VARIABLE_FORMAT_OTHER;
spv::BuiltIn builtin = spv::BuiltInMax;
uint32_t vecsize = 0;
MSLShaderVariableRate rate = MSL_SHADER_VARIABLE_RATE_PER_VERTEX;
};
// Matches the binding index of a MSL resource for a binding within a descriptor set.
// Taken together, the stage, desc_set and binding combine to form a reference to a resource
// descriptor used in a particular shading stage. The count field indicates the number of
// resources consumed by this binding, if the binding represents an array of resources.
// If the resource array is a run-time-sized array, which are legal in GLSL or SPIR-V, this value
// will be used to declare the array size in MSL, which does not support run-time-sized arrays.
// If pad_argument_buffer_resources is enabled, the base_type and count values are used to
// specify the base type and array size of the resource in the argument buffer, if that resource
// is not defined and used by the shader. With pad_argument_buffer_resources enabled, this
// information will be used to pad the argument buffer structure, in order to align that
// structure consistently for all uses, across all shaders, of the descriptor set represented
// by the arugment buffer. If pad_argument_buffer_resources is disabled, base_type does not
// need to be populated, and if the resource is also not a run-time sized array, the count
// field does not need to be populated.
// If using MSL 2.0 argument buffers, the descriptor set is not marked as a discrete descriptor set,
// and (for iOS only) the resource is not a storage image (sampled != 2), the binding reference we
// remap to will become an [[id(N)]] attribute within the "descriptor set" argument buffer structure.
// For resources which are bound in the "classic" MSL 1.0 way or discrete descriptors, the remap will
// become a [[buffer(N)]], [[texture(N)]] or [[sampler(N)]] depending on the resource types used.
struct MSLResourceBinding
{
spv::ExecutionModel stage = spv::ExecutionModelMax;
SPIRType::BaseType basetype = SPIRType::Unknown;
uint32_t desc_set = 0;
uint32_t binding = 0;
uint32_t count = 0;
uint32_t msl_buffer = 0;
uint32_t msl_texture = 0;
uint32_t msl_sampler = 0;
};
enum MSLSamplerCoord
{
MSL_SAMPLER_COORD_NORMALIZED = 0,
MSL_SAMPLER_COORD_PIXEL = 1,
MSL_SAMPLER_INT_MAX = 0x7fffffff
};
enum MSLSamplerFilter
{
MSL_SAMPLER_FILTER_NEAREST = 0,
MSL_SAMPLER_FILTER_LINEAR = 1,
MSL_SAMPLER_FILTER_INT_MAX = 0x7fffffff
};
enum MSLSamplerMipFilter
{
MSL_SAMPLER_MIP_FILTER_NONE = 0,
MSL_SAMPLER_MIP_FILTER_NEAREST = 1,
MSL_SAMPLER_MIP_FILTER_LINEAR = 2,
MSL_SAMPLER_MIP_FILTER_INT_MAX = 0x7fffffff
};
enum MSLSamplerAddress
{
MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO = 0,
MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE = 1,
MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER = 2,
MSL_SAMPLER_ADDRESS_REPEAT = 3,
MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT = 4,
MSL_SAMPLER_ADDRESS_INT_MAX = 0x7fffffff
};
enum MSLSamplerCompareFunc
{
MSL_SAMPLER_COMPARE_FUNC_NEVER = 0,
MSL_SAMPLER_COMPARE_FUNC_LESS = 1,
MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL = 2,
MSL_SAMPLER_COMPARE_FUNC_GREATER = 3,
MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL = 4,
MSL_SAMPLER_COMPARE_FUNC_EQUAL = 5,
MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL = 6,
MSL_SAMPLER_COMPARE_FUNC_ALWAYS = 7,
MSL_SAMPLER_COMPARE_FUNC_INT_MAX = 0x7fffffff
};
enum MSLSamplerBorderColor
{
MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK = 0,
MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK = 1,
MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE = 2,
MSL_SAMPLER_BORDER_COLOR_INT_MAX = 0x7fffffff
};
enum MSLFormatResolution
{
MSL_FORMAT_RESOLUTION_444 = 0,
MSL_FORMAT_RESOLUTION_422,
MSL_FORMAT_RESOLUTION_420,
MSL_FORMAT_RESOLUTION_INT_MAX = 0x7fffffff
};
enum MSLChromaLocation
{
MSL_CHROMA_LOCATION_COSITED_EVEN = 0,
MSL_CHROMA_LOCATION_MIDPOINT,
MSL_CHROMA_LOCATION_INT_MAX = 0x7fffffff
};
enum MSLComponentSwizzle
{
MSL_COMPONENT_SWIZZLE_IDENTITY = 0,
MSL_COMPONENT_SWIZZLE_ZERO,
MSL_COMPONENT_SWIZZLE_ONE,
MSL_COMPONENT_SWIZZLE_R,
MSL_COMPONENT_SWIZZLE_G,
MSL_COMPONENT_SWIZZLE_B,
MSL_COMPONENT_SWIZZLE_A,
MSL_COMPONENT_SWIZZLE_INT_MAX = 0x7fffffff
};
enum MSLSamplerYCbCrModelConversion
{
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY = 0,
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY,
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709,
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601,
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020,
MSL_SAMPLER_YCBCR_MODEL_CONVERSION_INT_MAX = 0x7fffffff
};
enum MSLSamplerYCbCrRange
{
MSL_SAMPLER_YCBCR_RANGE_ITU_FULL = 0,
MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW,
MSL_SAMPLER_YCBCR_RANGE_INT_MAX = 0x7fffffff
};
struct MSLConstexprSampler
{
MSLSamplerCoord coord = MSL_SAMPLER_COORD_NORMALIZED;
MSLSamplerFilter min_filter = MSL_SAMPLER_FILTER_NEAREST;
MSLSamplerFilter mag_filter = MSL_SAMPLER_FILTER_NEAREST;
MSLSamplerMipFilter mip_filter = MSL_SAMPLER_MIP_FILTER_NONE;
MSLSamplerAddress s_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
MSLSamplerAddress t_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
MSLSamplerAddress r_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
MSLSamplerCompareFunc compare_func = MSL_SAMPLER_COMPARE_FUNC_NEVER;
MSLSamplerBorderColor border_color = MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK;
float lod_clamp_min = 0.0f;
float lod_clamp_max = 1000.0f;
int max_anisotropy = 1;
// Sampler Y'CbCr conversion parameters
uint32_t planes = 0;
MSLFormatResolution resolution = MSL_FORMAT_RESOLUTION_444;
MSLSamplerFilter chroma_filter = MSL_SAMPLER_FILTER_NEAREST;
MSLChromaLocation x_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN;
MSLChromaLocation y_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN;
MSLComponentSwizzle swizzle[4]; // IDENTITY, IDENTITY, IDENTITY, IDENTITY
MSLSamplerYCbCrModelConversion ycbcr_model = MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
MSLSamplerYCbCrRange ycbcr_range = MSL_SAMPLER_YCBCR_RANGE_ITU_FULL;
uint32_t bpc = 8;
bool compare_enable = false;
bool lod_clamp_enable = false;
bool anisotropy_enable = false;
bool ycbcr_conversion_enable = false;
MSLConstexprSampler()
{
for (uint32_t i = 0; i < 4; i++)
swizzle[i] = MSL_COMPONENT_SWIZZLE_IDENTITY;
}
bool swizzle_is_identity() const
{
return (swizzle[0] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[1] == MSL_COMPONENT_SWIZZLE_IDENTITY &&
swizzle[2] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[3] == MSL_COMPONENT_SWIZZLE_IDENTITY);
}
bool swizzle_has_one_or_zero() const
{
return (swizzle[0] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[0] == MSL_COMPONENT_SWIZZLE_ONE ||
swizzle[1] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[1] == MSL_COMPONENT_SWIZZLE_ONE ||
swizzle[2] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[2] == MSL_COMPONENT_SWIZZLE_ONE ||
swizzle[3] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[3] == MSL_COMPONENT_SWIZZLE_ONE);
}
};
// Special constant used in a MSLResourceBinding desc_set
// element to indicate the bindings for the push constants.
// Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly.
static const uint32_t kPushConstDescSet = ResourceBindingPushConstantDescriptorSet;
// Special constant used in a MSLResourceBinding binding
// element to indicate the bindings for the push constants.
// Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly.
static const uint32_t kPushConstBinding = ResourceBindingPushConstantBinding;
// Special constant used in a MSLResourceBinding binding
// element to indicate the buffer binding for swizzle buffers.
static const uint32_t kSwizzleBufferBinding = ~(1u);
// Special constant used in a MSLResourceBinding binding
// element to indicate the buffer binding for buffer size buffers to support OpArrayLength.
static const uint32_t kBufferSizeBufferBinding = ~(2u);
// Special constant used in a MSLResourceBinding binding
// element to indicate the buffer binding used for the argument buffer itself.
// This buffer binding should be kept as small as possible as all automatic bindings for buffers
// will start at max(kArgumentBufferBinding) + 1.
static const uint32_t kArgumentBufferBinding = ~(3u);
static const uint32_t kMaxArgumentBuffers = 8;
// The arbitrary maximum for the nesting of array of array copies.
static const uint32_t kArrayCopyMultidimMax = 6;
// Decompiles SPIR-V to Metal Shading Language
class CompilerMSL : public CompilerGLSL
{
public:
// Options for compiling to Metal Shading Language
struct Options
{
typedef enum
{
iOS = 0,
macOS = 1
} Platform;
Platform platform = macOS;
uint32_t msl_version = make_msl_version(1, 2);
uint32_t texel_buffer_texture_width = 4096; // Width of 2D Metal textures used as 1D texel buffers
uint32_t r32ui_linear_texture_alignment = 4;
uint32_t r32ui_alignment_constant_id = 65535;
uint32_t swizzle_buffer_index = 30;
uint32_t indirect_params_buffer_index = 29;
uint32_t shader_output_buffer_index = 28;
uint32_t shader_patch_output_buffer_index = 27;
uint32_t shader_tess_factor_buffer_index = 26;
uint32_t buffer_size_buffer_index = 25;
uint32_t view_mask_buffer_index = 24;
uint32_t dynamic_offsets_buffer_index = 23;
uint32_t shader_input_buffer_index = 22;
uint32_t shader_index_buffer_index = 21;
uint32_t shader_patch_input_buffer_index = 20;
uint32_t shader_input_wg_index = 0;
uint32_t device_index = 0;
uint32_t enable_frag_output_mask = 0xffffffff;
// Metal doesn't allow setting a fixed sample mask directly in the pipeline.
// We can evade this restriction by ANDing the internal sample_mask output
// of the shader with the additional fixed sample mask.
uint32_t additional_fixed_sample_mask = 0xffffffff;
bool enable_point_size_builtin = true;
bool enable_frag_depth_builtin = true;
bool enable_frag_stencil_ref_builtin = true;
bool disable_rasterization = false;
bool capture_output_to_buffer = false;
bool swizzle_texture_samples = false;
bool tess_domain_origin_lower_left = false;
bool multiview = false;
bool multiview_layered_rendering = true;
bool view_index_from_device_index = false;
bool dispatch_base = false;
bool texture_1D_as_2D = false;
// Enable use of Metal argument buffers.
// MSL 2.0 must also be enabled.
bool argument_buffers = false;
// Defines Metal argument buffer tier levels.
// Uses same values as Metal MTLArgumentBuffersTier enumeration.
enum class ArgumentBuffersTier
{
Tier1 = 0,
Tier2 = 1,
};
// When using Metal argument buffers, indicates the Metal argument buffer tier level supported by the Metal platform.
// Ignored when Options::argument_buffers is disabled.
// - Tier1 supports writable images on macOS, but not on iOS.
// - Tier2 supports writable images on macOS and iOS, and higher resource count limits.
// Tier capabilities based on recommendations from Apple engineering.
ArgumentBuffersTier argument_buffers_tier = ArgumentBuffersTier::Tier1;
// Ensures vertex and instance indices start at zero. This reflects the behavior of HLSL with SV_VertexID and SV_InstanceID.
bool enable_base_index_zero = false;
// Fragment output in MSL must have at least as many components as the render pass.
// Add support to explicit pad out components.
bool pad_fragment_output_components = false;
// Specifies whether the iOS target version supports the [[base_vertex]] and [[base_instance]] attributes.
bool ios_support_base_vertex_instance = false;
// Use Metal's native frame-buffer fetch API for subpass inputs.
bool use_framebuffer_fetch_subpasses = false;
// Enables use of "fma" intrinsic for invariant float math
bool invariant_float_math = false;
// Emulate texturecube_array with texture2d_array for iOS where this type is not available
bool emulate_cube_array = false;
// Allow user to enable decoration binding
bool enable_decoration_binding = false;
// Requires MSL 2.1, use the native support for texel buffers.
bool texture_buffer_native = false;
// Forces all resources which are part of an argument buffer to be considered active.
// This ensures ABI compatibility between shaders where some resources might be unused,
// and would otherwise declare a different IAB.
bool force_active_argument_buffer_resources = false;
// Aligns each resource in an argument buffer to its assigned index value, id(N),
// by adding synthetic padding members in the argument buffer struct for any resources
// in the argument buffer that are not defined and used by the shader. This allows
// the shader to index into the correct argument in a descriptor set argument buffer
// that is shared across shaders, where not all resources in the argument buffer are
// defined in each shader. For this to work, an MSLResourceBinding must be provided for
// all descriptors in any descriptor set held in an argument buffer in the shader, and
// that MSLResourceBinding must have the basetype and count members populated correctly.
// The implementation here assumes any inline blocks in the argument buffer is provided
// in a Metal buffer, and doesn't take into consideration inline blocks that are
// optionally embedded directly into the argument buffer via add_inline_uniform_block().
bool pad_argument_buffer_resources = false;
// Forces the use of plain arrays, which works around certain driver bugs on certain versions
// of Intel Macbooks. See https://github.com/KhronosGroup/SPIRV-Cross/issues/1210.
// May reduce performance in scenarios where arrays are copied around as value-types.
bool force_native_arrays = false;
// If a shader writes clip distance, also emit user varyings which
// can be read in subsequent stages.
bool enable_clip_distance_user_varying = true;
// In a tessellation control shader, assume that more than one patch can be processed in a
// single workgroup. This requires changes to the way the InvocationId and PrimitiveId
// builtins are processed, but should result in more efficient usage of the GPU.
bool multi_patch_workgroup = false;
// Use storage buffers instead of vertex-style attributes for tessellation evaluation
// input. This may require conversion of inputs in the generated post-tessellation
// vertex shader, but allows the use of nested arrays.
bool raw_buffer_tese_input = false;
// If set, a vertex shader will be compiled as part of a tessellation pipeline.
// It will be translated as a compute kernel, so it can use the global invocation ID
// to index the output buffer.
bool vertex_for_tessellation = false;
// Assume that SubpassData images have multiple layers. Layered input attachments
// are addressed relative to the Layer output from the vertex pipeline. This option
// has no effect with multiview, since all input attachments are assumed to be layered
// and will be addressed using the current ViewIndex.
bool arrayed_subpass_input = false;
// Whether to use SIMD-group or quadgroup functions to implement group non-uniform
// operations. Some GPUs on iOS do not support the SIMD-group functions, only the
// quadgroup functions.
bool ios_use_simdgroup_functions = false;
// If set, the subgroup size will be assumed to be one, and subgroup-related
// builtins and operations will be emitted accordingly. This mode is intended to
// be used by MoltenVK on hardware/software configurations which do not provide
// sufficient support for subgroups.
bool emulate_subgroups = false;
// If nonzero, a fixed subgroup size to assume. Metal, similarly to VK_EXT_subgroup_size_control,
// allows the SIMD-group size (aka thread execution width) to vary depending on
// register usage and requirements. In certain circumstances--for example, a pipeline
// in MoltenVK without VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT--
// this is undesirable. This fixes the value of the SubgroupSize builtin, instead of
// mapping it to the Metal builtin [[thread_execution_width]]. If the thread
// execution width is reduced, the extra invocations will appear to be inactive.
// If zero, the SubgroupSize will be allowed to vary, and the builtin will be mapped
// to the Metal [[thread_execution_width]] builtin.
uint32_t fixed_subgroup_size = 0;
enum class IndexType
{
None = 0,
UInt16 = 1,
UInt32 = 2
};
// The type of index in the index buffer, if present. For a compute shader, Metal
// requires specifying the indexing at pipeline creation, rather than at draw time
// as with graphics pipelines. This means we must create three different pipelines,
// for no indexing, 16-bit indices, and 32-bit indices. Each requires different
// handling for the gl_VertexIndex builtin. We may as well, then, create three
// different shaders for these three scenarios.
IndexType vertex_index_type = IndexType::None;
// If set, a dummy [[sample_id]] input is added to a fragment shader if none is present.
// This will force the shader to run at sample rate, assuming Metal does not optimize
// the extra threads away.
bool force_sample_rate_shading = false;
// If set, gl_HelperInvocation will be set manually whenever a fragment is discarded.
// Some Metal devices have a bug where simd_is_helper_thread() does not return true
// after a fragment has been discarded. This is a workaround that is only expected to be needed
// until the bug is fixed in Metal; it is provided as an option to allow disabling it when that occurs.
bool manual_helper_invocation_updates = true;
// If set, extra checks will be emitted in fragment shaders to prevent writes
// from discarded fragments. Some Metal devices have a bug where writes to storage resources
// from discarded fragment threads continue to occur, despite the fragment being
// discarded. This is a workaround that is only expected to be needed until the
// bug is fixed in Metal; it is provided as an option so it can be enabled
// only when the bug is present.
bool check_discarded_frag_stores = false;
bool is_ios() const
{
return platform == iOS;
}
bool is_macos() const
{
return platform == macOS;
}
bool use_quadgroup_operation() const
{
return is_ios() && !ios_use_simdgroup_functions;
}
void set_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0)
{
msl_version = make_msl_version(major, minor, patch);
}
bool supports_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0) const
{
return msl_version >= make_msl_version(major, minor, patch);
}
static uint32_t make_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0)
{
return (major * 10000) + (minor * 100) + patch;
}
};
const Options &get_msl_options() const
{
return msl_options;
}
void set_msl_options(const Options &opts)
{
msl_options = opts;
}
// Provide feedback to calling API to allow runtime to disable pipeline
// rasterization if vertex shader requires rasterization to be disabled.
bool get_is_rasterization_disabled() const
{
return is_rasterization_disabled && (get_entry_point().model == spv::ExecutionModelVertex ||
get_entry_point().model == spv::ExecutionModelTessellationControl ||
get_entry_point().model == spv::ExecutionModelTessellationEvaluation);
}
// Provide feedback to calling API to allow it to pass an auxiliary
// swizzle buffer if the shader needs it.
bool needs_swizzle_buffer() const
{
return used_swizzle_buffer;
}
// Provide feedback to calling API to allow it to pass a buffer
// containing STORAGE_BUFFER buffer sizes to support OpArrayLength.
bool needs_buffer_size_buffer() const
{
return !buffers_requiring_array_length.empty();
}
bool buffer_requires_array_length(VariableID id) const
{
return buffers_requiring_array_length.count(id) != 0;
}
// Provide feedback to calling API to allow it to pass a buffer
// containing the view mask for the current multiview subpass.
bool needs_view_mask_buffer() const
{
return msl_options.multiview && !msl_options.view_index_from_device_index;
}
// Provide feedback to calling API to allow it to pass a buffer
// containing the dispatch base workgroup ID.
bool needs_dispatch_base_buffer() const
{
return msl_options.dispatch_base && !msl_options.supports_msl_version(1, 2);
}
// Provide feedback to calling API to allow it to pass an output
// buffer if the shader needs it.
bool needs_output_buffer() const
{
return capture_output_to_buffer && stage_out_var_id != ID(0);
}
// Provide feedback to calling API to allow it to pass a patch output
// buffer if the shader needs it.
bool needs_patch_output_buffer() const
{
return capture_output_to_buffer && patch_stage_out_var_id != ID(0);
}
// Provide feedback to calling API to allow it to pass an input threadgroup
// buffer if the shader needs it.
bool needs_input_threadgroup_mem() const
{
return capture_output_to_buffer && stage_in_var_id != ID(0);
}
explicit CompilerMSL(std::vector<uint32_t> spirv);
CompilerMSL(const uint32_t *ir, size_t word_count);
explicit CompilerMSL(const ParsedIR &ir);
explicit CompilerMSL(ParsedIR &&ir);
// input is a shader interface variable description used to fix up shader input variables.
// If shader inputs are provided, is_msl_shader_input_used() will return true after
// calling ::compile() if the location were used by the MSL code.
void add_msl_shader_input(const MSLShaderInterfaceVariable &input);
// output is a shader interface variable description used to fix up shader output variables.
// If shader outputs are provided, is_msl_shader_output_used() will return true after
// calling ::compile() if the location were used by the MSL code.
void add_msl_shader_output(const MSLShaderInterfaceVariable &output);
// resource is a resource binding to indicate the MSL buffer,
// texture or sampler index to use for a particular SPIR-V description set
// and binding. If resource bindings are provided,
// is_msl_resource_binding_used() will return true after calling ::compile() if
// the set/binding combination was used by the MSL code.
void add_msl_resource_binding(const MSLResourceBinding &resource);
// desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource
// in this shader. index is the index within the dynamic offset buffer to use. This
// function marks that resource as using a dynamic offset (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
// or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC). This function only has any effect if argument buffers
// are enabled. If so, the buffer will have its address adjusted at the beginning of the shader with
// an offset taken from the dynamic offset buffer.
void add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index);
// desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource
// in this shader. This function marks that resource as an inline uniform block
// (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT). This function only has any effect if argument buffers
// are enabled. If so, the buffer block will be directly embedded into the argument
// buffer, instead of being referenced indirectly via pointer.
void add_inline_uniform_block(uint32_t desc_set, uint32_t binding);
// When using MSL argument buffers, we can force "classic" MSL 1.0 binding schemes for certain descriptor sets.
// This corresponds to VK_KHR_push_descriptor in Vulkan.
void add_discrete_descriptor_set(uint32_t desc_set);
// If an argument buffer is large enough, it may need to be in the device storage space rather than
// constant. Opt-in to this behavior here on a per set basis.
void set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage);
// Query after compilation is done. This allows you to check if an input location was used by the shader.
bool is_msl_shader_input_used(uint32_t location);
// Query after compilation is done. This allows you to check if an output location were used by the shader.
bool is_msl_shader_output_used(uint32_t location);
// If not using add_msl_shader_input, it's possible
// that certain builtin attributes need to be automatically assigned locations.
// This is typical for tessellation builtin inputs such as tess levels, gl_Position, etc.
// This returns k_unknown_location if the location was explicitly assigned with
// add_msl_shader_input or the builtin is not used, otherwise returns N in [[attribute(N)]].
uint32_t get_automatic_builtin_input_location(spv::BuiltIn builtin) const;
// If not using add_msl_shader_output, it's possible
// that certain builtin attributes need to be automatically assigned locations.
// This is typical for tessellation builtin outputs such as tess levels, gl_Position, etc.
// This returns k_unknown_location if the location were explicitly assigned with
// add_msl_shader_output or the builtin were not used, otherwise returns N in [[attribute(N)]].
uint32_t get_automatic_builtin_output_location(spv::BuiltIn builtin) const;
// NOTE: Only resources which are remapped using add_msl_resource_binding will be reported here.
// Constexpr samplers are always assumed to be emitted.
// No specific MSLResourceBinding remapping is required for constexpr samplers as long as they are remapped
// by remap_constexpr_sampler(_by_binding).
bool is_msl_resource_binding_used(spv::ExecutionModel model, uint32_t set, uint32_t binding) const;
// This must only be called after a successful call to CompilerMSL::compile().
// For a variable resource ID obtained through reflection API, report the automatically assigned resource index.
// If the descriptor set was part of an argument buffer, report the [[id(N)]],
// or [[buffer/texture/sampler]] binding for other resources.
// If the resource was a combined image sampler, report the image binding here,
// use the _secondary version of this call to query the sampler half of the resource.
// If no binding exists, uint32_t(-1) is returned.
uint32_t get_automatic_msl_resource_binding(uint32_t id) const;
// Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers, in which case the
// sampler's binding is returned instead. For any other resource type, -1 is returned.
// Secondary bindings are also used for the auxillary image atomic buffer.
uint32_t get_automatic_msl_resource_binding_secondary(uint32_t id) const;
// Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for multiplanar images,
// in which case the second plane's binding is returned instead. For any other resource type, -1 is returned.
uint32_t get_automatic_msl_resource_binding_tertiary(uint32_t id) const;
// Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for triplanar images,
// in which case the third plane's binding is returned instead. For any other resource type, -1 is returned.
uint32_t get_automatic_msl_resource_binding_quaternary(uint32_t id) const;
// Compiles the SPIR-V code into Metal Shading Language.
std::string compile() override;
// Remap a sampler with ID to a constexpr sampler.
// Older iOS targets must use constexpr samplers in certain cases (PCF),
// so a static sampler must be used.
// The sampler will not consume a binding, but be declared in the entry point as a constexpr sampler.
// This can be used on both combined image/samplers (sampler2D) or standalone samplers.
// The remapped sampler must not be an array of samplers.
// Prefer remap_constexpr_sampler_by_binding unless you're also doing reflection anyways.
void remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler);
// Same as remap_constexpr_sampler, except you provide set/binding, rather than variable ID.
// Remaps based on ID take priority over set/binding remaps.
void remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding, const MSLConstexprSampler &sampler);
// If using CompilerMSL::Options::pad_fragment_output_components, override the number of components we expect
// to use for a particular location. The default is 4 if number of components is not overridden.
void set_fragment_output_components(uint32_t location, uint32_t components);
void set_combined_sampler_suffix(const char *suffix);
const char *get_combined_sampler_suffix() const;
protected:
// An enum of SPIR-V functions that are implemented in additional
// source code that is added to the shader if necessary.
enum SPVFuncImpl : uint8_t
{
SPVFuncImplNone,
SPVFuncImplMod,
SPVFuncImplRadians,
SPVFuncImplDegrees,
SPVFuncImplFindILsb,
SPVFuncImplFindSMsb,
SPVFuncImplFindUMsb,
SPVFuncImplSSign,
SPVFuncImplArrayCopyMultidimBase,
// Unfortunately, we cannot use recursive templates in the MSL compiler properly,
// so stamp out variants up to some arbitrary maximum.
SPVFuncImplArrayCopy = SPVFuncImplArrayCopyMultidimBase + 1,
SPVFuncImplArrayOfArrayCopy2Dim = SPVFuncImplArrayCopyMultidimBase + 2,
SPVFuncImplArrayOfArrayCopy3Dim = SPVFuncImplArrayCopyMultidimBase + 3,
SPVFuncImplArrayOfArrayCopy4Dim = SPVFuncImplArrayCopyMultidimBase + 4,
SPVFuncImplArrayOfArrayCopy5Dim = SPVFuncImplArrayCopyMultidimBase + 5,
SPVFuncImplArrayOfArrayCopy6Dim = SPVFuncImplArrayCopyMultidimBase + 6,
SPVFuncImplTexelBufferCoords,
SPVFuncImplImage2DAtomicCoords, // Emulate texture2D atomic operations
SPVFuncImplFMul,
SPVFuncImplFAdd,
SPVFuncImplFSub,
SPVFuncImplQuantizeToF16,
SPVFuncImplCubemapTo2DArrayFace,
SPVFuncImplUnsafeArray, // Allow Metal to use the array<T> template to make arrays a value type
SPVFuncImplStorageMatrix, // Allow threadgroup construction of matrices
SPVFuncImplInverse4x4,
SPVFuncImplInverse3x3,
SPVFuncImplInverse2x2,
// It is very important that this come before *Swizzle and ChromaReconstruct*, to ensure it's
// emitted before them.
SPVFuncImplForwardArgs,
// Likewise, this must come before *Swizzle.
SPVFuncImplGetSwizzle,
SPVFuncImplTextureSwizzle,
SPVFuncImplGatherSwizzle,
SPVFuncImplGatherCompareSwizzle,
SPVFuncImplSubgroupBroadcast,
SPVFuncImplSubgroupBroadcastFirst,
SPVFuncImplSubgroupBallot,
SPVFuncImplSubgroupBallotBitExtract,
SPVFuncImplSubgroupBallotFindLSB,
SPVFuncImplSubgroupBallotFindMSB,
SPVFuncImplSubgroupBallotBitCount,
SPVFuncImplSubgroupAllEqual,
SPVFuncImplSubgroupShuffle,
SPVFuncImplSubgroupShuffleXor,
SPVFuncImplSubgroupShuffleUp,
SPVFuncImplSubgroupShuffleDown,
SPVFuncImplQuadBroadcast,
SPVFuncImplQuadSwap,
SPVFuncImplReflectScalar,
SPVFuncImplRefractScalar,
SPVFuncImplFaceForwardScalar,
SPVFuncImplChromaReconstructNearest2Plane,
SPVFuncImplChromaReconstructNearest3Plane,
SPVFuncImplChromaReconstructLinear422CositedEven2Plane,
SPVFuncImplChromaReconstructLinear422CositedEven3Plane,
SPVFuncImplChromaReconstructLinear422Midpoint2Plane,
SPVFuncImplChromaReconstructLinear422Midpoint3Plane,
SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane,
SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane,
SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane,
SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane,
SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane,
SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane,
SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane,
SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane,
SPVFuncImplExpandITUFullRange,
SPVFuncImplExpandITUNarrowRange,
SPVFuncImplConvertYCbCrBT709,
SPVFuncImplConvertYCbCrBT601,
SPVFuncImplConvertYCbCrBT2020,
SPVFuncImplDynamicImageSampler,
};
// If the underlying resource has been used for comparison then duplicate loads of that resource must be too
// Use Metal's native frame-buffer fetch API for subpass inputs.
void emit_texture_op(const Instruction &i, bool sparse) override;
void emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
std::string to_ptr_expression(uint32_t id, bool register_expression_read = true);
void emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
void emit_instruction(const Instruction &instr) override;
void emit_glsl_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args,
uint32_t count) override;
void emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t result_id, uint32_t op,
const uint32_t *args, uint32_t count) override;
void emit_header() override;
void emit_function_prototype(SPIRFunction &func, const Bitset &return_flags) override;
void emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) override;
void emit_subgroup_op(const Instruction &i) override;
std::string to_texture_op(const Instruction &i, bool sparse, bool *forward,
SmallVector<uint32_t> &inherited_expressions) override;
void emit_fixup() override;
std::string to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const std::string &qualifier = "");
void emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const std::string &qualifier = "", uint32_t base_offset = 0) override;
void emit_struct_padding_target(const SPIRType &type) override;
std::string type_to_glsl(const SPIRType &type, uint32_t id, bool member);
std::string type_to_glsl(const SPIRType &type, uint32_t id = 0) override;
void emit_block_hints(const SPIRBlock &block) override;
// Allow Metal to use the array<T> template to make arrays a value type
std::string type_to_array_glsl(const SPIRType &type) override;
std::string constant_op_expression(const SPIRConstantOp &cop) override;
// Threadgroup arrays can't have a wrapper type
std::string variable_decl(const SPIRVariable &variable) override;
bool variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const override;
// GCC workaround of lambdas calling protected functions (for older GCC versions)
std::string variable_decl(const SPIRType &type, const std::string &name, uint32_t id = 0) override;
std::string image_type_glsl(const SPIRType &type, uint32_t id = 0) override;
std::string sampler_type(const SPIRType &type, uint32_t id);
std::string builtin_to_glsl(spv::BuiltIn builtin, spv::StorageClass storage) override;
std::string to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id) override;
std::string to_name(uint32_t id, bool allow_alias = true) const override;
std::string to_function_name(const TextureFunctionNameArguments &args) override;
std::string to_function_args(const TextureFunctionArguments &args, bool *p_forward) override;
std::string to_initializer_expression(const SPIRVariable &var) override;
std::string to_zero_initialized_expression(uint32_t type_id) override;
std::string unpack_expression_type(std::string expr_str, const SPIRType &type, uint32_t physical_type_id,
bool is_packed, bool row_major) override;
// Returns true for BuiltInSampleMask because gl_SampleMask[] is an array in SPIR-V, but [[sample_mask]] is a scalar in Metal.
bool builtin_translates_to_nonarray(spv::BuiltIn builtin) const override;
std::string bitcast_glsl_op(const SPIRType &result_type, const SPIRType &argument_type) override;
bool emit_complex_bitcast(uint32_t result_id, uint32_t id, uint32_t op0) override;
bool skip_argument(uint32_t id) const override;
std::string to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved) override;
std::string to_qualifiers_glsl(uint32_t id) override;
void replace_illegal_names() override;
void declare_constant_arrays();
void replace_illegal_entry_point_names();
void sync_entry_point_aliases_and_names();
static const std::unordered_set<std::string> &get_reserved_keyword_set();
static const std::unordered_set<std::string> &get_illegal_func_names();
// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
void declare_complex_constant_arrays();
bool is_patch_block(const SPIRType &type);
bool is_non_native_row_major_matrix(uint32_t id) override;
bool member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index) override;
std::string convert_row_major_matrix(std::string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
bool is_packed) override;
bool is_tesc_shader() const;
bool is_tese_shader() const;
void preprocess_op_codes();
void localize_global_variables();
void extract_global_variables_from_functions();
void mark_packable_structs();
void mark_as_packable(SPIRType &type);
void mark_as_workgroup_struct(SPIRType &type);
std::unordered_map<uint32_t, std::set<uint32_t>> function_global_vars;
void extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
std::unordered_set<uint32_t> &global_var_ids,
std::unordered_set<uint32_t> &processed_func_ids);
uint32_t add_interface_block(spv::StorageClass storage, bool patch = false);
uint32_t add_interface_block_pointer(uint32_t ib_var_id, spv::StorageClass storage);
struct InterfaceBlockMeta
{
struct LocationMeta
{
uint32_t base_type_id = 0;
uint32_t num_components = 0;
bool flat = false;
bool noperspective = false;
bool centroid = false;
bool sample = false;
};
std::unordered_map<uint32_t, LocationMeta> location_meta;
bool strip_array = false;
bool allow_local_declaration = false;
};
std::string to_tesc_invocation_id();
void emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array);
void add_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, InterfaceBlockMeta &meta);
void add_composite_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta);
void add_plain_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta);
bool add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
SPIRVariable &var, const SPIRType &type,
InterfaceBlockMeta &meta);
void add_plain_member_variable_to_interface_block(spv::StorageClass storage,
const std::string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, SPIRType &var_type,
uint32_t mbr_idx, InterfaceBlockMeta &meta,
const std::string &mbr_name_qual,
const std::string &var_chain_qual,
uint32_t &location, uint32_t &var_mbr_idx);
void add_composite_member_variable_to_interface_block(spv::StorageClass storage,
const std::string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, SPIRType &var_type,
uint32_t mbr_idx, InterfaceBlockMeta &meta,
const std::string &mbr_name_qual,
const std::string &var_chain_qual,
uint32_t &location, uint32_t &var_mbr_idx);
void add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var);
void add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var);
void fix_up_interface_member_indices(spv::StorageClass storage, uint32_t ib_type_id);
void mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
spv::StorageClass storage, bool fallback = false);
uint32_t ensure_correct_builtin_type(uint32_t type_id, spv::BuiltIn builtin);
uint32_t ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component,
uint32_t num_components, bool strip_array);
void emit_custom_templates();
void emit_custom_functions();
void emit_resources();
void emit_specialization_constants_and_structs();
void emit_interface_block(uint32_t ib_var_id);
bool maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs);
uint32_t get_resource_array_size(uint32_t id) const;
void fix_up_shader_inputs_outputs();
std::string func_type_decl(SPIRType &type);
std::string entry_point_args_classic(bool append_comma);
std::string entry_point_args_argument_buffer(bool append_comma);
std::string entry_point_arg_stage_in();
void entry_point_args_builtin(std::string &args);
void entry_point_args_discrete_descriptors(std::string &args);
std::string append_member_name(const std::string &qualifier, const SPIRType &type, uint32_t index);
std::string ensure_valid_name(std::string name, std::string pfx);
std::string to_sampler_expression(uint32_t id);
std::string to_swizzle_expression(uint32_t id);
std::string to_buffer_size_expression(uint32_t id);
bool is_sample_rate() const;
bool is_intersection_query() const;
bool is_direct_input_builtin(spv::BuiltIn builtin);
std::string builtin_qualifier(spv::BuiltIn builtin);
std::string builtin_type_decl(spv::BuiltIn builtin, uint32_t id = 0);
std::string built_in_func_arg(spv::BuiltIn builtin, bool prefix_comma);
std::string member_attribute_qualifier(const SPIRType &type, uint32_t index);
std::string member_location_attribute_qualifier(const SPIRType &type, uint32_t index);
std::string argument_decl(const SPIRFunction::Parameter &arg);
const char *descriptor_address_space(uint32_t id, spv::StorageClass storage, const char *plain_address_space) const;
std::string round_fp_tex_coords(std::string tex_coords, bool coord_is_fp);
uint32_t get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane = 0);
uint32_t get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp = nullptr) const;
uint32_t get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
uint32_t type_id, uint32_t index, uint32_t *comp = nullptr);
uint32_t get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
uint32_t type_id, uint32_t index, uint32_t *comp = nullptr);
uint32_t get_physical_tess_level_array_size(spv::BuiltIn builtin) const;
// MSL packing rules. These compute the effective packing rules as observed by the MSL compiler in the MSL output.
// These values can change depending on various extended decorations which control packing rules.
// We need to make these rules match up with SPIR-V declared rules.
uint32_t get_declared_type_size_msl(const SPIRType &type, bool packed, bool row_major) const;
uint32_t get_declared_type_array_stride_msl(const SPIRType &type, bool packed, bool row_major) const;
uint32_t get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const;
uint32_t get_declared_type_alignment_msl(const SPIRType &type, bool packed, bool row_major) const;
uint32_t get_declared_struct_member_size_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_struct_member_array_stride_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_struct_member_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_struct_member_alignment_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_input_size_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_input_array_stride_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_input_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_input_alignment_msl(const SPIRType &struct_type, uint32_t index) const;
const SPIRType &get_physical_member_type(const SPIRType &struct_type, uint32_t index) const;
SPIRType get_presumed_input_type(const SPIRType &struct_type, uint32_t index) const;
uint32_t get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment = false,
bool ignore_padding = false) const;
std::string to_component_argument(uint32_t id);
void align_struct(SPIRType &ib_type, std::unordered_set<uint32_t> &aligned_structs);
void mark_scalar_layout_structs(const SPIRType &ib_type);
void mark_struct_members_packed(const SPIRType &type);
void ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index);
bool validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const;
std::string get_argument_address_space(const SPIRVariable &argument);
std::string get_type_address_space(const SPIRType &type, uint32_t id, bool argument = false);
const char *to_restrict(uint32_t id, bool space);
SPIRType &get_stage_in_struct_type();
SPIRType &get_stage_out_struct_type();
SPIRType &get_patch_stage_in_struct_type();
SPIRType &get_patch_stage_out_struct_type();
std::string get_tess_factor_struct_name();
SPIRType &get_uint_type();
uint32_t get_uint_type_id();
void emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, spv::Op opcode,
uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t op0, uint32_t op1 = 0,
bool op1_is_pointer = false, bool op1_is_literal = false, uint32_t op2 = 0);
const char *get_memory_order(uint32_t spv_mem_sem);
void add_pragma_line(const std::string &line);
void add_typedef_line(const std::string &line);
void emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem);
void emit_array_copy(const std::string &lhs, uint32_t lhs_id, uint32_t rhs_id,
spv::StorageClass lhs_storage, spv::StorageClass rhs_storage) override;
void build_implicit_builtins();
uint32_t build_constant_uint_array_pointer();
void emit_entry_point_declarations() override;
bool uses_explicit_early_fragment_test();
uint32_t builtin_frag_coord_id = 0;
uint32_t builtin_sample_id_id = 0;
uint32_t builtin_sample_mask_id = 0;
uint32_t builtin_helper_invocation_id = 0;
uint32_t builtin_vertex_idx_id = 0;
uint32_t builtin_base_vertex_id = 0;
uint32_t builtin_instance_idx_id = 0;
uint32_t builtin_base_instance_id = 0;
uint32_t builtin_view_idx_id = 0;
uint32_t builtin_layer_id = 0;
uint32_t builtin_invocation_id_id = 0;
uint32_t builtin_primitive_id_id = 0;
uint32_t builtin_subgroup_invocation_id_id = 0;
uint32_t builtin_subgroup_size_id = 0;
uint32_t builtin_dispatch_base_id = 0;
uint32_t builtin_stage_input_size_id = 0;
uint32_t builtin_local_invocation_index_id = 0;
uint32_t builtin_workgroup_size_id = 0;
uint32_t swizzle_buffer_id = 0;
uint32_t buffer_size_buffer_id = 0;
uint32_t view_mask_buffer_id = 0;
uint32_t dynamic_offsets_buffer_id = 0;
uint32_t uint_type_id = 0;
uint32_t argument_buffer_padding_buffer_type_id = 0;
uint32_t argument_buffer_padding_image_type_id = 0;
uint32_t argument_buffer_padding_sampler_type_id = 0;
bool does_shader_write_sample_mask = false;
bool frag_shader_needs_discard_checks = false;
void cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type) override;
void cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type) override;
void emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression) override;
void analyze_sampled_image_usage();
bool access_chain_needs_stage_io_builtin_translation(uint32_t base) override;
void prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type, spv::StorageClass storage,
bool &is_packed) override;
void fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length);
void check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type) override;
bool emit_tessellation_access_chain(const uint32_t *ops, uint32_t length);
bool emit_tessellation_io_load(uint32_t result_type, uint32_t id, uint32_t ptr);
bool is_out_of_bounds_tessellation_level(uint32_t id_lhs);
void ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin);
void mark_implicit_builtin(spv::StorageClass storage, spv::BuiltIn builtin, uint32_t id);
std::string convert_to_f32(const std::string &expr, uint32_t components);
Options msl_options;
std::set<SPVFuncImpl> spv_function_implementations;
// Must be ordered to ensure declarations are in a specific order.
std::map<LocationComponentPair, MSLShaderInterfaceVariable> inputs_by_location;
std::unordered_map<uint32_t, MSLShaderInterfaceVariable> inputs_by_builtin;
std::map<LocationComponentPair, MSLShaderInterfaceVariable> outputs_by_location;
std::unordered_map<uint32_t, MSLShaderInterfaceVariable> outputs_by_builtin;
std::unordered_set<uint32_t> location_inputs_in_use;
std::unordered_set<uint32_t> location_inputs_in_use_fallback;
std::unordered_set<uint32_t> location_outputs_in_use;
std::unordered_set<uint32_t> location_outputs_in_use_fallback;
std::unordered_map<uint32_t, uint32_t> fragment_output_components;
std::unordered_map<uint32_t, uint32_t> builtin_to_automatic_input_location;
std::unordered_map<uint32_t, uint32_t> builtin_to_automatic_output_location;
std::set<std::string> pragma_lines;
std::set<std::string> typedef_lines;
SmallVector<uint32_t> vars_needing_early_declaration;
std::unordered_map<StageSetBinding, std::pair<MSLResourceBinding, bool>, InternalHasher> resource_bindings;
std::unordered_map<StageSetBinding, uint32_t, InternalHasher> resource_arg_buff_idx_to_binding_number;
uint32_t next_metal_resource_index_buffer = 0;
uint32_t next_metal_resource_index_texture = 0;
uint32_t next_metal_resource_index_sampler = 0;
// Intentionally uninitialized, works around MSVC 2013 bug.
uint32_t next_metal_resource_ids[kMaxArgumentBuffers];
VariableID stage_in_var_id = 0;
VariableID stage_out_var_id = 0;
VariableID patch_stage_in_var_id = 0;
VariableID patch_stage_out_var_id = 0;
VariableID stage_in_ptr_var_id = 0;
VariableID stage_out_ptr_var_id = 0;
VariableID tess_level_inner_var_id = 0;
VariableID tess_level_outer_var_id = 0;
VariableID stage_out_masked_builtin_type_id = 0;
// Handle HLSL-style 0-based vertex/instance index.
enum class TriState
{
Neutral,
No,
Yes
};
TriState needs_base_vertex_arg = TriState::Neutral;
TriState needs_base_instance_arg = TriState::Neutral;
bool has_sampled_images = false;
bool builtin_declaration = false; // Handle HLSL-style 0-based vertex/instance index.
bool is_using_builtin_array = false; // Force the use of C style array declaration.
bool using_builtin_array() const;
bool is_rasterization_disabled = false;
bool capture_output_to_buffer = false;
bool needs_swizzle_buffer_def = false;
bool used_swizzle_buffer = false;
bool added_builtin_tess_level = false;
bool needs_subgroup_invocation_id = false;
bool needs_subgroup_size = false;
bool needs_sample_id = false;
bool needs_helper_invocation = false;
std::string qual_pos_var_name;
std::string stage_in_var_name = "in";
std::string stage_out_var_name = "out";
std::string patch_stage_in_var_name = "patchIn";
std::string patch_stage_out_var_name = "patchOut";
std::string sampler_name_suffix = "Smplr";
std::string swizzle_name_suffix = "Swzl";
std::string buffer_size_name_suffix = "BufferSize";
std::string plane_name_suffix = "Plane";
std::string input_wg_var_name = "gl_in";
std::string input_buffer_var_name = "spvIn";
std::string output_buffer_var_name = "spvOut";
std::string patch_input_buffer_var_name = "spvPatchIn";
std::string patch_output_buffer_var_name = "spvPatchOut";
std::string tess_factor_buffer_var_name = "spvTessLevel";
std::string index_buffer_var_name = "spvIndices";
spv::Op previous_instruction_opcode = spv::OpNop;
// Must be ordered since declaration is in a specific order.
std::map<uint32_t, MSLConstexprSampler> constexpr_samplers_by_id;
std::unordered_map<SetBindingPair, MSLConstexprSampler, InternalHasher> constexpr_samplers_by_binding;
const MSLConstexprSampler *find_constexpr_sampler(uint32_t id) const;
std::unordered_set<uint32_t> buffers_requiring_array_length;
SmallVector<uint32_t> buffer_arrays_discrete;
SmallVector<std::pair<uint32_t, uint32_t>> buffer_aliases_argument;
SmallVector<uint32_t> buffer_aliases_discrete;
std::unordered_set<uint32_t> atomic_image_vars; // Emulate texture2D atomic operations
std::unordered_set<uint32_t> pull_model_inputs;
// Must be ordered since array is in a specific order.
std::map<SetBindingPair, std::pair<uint32_t, uint32_t>> buffers_requiring_dynamic_offset;
SmallVector<uint32_t> disabled_frag_outputs;
std::unordered_set<SetBindingPair, InternalHasher> inline_uniform_blocks;
uint32_t argument_buffer_ids[kMaxArgumentBuffers];
uint32_t argument_buffer_discrete_mask = 0;
uint32_t argument_buffer_device_storage_mask = 0;
void analyze_argument_buffers();
bool descriptor_set_is_argument_buffer(uint32_t desc_set) const;
MSLResourceBinding &get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx);
void add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
void add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
void add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
void add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, uint32_t count);
uint32_t get_target_components_for_fragment_location(uint32_t location) const;
uint32_t build_extended_vector_type(uint32_t type_id, uint32_t components,
SPIRType::BaseType basetype = SPIRType::Unknown);
uint32_t build_msl_interpolant_type(uint32_t type_id, bool is_noperspective);
bool suppress_missing_prototypes = false;
void add_spv_func_and_recompile(SPVFuncImpl spv_func);
void activate_argument_buffer_resources();
bool type_is_msl_framebuffer_fetch(const SPIRType &type) const;
bool type_is_pointer(const SPIRType &type) const;
bool type_is_pointer_to_pointer(const SPIRType &type) const;
bool is_supported_argument_buffer_type(const SPIRType &type) const;
bool variable_storage_requires_stage_io(spv::StorageClass storage) const;
bool needs_manual_helper_invocation_updates() const
{
return msl_options.manual_helper_invocation_updates && msl_options.supports_msl_version(2, 3);
}
bool needs_frag_discard_checks() const
{
return get_execution_model() == spv::ExecutionModelFragment && msl_options.supports_msl_version(2, 3) &&
msl_options.check_discarded_frag_stores && frag_shader_needs_discard_checks;
}
bool has_additional_fixed_sample_mask() const { return msl_options.additional_fixed_sample_mask != 0xffffffff; }
std::string additional_fixed_sample_mask_str() const;
// OpcodeHandler that handles several MSL preprocessing operations.
struct OpCodePreprocessor : OpcodeHandler
{
OpCodePreprocessor(CompilerMSL &compiler_)
: compiler(compiler_)
{
}
bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
CompilerMSL::SPVFuncImpl get_spv_func_impl(spv::Op opcode, const uint32_t *args);
void check_resource_write(uint32_t var_id);
CompilerMSL &compiler;
std::unordered_map<uint32_t, uint32_t> result_types;
std::unordered_map<uint32_t, uint32_t> image_pointers; // Emulate texture2D atomic operations
bool suppress_missing_prototypes = false;
bool uses_atomics = false;
bool uses_image_write = false;
bool uses_buffer_write = false;
bool uses_discard = false;
bool needs_subgroup_invocation_id = false;
bool needs_subgroup_size = false;
bool needs_sample_id = false;
bool needs_helper_invocation = false;
};
// OpcodeHandler that scans for uses of sampled images
struct SampledImageScanner : OpcodeHandler
{
SampledImageScanner(CompilerMSL &compiler_)
: compiler(compiler_)
{
}
bool handle(spv::Op opcode, const uint32_t *args, uint32_t) override;
CompilerMSL &compiler;
};
// Sorts the members of a SPIRType and associated Meta info based on a settable sorting
// aspect, which defines which aspect of the struct members will be used to sort them.
// Regardless of the sorting aspect, built-in members always appear at the end of the struct.
struct MemberSorter
{
enum SortAspect
{
LocationThenBuiltInType,
Offset
};
void sort();
bool operator()(uint32_t mbr_idx1, uint32_t mbr_idx2);
MemberSorter(SPIRType &t, Meta &m, SortAspect sa);
SPIRType &type;
Meta &meta;
SortAspect sort_aspect;
};
};
} // namespace SPIRV_CROSS_NAMESPACE
#endif