ari64/new_dynarec.c
2016-09-30 20:58:04 +02:00

10400 lines
338 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Mupen64plus - new_dynarec.c *
* Copyright (C) 2009-2011 Ari64 *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include <stdlib.h>
#include <stdint.h> //include for uint64_t
#include <assert.h>
#include <errno.h>
#include <sys/mman.h>
#ifdef __MACH__
#include <libkern/OSCacheControl.h>
#endif
#ifdef _3DS
#include <3ds_utils.h>
#endif
#ifdef VITA
#include <psp2/kernel/sysmem.h>
static int sceBlock;
int getVMBlock();
#endif
#include "new_dynarec_config.h"
#include "backends/psx/emu_if.h" //emulator interface
//#define DISASM
//#define assem_debug printf
//#define inv_debug printf
#define assem_debug(...)
#define inv_debug(...)
#ifdef __i386__
#include "x86/assem_x86.h"
#endif
#ifdef __x86_64__
#include "x64/assem_x64.h"
#endif
#ifdef __arm__
#include "arm/assem_arm.h"
#endif
#ifdef VITA
int _newlib_vm_size_user = 1 << TARGET_SIZE_2;
#endif
#define MAXBLOCK 4096
#define MAX_OUTPUT_BLOCK_SIZE 262144
struct regstat
{
signed char regmap_entry[HOST_REGS];
signed char regmap[HOST_REGS];
uint64_t was32;
uint64_t is32;
uint64_t wasdirty;
uint64_t dirty;
uint64_t u;
uint64_t uu;
u_int wasconst;
u_int isconst;
u_int loadedconst; // host regs that have constants loaded
u_int waswritten; // MIPS regs that were used as store base before
};
// note: asm depends on this layout
struct ll_entry
{
u_int vaddr;
u_int reg_sv_flags;
void *addr;
struct ll_entry *next;
};
// used by asm:
u_char *out;
u_int hash_table[65536][4] __attribute__((aligned(16)));
struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
struct ll_entry *jump_dirty[4096];
static struct ll_entry *jump_out[4096];
static u_int start;
static u_int *source;
static char insn[MAXBLOCK][10];
static u_char itype[MAXBLOCK];
static u_char opcode[MAXBLOCK];
static u_char opcode2[MAXBLOCK];
static u_char bt[MAXBLOCK];
static u_char rs1[MAXBLOCK];
static u_char rs2[MAXBLOCK];
static u_char rt1[MAXBLOCK];
static u_char rt2[MAXBLOCK];
static u_char us1[MAXBLOCK];
static u_char us2[MAXBLOCK];
static u_char dep1[MAXBLOCK];
static u_char dep2[MAXBLOCK];
static u_char lt1[MAXBLOCK];
static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
static uint64_t gte_rt[MAXBLOCK];
static uint64_t gte_unneeded[MAXBLOCK];
static u_int smrv[32]; // speculated MIPS register values
static u_int smrv_strong; // mask or regs that are likely to have correct values
static u_int smrv_weak; // same, but somewhat less likely
static u_int smrv_strong_next; // same, but after current insn executes
static u_int smrv_weak_next;
static int imm[MAXBLOCK];
static u_int ba[MAXBLOCK];
static char likely[MAXBLOCK];
static char is_ds[MAXBLOCK];
static char ooo[MAXBLOCK];
static uint64_t unneeded_reg[MAXBLOCK];
static uint64_t unneeded_reg_upper[MAXBLOCK];
static uint64_t branch_unneeded_reg[MAXBLOCK];
static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
static signed char regmap_pre[MAXBLOCK][HOST_REGS];
static uint64_t current_constmap[HOST_REGS];
static uint64_t constmap[MAXBLOCK][HOST_REGS];
static struct regstat regs[MAXBLOCK];
static struct regstat branch_regs[MAXBLOCK];
static signed char minimum_free_regs[MAXBLOCK];
static u_int needed_reg[MAXBLOCK];
static u_int wont_dirty[MAXBLOCK];
static u_int will_dirty[MAXBLOCK];
static int ccadj[MAXBLOCK];
static int slen;
static u_int instr_addr[MAXBLOCK];
static u_int link_addr[MAXBLOCK][3];
static int linkcount;
static u_int stubs[MAXBLOCK*3][8];
static int stubcount;
static u_int literals[1024][2];
static int literalcount;
static int is_delayslot;
static int cop1_usable;
static char shadow[1048576] __attribute__((aligned(16)));
static void *copy;
static int expirep;
static u_int stop_after_jal;
#ifndef RAM_FIXED
static u_int ram_offset;
#else
static const u_int ram_offset=0;
#endif
int new_dynarec_hacks;
int new_dynarec_did_compile;
extern u_char restore_candidate[512];
extern int cycle_count;
/* registers that may be allocated */
/* 1-31 gpr */
#define HIREG 32 // hi
#define LOREG 33 // lo
#define FSREG 34 // FPU status (FCSR)
#define CSREG 35 // Coprocessor status
#define CCREG 36 // Cycle count
#define INVCP 37 // Pointer to invalid_code
//#define MMREG 38 // Pointer to memory_map
#define ROREG 39 // ram offset (if rdram!=0x80000000)
#define TEMPREG 40
#define FTEMP 40 // FPU temporary register
#define PTEMP 41 // Prefetch temporary register
//#define TLREG 42 // TLB mapping offset
#define RHASH 43 // Return address hash
#define RHTBL 44 // Return address hash table address
#define RTEMP 45 // JR/JALR address register
#define MAXREG 45
#define AGEN1 46 // Address generation temporary register
//#define AGEN2 47 // Address generation temporary register
//#define MGEN1 48 // Maptable address generation temporary register
//#define MGEN2 49 // Maptable address generation temporary register
#define BTREG 50 // Branch target temporary register
/* instruction types */
#define NOP 0 // No operation
#define LOAD 1 // Load
#define STORE 2 // Store
#define LOADLR 3 // Unaligned load
#define STORELR 4 // Unaligned store
#define MOV 5 // Move
#define ALU 6 // Arithmetic/logic
#define MULTDIV 7 // Multiply/divide
#define SHIFT 8 // Shift by register
#define SHIFTIMM 9// Shift by immediate
#define IMM16 10 // 16-bit immediate
#define RJUMP 11 // Unconditional jump to register
#define UJUMP 12 // Unconditional jump
#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
#define SJUMP 14 // Conditional branch (regimm format)
#define COP0 15 // Coprocessor 0
#define COP1 16 // Coprocessor 1
#define C1LS 17 // Coprocessor 1 load/store
#define FJUMP 18 // Conditional branch (floating point)
#define FLOAT 19 // Floating point unit
#define FCONV 20 // Convert integer to float
#define FCOMP 21 // Floating point compare (sets FSREG)
#define SYSCALL 22// SYSCALL
#define OTHER 23 // Other
#define SPAN 24 // Branch/delay slot spans 2 pages
#define NI 25 // Not implemented
#define HLECALL 26// PCSX fake opcodes for HLE
#define COP2 27 // Coprocessor 2 move
#define C2LS 28 // Coprocessor 2 load/store
#define C2OP 29 // Coprocessor 2 operation
#define INTCALL 30// Call interpreter to handle rare corner cases
/* stubs */
#define CC_STUB 1
#define FP_STUB 2
#define LOADB_STUB 3
#define LOADH_STUB 4
#define LOADW_STUB 5
#define LOADD_STUB 6
#define LOADBU_STUB 7
#define LOADHU_STUB 8
#define STOREB_STUB 9
#define STOREH_STUB 10
#define STOREW_STUB 11
#define STORED_STUB 12
#define STORELR_STUB 13
#define INVCODE_STUB 14
/* branch codes */
#define TAKEN 1
#define NOTTAKEN 2
#define NULLDS 3
// asm linkage
int new_recompile_block(int addr);
void *get_addr_ht(u_int vaddr);
void invalidate_block(u_int block);
void invalidate_addr(u_int addr);
void remove_hash(int vaddr);
void dyna_linker();
void dyna_linker_ds();
void verify_code();
void verify_code_vm();
void verify_code_ds();
void cc_interrupt();
void fp_exception();
void fp_exception_ds();
void jump_syscall_hle();
void jump_hlecall();
void jump_intcall();
void new_dyna_leave();
// Needed by assembler
static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
static void load_all_regs(signed char i_regmap[]);
static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
static void load_regs_entry(int t);
static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
static int verify_dirty(u_int *ptr);
static int get_final_value(int hr, int i, int *value);
static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
static void add_to_linker(int addr,int target,int ext);
static int tracedebug=0;
static void mprotect_w_x(void *start, void *end, int is_x)
{
#ifdef NO_WRITE_EXEC
#if defined(VITA)
// *Open* enables write on all memory that was
// allocated by sceKernelAllocMemBlockForVM()?
if (is_x)
sceKernelCloseVMDomain();
else
sceKernelOpenVMDomain();
#else
u_long mstart = (u_long)start & ~4095ul;
u_long mend = (u_long)end;
if (mprotect((void *)mstart, mend - mstart,
PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
#endif
#endif
}
static void start_tcache_write(void *start, void *end)
{
mprotect_w_x(start, end, 0);
}
static void end_tcache_write(void *start, void *end)
{
#ifdef __arm__
size_t len = (char *)end - (char *)start;
#if defined(__BLACKBERRY_QNX__)
msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
#elif defined(__MACH__)
sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
#elif defined(VITA)
sceKernelSyncVMDomain(sceBlock, start, len);
#elif defined(_3DS)
ctr_flush_invalidate_cache();
#else
__clear_cache(start, end);
#endif
(void)len;
#endif
mprotect_w_x(start, end, 1);
}
static void *start_block(void)
{
u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
if (end > (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2))
end = (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2);
start_tcache_write(out, end);
return out;
}
static void end_block(void *start)
{
end_tcache_write(start, out);
}
//#define DEBUG_CYCLE_COUNT 1
#define NO_CYCLE_PENALTY_THR 12
int cycle_multiplier; // 100 for 1.0
static int CLOCK_ADJUST(int x)
{
int s=(x>>31)|1;
return (x * cycle_multiplier + s * 50) / 100;
}
static u_int get_page(u_int vaddr)
{
u_int page=vaddr&~0xe0000000;
if (page < 0x1000000)
page &= ~0x0e00000; // RAM mirrors
page>>=12;
if(page>2048) page=2048+(page&2047);
return page;
}
// no virtual mem in PCSX
static u_int get_vpage(u_int vaddr)
{
return get_page(vaddr);
}
// Get address from virtual address
// This is called from the recompiled JR/JALR instructions
void *get_addr(u_int vaddr)
{
struct ll_entry *head = NULL;
u_int page = get_page(vaddr);
u_int vpage = get_vpage(vaddr);
//printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
head=jump_in[page];
while(head!=NULL)
{
if(head->vaddr==vaddr)
{
//printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
ht_bin[3]=ht_bin[1];
ht_bin[2]=ht_bin[0];
ht_bin[1]=(u_int)head->addr;
ht_bin[0]=vaddr;
return head->addr;
}
head=head->next;
}
head=jump_dirty[vpage];
while(head!=NULL)
{
if(head->vaddr==vaddr)
{
//printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
if(verify_dirty(head->addr))
{
//printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
invalid_code[vaddr>>12]=0;
inv_code_start=inv_code_end=~0;
if(vpage<2048)
{
restore_candidate[vpage>>3]|=1<<(vpage&7);
}
else
{
restore_candidate[page>>3]|=1<<(page&7);
}
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr)
ht_bin[1]=(u_int)head->addr; // Replace existing entry
else
{
ht_bin[3]=ht_bin[1];
ht_bin[2]=ht_bin[0];
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}
return head->addr;
}
}
head=head->next;
}
//printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
int r=new_recompile_block(vaddr);
if(r==0)
return get_addr(vaddr);
// Execute in unmapped page, generate pagefault exception
Status|=2;
Cause=(vaddr<<31)|0x8;
EPC=(vaddr&1)?vaddr-5:vaddr;
BadVAddr=(vaddr&~1);
Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
EntryHi=BadVAddr&0xFFFFE000;
return get_addr_ht(0x80000000);
}
// Look up address in hash table first
void *get_addr_ht(u_int vaddr)
{
//printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
return get_addr(vaddr);
}
void clear_all_regs(signed char regmap[])
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
}
signed char get_reg(signed char regmap[],int r)
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
return -1;
}
// Find a register that is available for two consecutive cycles
signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
return -1;
}
int count_free_regs(signed char regmap[])
{
int count=0;
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG) {
if(regmap[hr]<0) count++;
}
}
return count;
}
void dirty_reg(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
cur->dirty|=1<<hr;
}
}
}
// If we dirty the lower half of a 64 bit register which is now being
// sign-extended, we need to dump the upper half.
// Note: Do this only after completion of the instruction, because
// some instructions may need to read the full 64-bit value even if
// overwriting it (eg SLTI, DSRA32).
static void flush_dirty_uppers(struct regstat *cur)
{
int hr,reg;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->dirty>>hr)&1) {
reg=cur->regmap[hr];
if(reg>=64)
if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
}
}
}
void set_const(struct regstat *cur,signed char reg,uint64_t value)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if(cur->regmap[hr]==reg) {
cur->isconst|=1<<hr;
current_constmap[hr]=value;
}
else if((cur->regmap[hr]^64)==reg) {
cur->isconst|=1<<hr;
current_constmap[hr]=value>>32;
}
}
}
void clear_const(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
cur->isconst&=~(1<<hr);
}
}
}
int is_const(struct regstat *cur,signed char reg)
{
int hr;
if(reg<0) return 0;
if(!reg) return 1;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
return (cur->isconst>>hr)&1;
}
}
return 0;
}
uint64_t get_const(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return 0;
for (hr=0;hr<HOST_REGS;hr++) {
if(cur->regmap[hr]==reg) {
return current_constmap[hr];
}
}
SysPrintf("Unknown constant in r%d\n",reg);
exit(1);
}
// Least soon needed registers
// Look at the next ten instructions and see which registers
// will be used. Try not to reallocate these.
void lsn(u_char hsn[], int i, int *preferred_reg)
{
int j;
int b=-1;
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
}
for(;j>=0;j--)
{
if(rs1[i+j]) hsn[rs1[i+j]]=j;
if(rs2[i+j]) hsn[rs2[i+j]]=j;
if(rt1[i+j]) hsn[rt1[i+j]]=j;
if(rt2[i+j]) hsn[rt2[i+j]]=j;
if(itype[i+j]==STORE || itype[i+j]==STORELR) {
// Stores can allocate zero
hsn[rs1[i+j]]=j;
hsn[rs2[i+j]]=j;
}
// On some architectures stores need invc_ptr
#if defined(HOST_IMM8)
if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
hsn[INVCP]=j;
}
#endif
if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
{
hsn[CCREG]=j;
b=j;
}
}
if(b>=0)
{
if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
{
// Follow first branch
int t=(ba[i+b]-start)>>2;
j=7-b;if(t+j>=slen) j=slen-t-1;
for(;j>=0;j--)
{
if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
//if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
//if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
}
}
// TODO: preferred register based on backward branch
}
// Delay slot should preferably not overwrite branch conditions or cycle count
if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
hsn[CCREG]=1;
// ...or hash tables
hsn[RHASH]=1;
hsn[RHTBL]=1;
}
// Coprocessor load/store needs FTEMP, even if not declared
if(itype[i]==C1LS||itype[i]==C2LS) {
hsn[FTEMP]=0;
}
// Load L/R also uses FTEMP as a temporary register
if(itype[i]==LOADLR) {
hsn[FTEMP]=0;
}
// Also SWL/SWR/SDL/SDR
if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
hsn[FTEMP]=0;
}
// Don't remove the miniht registers
if(itype[i]==UJUMP||itype[i]==RJUMP)
{
hsn[RHASH]=0;
hsn[RHTBL]=0;
}
}
// We only want to allocate registers if we're going to use them again soon
int needed_again(int r, int i)
{
int j;
int b=-1;
int rn=10;
if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
{
if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
return 0; // Don't need any registers if exiting the block
}
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
{
break;
}
}
for(;j>=1;j--)
{
if(rs1[i+j]==r) rn=j;
if(rs2[i+j]==r) rn=j;
if((unneeded_reg[i+j]>>r)&1) rn=10;
if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
{
b=j;
}
}
/*
if(b>=0)
{
if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
{
// Follow first branch
int o=rn;
int t=(ba[i+b]-start)>>2;
j=7-b;if(t+j>=slen) j=slen-t-1;
for(;j>=0;j--)
{
if(!((unneeded_reg[t+j]>>r)&1)) {
if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
}
else rn=o;
}
}
}*/
if(rn<10) return 1;
(void)b;
return 0;
}
// Try to match register allocations at the end of a loop with those
// at the beginning
int loop_reg(int i, int r, int hr)
{
int j,k;
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
}
k=0;
if(i>0){
if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
k--;
}
for(;k<j;k++)
{
if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
{
if(ba[i+k]>=start && ba[i+k]<(start+i*4))
{
int t=(ba[i+k]-start)>>2;
int reg=get_reg(regs[t].regmap_entry,r);
if(reg>=0) return reg;
//reg=get_reg(regs[t+1].regmap_entry,r);
//if(reg>=0) return reg;
}
}
}
return hr;
}
// Allocate every register, preserving source/target regs
void alloc_all(struct regstat *cur,int i)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
{
cur->regmap[hr]=-1;
cur->dirty&=~(1<<hr);
}
// Don't need zeros
if((cur->regmap[hr]&63)==0)
{
cur->regmap[hr]=-1;
cur->dirty&=~(1<<hr);
}
}
}
}
#ifdef __i386__
#include "x86/assem_x86.c"
#endif
#ifdef __x86_64__
#include "x64/assem_x64.c"
#endif
#ifdef __arm__
#include "arm/assem_arm.c"
#endif
// Add virtual address mapping to linked list
void ll_add(struct ll_entry **head,int vaddr,void *addr)
{
struct ll_entry *new_entry;
new_entry=malloc(sizeof(struct ll_entry));
assert(new_entry!=NULL);
new_entry->vaddr=vaddr;
new_entry->reg_sv_flags=0;
new_entry->addr=addr;
new_entry->next=*head;
*head=new_entry;
}
void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
{
ll_add(head,vaddr,addr);
(*head)->reg_sv_flags=reg_sv_flags;
}
// Check if an address is already compiled
// but don't return addresses which are about to expire from the cache
void *check_addr(u_int vaddr)
{
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
if(isclean(ht_bin[1])) return (void *)ht_bin[1];
}
if(ht_bin[2]==vaddr) {
if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
if(isclean(ht_bin[3])) return (void *)ht_bin[3];
}
u_int page=get_page(vaddr);
struct ll_entry *head;
head=jump_in[page];
while(head!=NULL) {
if(head->vaddr==vaddr) {
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
// Update existing entry with current address
if(ht_bin[0]==vaddr) {
ht_bin[1]=(int)head->addr;
return head->addr;
}
if(ht_bin[2]==vaddr) {
ht_bin[3]=(int)head->addr;
return head->addr;
}
// Insert into hash table with low priority.
// Don't evict existing entries, as they are probably
// addresses that are being accessed frequently.
if(ht_bin[0]==-1) {
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}else if(ht_bin[2]==-1) {
ht_bin[3]=(int)head->addr;
ht_bin[2]=vaddr;
}
return head->addr;
}
}
head=head->next;
}
return 0;
}
void remove_hash(int vaddr)
{
//printf("remove hash: %x\n",vaddr);
u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
if(ht_bin[2]==vaddr) {
ht_bin[2]=ht_bin[3]=-1;
}
if(ht_bin[0]==vaddr) {
ht_bin[0]=ht_bin[2];
ht_bin[1]=ht_bin[3];
ht_bin[2]=ht_bin[3]=-1;
}
}
void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
{
struct ll_entry *next;
while(*head) {
if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
{
inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
remove_hash((*head)->vaddr);
next=(*head)->next;
free(*head);
*head=next;
}
else
{
head=&((*head)->next);
}
}
}
// Remove all entries from linked list
void ll_clear(struct ll_entry **head)
{
struct ll_entry *cur;
struct ll_entry *next;
if((cur=*head)) {
*head=0;
while(cur) {
next=cur->next;
free(cur);
cur=next;
}
}
}
// Dereference the pointers and remove if it matches
static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
{
while(head) {
int ptr=get_pointer(head->addr);
inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
if(((ptr>>shift)==(addr>>shift)) ||
(((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
{
inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
void *host_addr=find_extjump_insn(head->addr);
#ifdef __arm__
mark_clear_cache(host_addr);
#endif
set_jump_target((int)host_addr,(int)head->addr);
}
head=head->next;
}
}
// This is called when we write to a compiled block (see do_invstub)
void invalidate_page(u_int page)
{
struct ll_entry *head;
struct ll_entry *next;
head=jump_in[page];
jump_in[page]=0;
while(head!=NULL) {
inv_debug("INVALIDATE: %x\n",head->vaddr);
remove_hash(head->vaddr);
next=head->next;
free(head);
head=next;
}
head=jump_out[page];
jump_out[page]=0;
while(head!=NULL) {
inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
void *host_addr=find_extjump_insn(head->addr);
#ifdef __arm__
mark_clear_cache(host_addr);
#endif
set_jump_target((int)host_addr,(int)head->addr);
next=head->next;
free(head);
head=next;
}
}
static void invalidate_block_range(u_int block, u_int first, u_int last)
{
u_int page=get_page(block<<12);
//printf("first=%d last=%d\n",first,last);
invalidate_page(page);
assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
assert(last<page+5);
// Invalidate the adjacent pages if a block crosses a 4K boundary
while(first<page)
{
invalidate_page(first);
first++;
}
for(first=page+1;first<last;first++)
{
invalidate_page(first);
}
#ifdef __arm__
do_clear_cache();
#endif
// Don't trap writes
invalid_code[block]=1;
#ifdef USE_MINI_HT
memset(mini_ht,-1,sizeof(mini_ht));
#endif
}
void invalidate_block(u_int block)
{
u_int page=get_page(block<<12);
u_int vpage=get_vpage(block<<12);
inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
u_int first,last;
first=last=page;
struct ll_entry *head;
head=jump_dirty[vpage];
//printf("page=%d vpage=%d\n",page,vpage);
while(head!=NULL)
{
u_int start,end;
if(vpage>2047||(head->vaddr>>12)==block)
{ // Ignore vaddr hash collision
get_bounds((int)head->addr,&start,&end);
//printf("start: %x end: %x\n",start,end);
if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE)
{
if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page)
{
if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
}
}
}
head=head->next;
}
invalidate_block_range(block,first,last);
}
void invalidate_addr(u_int addr)
{
//static int rhits;
// this check is done by the caller
//if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
u_int page=get_vpage(addr);
if(page<2048) { // RAM
struct ll_entry *head;
u_int addr_min=~0, addr_max=0;
u_int mask=RAM_SIZE-1;
u_int addr_main=0x80000000|(addr&mask);
int pg1;
inv_code_start=addr_main&~0xfff;
inv_code_end=addr_main|0xfff;
pg1=page;
if (pg1>0) {
// must check previous page too because of spans..
pg1--;
inv_code_start-=0x1000;
}
for(;pg1<=page;pg1++) {
for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
u_int start,end;
get_bounds((int)head->addr,&start,&end);
if(ram_offset) {
start-=ram_offset;
end-=ram_offset;
}
if(start<=addr_main&&addr_main<end) {
if(start<addr_min) addr_min=start;
if(end>addr_max) addr_max=end;
}
else if(addr_main<start) {
if(start<inv_code_end)
inv_code_end=start-1;
}
else {
if(end>inv_code_start)
inv_code_start=end;
}
}
}
if (addr_min!=~0) {
inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
inv_code_start=inv_code_end=~0;
invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
return;
}
else {
inv_code_start=(addr&~mask)|(inv_code_start&mask);
inv_code_end=(addr&~mask)|(inv_code_end&mask);
inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
return;
}
}
invalidate_block(addr>>12);
}
// This is called when loading a save state.
// Anything could have changed, so invalidate everything.
void invalidate_all_pages(void)
{
u_int page;
for(page=0;page<4096;page++)
invalidate_page(page);
for(page=0;page<1048576;page++)
{
if(!invalid_code[page])
{
restore_candidate[(page&2047)>>3]|=1<<(page&7);
restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
}
}
#ifdef USE_MINI_HT
memset(mini_ht,-1,sizeof(mini_ht));
#endif
}
// Add an entry to jump_out after making a link
void add_link(u_int vaddr,void *src)
{
u_int page=get_page(vaddr);
inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
int *ptr=(int *)(src+4);
assert((*ptr&0x0fff0000)==0x059f0000);
(void)ptr;
ll_add(jump_out+page,vaddr,src);
//int ptr=get_pointer(src);
//inv_debug("add_link: Pointer is to %x\n",(int)ptr);
}
// If a code block was found to be unmodified (bit was set in
// restore_candidate) and it remains unmodified (bit is clear
// in invalid_code) then move the entries for that 4K page from
// the dirty list to the clean list.
void clean_blocks(u_int page)
{
struct ll_entry *head;
inv_debug("INV: clean_blocks page=%d\n",page);
head=jump_dirty[page];
while(head!=NULL)
{
if(!invalid_code[head->vaddr>>12])
{
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
{
u_int start,end;
if(verify_dirty(head->addr))
{
//printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
u_int i;
u_int inv=0;
get_bounds((int)head->addr,&start,&end);
if(start-(u_int)rdram<RAM_SIZE)
{
for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++)
{
inv|=invalid_code[i];
}
}
else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE)
{
inv=1;
}
if(!inv)
{
void * clean_addr=(void *)get_clean_addr((int)head->addr);
if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
{
u_int ppage=page;
inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
//printf("page=%x, addr=%x\n",page,head->vaddr);
//assert(head->vaddr>>12==(page|0x80000));
ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
if(ht_bin[0]==head->vaddr)
{
ht_bin[1]=(u_int)clean_addr; // Replace existing entry
}
if(ht_bin[2]==head->vaddr)
{
ht_bin[3]=(u_int)clean_addr; // Replace existing entry
}
}
}
}
}
}
head=head->next;
}
}
static void mov_alloc(struct regstat *current,int i)
{
// Note: Don't need to actually alloc the source registers
if((~current->is32>>rs1[i])&1)
{
//alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
}
else
{
//alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rt1[i]);
current->is32|=(1LL<<rt1[i]);
}
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
void shiftimm_alloc(struct regstat *current,int i)
{
if(opcode2[i]<=0x3) // SLL/SRL/SRA
{
if(rt1[i]) {
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
else lt1[i]=rs1[i];
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
if(is_const(current,rs1[i])) {
int v=get_const(current,rs1[i]);
if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
}
else clear_const(current,rt1[i]);
}
}
else
{
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
}
if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
{
if(rt1[i]) {
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3c) // DSLL32
{
if(rt1[i]) {
if(rs1[i]) alloc_reg(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3e) // DSRL32
{
if(rt1[i]) {
alloc_reg64(current,i,rs1[i]);
if(imm[i]==32) {
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
} else {
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3f) // DSRA32
{
if(rt1[i]) {
alloc_reg64(current,i,rs1[i]);
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
}
}
}
void shift_alloc(struct regstat *current,int i)
{
if(rt1[i]) {
if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
if(rt1[i]==rs2[i]) {
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
current->is32|=1LL<<rt1[i];
} else { // DSLLV/DSRLV/DSRAV
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
{
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
}
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
}
void alu_alloc(struct regstat *current,int i)
{
if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
}
else {
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
}
alloc_reg(current,i,rt1[i]);
}
current->is32|=1LL<<rt1[i];
}
if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
if(rt1[i]) {
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
} else {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
}
}
current->is32|=1LL<<rt1[i];
}
if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
}
else
{
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
}
alloc_reg(current,i,rt1[i]);
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
if(!((current->uu>>rt1[i])&1)) {
alloc_reg64(current,i,rt1[i]);
}
if(get_reg(current->regmap,rt1[i]|64)>=0) {
if(rs1[i]&&rs2[i]) {
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
}
else
{
// Is is really worth it to keep 64-bit values in registers?
#ifdef NATIVE_64BIT
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
#endif
}
}
current->is32&=~(1LL<<rt1[i]);
} else {
current->is32|=1LL<<rt1[i];
}
}
}
if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
} else {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
}
}
else {
alloc_reg(current,i,rt1[i]);
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
// DADD used as move, or zeroing
// If we have a 64-bit source, then make the target 64 bits too
if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
} else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
}
if(opcode2[i]>=0x2e&&rs2[i]) {
// DSUB used as negation - 64-bit result
// If we have a 32-bit register, extend it to 64 bits
if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
}
}
}
if(rs1[i]&&rs2[i]) {
current->is32&=~(1LL<<rt1[i]);
} else if(rs1[i]) {
current->is32&=~(1LL<<rt1[i]);
if((current->is32>>rs1[i])&1)
current->is32|=1LL<<rt1[i];
} else if(rs2[i]) {
current->is32&=~(1LL<<rt1[i]);
if((current->is32>>rs2[i])&1)
current->is32|=1LL<<rt1[i];
} else {
current->is32|=1LL<<rt1[i];
}
}
}
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
void imm16_alloc(struct regstat *current,int i)
{
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
else lt1[i]=rs1[i];
if(rt1[i]) alloc_reg(current,i,rt1[i]);
if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
current->is32&=~(1LL<<rt1[i]);
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
// TODO: Could preserve the 32-bit flag if the immediate is zero
alloc_reg64(current,i,rt1[i]);
alloc_reg64(current,i,rs1[i]);
}
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
}
else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
current->is32|=1LL<<rt1[i];
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
}
else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
if(rs1[i]!=rt1[i]) {
if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
}
}
else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
if(is_const(current,rs1[i])) {
int v=get_const(current,rs1[i]);
if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
}
else clear_const(current,rt1[i]);
}
else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
if(is_const(current,rs1[i])) {
int v=get_const(current,rs1[i]);
set_const(current,rt1[i],v+imm[i]);
}
else clear_const(current,rt1[i]);
current->is32|=1LL<<rt1[i];
}
else {
set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
}
void load_alloc(struct regstat *current,int i)
{
clear_const(current,rt1[i]);
//if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rt1[i]&&!((current->u>>rt1[i])&1)) {
alloc_reg(current,i,rt1[i]);
assert(get_reg(current->regmap,rt1[i])>=0);
if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
{
current->is32&=~(1LL<<rt1[i]);
alloc_reg64(current,i,rt1[i]);
}
else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
{
current->is32&=~(1LL<<rt1[i]);
alloc_reg64(current,i,rt1[i]);
alloc_all(current,i);
alloc_reg64(current,i,FTEMP);
minimum_free_regs[i]=HOST_REGS;
}
else current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
// LWL/LWR need a temporary register for the old value
if(opcode[i]==0x22||opcode[i]==0x26)
{
alloc_reg(current,i,FTEMP);
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
}
else
{
// Load to r0 or unneeded register (dummy load)
// but we still need a register to calculate the address
if(opcode[i]==0x22||opcode[i]==0x26)
{
alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
}
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
{
alloc_all(current,i);
alloc_reg64(current,i,FTEMP);
minimum_free_regs[i]=HOST_REGS;
}
}
}
void store_alloc(struct regstat *current,int i)
{
clear_const(current,rs2[i]);
if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
alloc_reg64(current,i,rs2[i]);
if(rs2[i]) alloc_reg(current,i,FTEMP);
}
#if defined(HOST_IMM8)
// On CPUs without 32-bit immediates we need a pointer to invalid_code
else alloc_reg(current,i,INVCP);
#endif
if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
alloc_reg(current,i,FTEMP);
}
// We need a temporary register for address generation
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
void c1ls_alloc(struct regstat *current,int i)
{
//clear_const(current,rs1[i]); // FIXME
clear_const(current,rt1[i]);
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,CSREG); // Status
alloc_reg(current,i,FTEMP);
if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
alloc_reg64(current,i,FTEMP);
}
#if defined(HOST_IMM8)
// On CPUs without 32-bit immediates we need a pointer to invalid_code
else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
alloc_reg(current,i,INVCP);
#endif
// We need a temporary register for address generation
alloc_reg_temp(current,i,-1);
}
void c2ls_alloc(struct regstat *current,int i)
{
clear_const(current,rt1[i]);
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,FTEMP);
#if defined(HOST_IMM8)
// On CPUs without 32-bit immediates we need a pointer to invalid_code
if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
alloc_reg(current,i,INVCP);
#endif
// We need a temporary register for address generation
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
#ifndef multdiv_alloc
void multdiv_alloc(struct regstat *current,int i)
{
// case 0x18: MULT
// case 0x19: MULTU
// case 0x1A: DIV
// case 0x1B: DIVU
// case 0x1C: DMULT
// case 0x1D: DMULTU
// case 0x1E: DDIV
// case 0x1F: DDIVU
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
if(rs1[i]&&rs2[i])
{
if((opcode2[i]&4)==0) // 32-bit
{
current->u&=~(1LL<<HIREG);
current->u&=~(1LL<<LOREG);
alloc_reg(current,i,HIREG);
alloc_reg(current,i,LOREG);
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
current->is32|=1LL<<HIREG;
current->is32|=1LL<<LOREG;
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
}
else // 64-bit
{
current->u&=~(1LL<<HIREG);
current->u&=~(1LL<<LOREG);
current->uu&=~(1LL<<HIREG);
current->uu&=~(1LL<<LOREG);
alloc_reg64(current,i,HIREG);
//if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_all(current,i);
current->is32&=~(1LL<<HIREG);
current->is32&=~(1LL<<LOREG);
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
minimum_free_regs[i]=HOST_REGS;
}
}
else
{
// Multiply by zero is zero.
// MIPS does not have a divide by zero exception.
// The result is undefined, we return zero.
alloc_reg(current,i,HIREG);
alloc_reg(current,i,LOREG);
current->is32|=1LL<<HIREG;
current->is32|=1LL<<LOREG;
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
}
}
#endif
void cop0_alloc(struct regstat *current,int i)
{
if(opcode2[i]==0) // MFC0
{
if(rt1[i]) {
clear_const(current,rt1[i]);
alloc_all(current,i);
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
}
}
else if(opcode2[i]==4) // MTC0
{
if(rs1[i]){
clear_const(current,rs1[i]);
alloc_reg(current,i,rs1[i]);
alloc_all(current,i);
}
else {
alloc_all(current,i); // FIXME: Keep r0
current->u&=~1LL;
alloc_reg(current,i,0);
}
}
else
{
// TLBR/TLBWI/TLBWR/TLBP/ERET
assert(opcode2[i]==0x10);
alloc_all(current,i);
}
minimum_free_regs[i]=HOST_REGS;
}
void cop1_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
if(opcode2[i]<3) // MFC1/DMFC1/CFC1
{
if(rt1[i]){
clear_const(current,rt1[i]);
if(opcode2[i]==1) {
alloc_reg64(current,i,rt1[i]); // DMFC1
current->is32&=~(1LL<<rt1[i]);
}else{
alloc_reg(current,i,rt1[i]); // MFC1/CFC1
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
}
alloc_reg_temp(current,i,-1);
}
else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
{
if(rs1[i]){
clear_const(current,rs1[i]);
if(opcode2[i]==5)
alloc_reg64(current,i,rs1[i]); // DMTC1
else
alloc_reg(current,i,rs1[i]); // MTC1/CTC1
alloc_reg_temp(current,i,-1);
}
else {
current->u&=~1LL;
alloc_reg(current,i,0);
alloc_reg_temp(current,i,-1);
}
}
minimum_free_regs[i]=1;
}
void fconv_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
void float_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
void c2op_alloc(struct regstat *current,int i)
{
alloc_reg_temp(current,i,-1);
}
void fcomp_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg(current,i,FSREG); // Load flags
dirty_reg(current,FSREG); // Flag will be modified
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
void syscall_alloc(struct regstat *current,int i)
{
alloc_cc(current,i);
dirty_reg(current,CCREG);
alloc_all(current,i);
minimum_free_regs[i]=HOST_REGS;
current->isconst=0;
}
void delayslot_alloc(struct regstat *current,int i)
{
switch(itype[i])
{
case UJUMP:
case CJUMP:
case SJUMP:
case RJUMP:
case FJUMP:
case SYSCALL:
case HLECALL:
case SPAN:
assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
SysPrintf("Disabled speculative precompilation\n");
stop_after_jal=1;
break;
case IMM16:
imm16_alloc(current,i);
break;
case LOAD:
case LOADLR:
load_alloc(current,i);
break;
case STORE:
case STORELR:
store_alloc(current,i);
break;
case ALU:
alu_alloc(current,i);
break;
case SHIFT:
shift_alloc(current,i);
break;
case MULTDIV:
multdiv_alloc(current,i);
break;
case SHIFTIMM:
shiftimm_alloc(current,i);
break;
case MOV:
mov_alloc(current,i);
break;
case COP0:
cop0_alloc(current,i);
break;
case COP1:
case COP2:
cop1_alloc(current,i);
break;
case C1LS:
c1ls_alloc(current,i);
break;
case C2LS:
c2ls_alloc(current,i);
break;
case FCONV:
fconv_alloc(current,i);
break;
case FLOAT:
float_alloc(current,i);
break;
case FCOMP:
fcomp_alloc(current,i);
break;
case C2OP:
c2op_alloc(current,i);
break;
}
}
// Special case where a branch and delay slot span two pages in virtual memory
static void pagespan_alloc(struct regstat *current,int i)
{
current->isconst=0;
current->wasconst=0;
regs[i].wasconst=0;
minimum_free_regs[i]=HOST_REGS;
alloc_all(current,i);
alloc_cc(current,i);
dirty_reg(current,CCREG);
if(opcode[i]==3) // JAL
{
alloc_reg(current,i,31);
dirty_reg(current,31);
}
if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
{
alloc_reg(current,i,rs1[i]);
if (rt1[i]!=0) {
alloc_reg(current,i,rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
if(rs2[i]) alloc_reg64(current,i,rs2[i]);
}
}
else
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(!((current->is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
}
}
else
if(opcode[i]==0x11) // BC1
{
alloc_reg(current,i,FSREG);
alloc_reg(current,i,CSREG);
}
//else ...
}
static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
{
stubs[stubcount][0]=type;
stubs[stubcount][1]=addr;
stubs[stubcount][2]=retaddr;
stubs[stubcount][3]=a;
stubs[stubcount][4]=b;
stubs[stubcount][5]=c;
stubs[stubcount][6]=d;
stubs[stubcount][7]=e;
stubcount++;
}
// Write out a single register
void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if((regmap[hr]&63)==r) {
if((dirty>>hr)&1) {
if(regmap[hr]<64) {
emit_storereg(r,hr);
}else{
emit_storereg(r|64,hr);
}
}
}
}
}
}
#if 0
static int mchecksum(void)
{
//if(!tracedebug) return 0;
int i;
int sum=0;
for(i=0;i<2097152;i++) {
unsigned int temp=sum;
sum<<=1;
sum|=(~temp)>>31;
sum^=((u_int *)rdram)[i];
}
return sum;
}
static int rchecksum(void)
{
int i;
int sum=0;
for(i=0;i<64;i++)
sum^=((u_int *)reg)[i];
return sum;
}
static void rlist(void)
{
int i;
printf("TRACE: ");
for(i=0;i<32;i++)
printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
printf("\n");
}
static void enabletrace(void)
{
tracedebug=1;
}
static void memdebug(int i)
{
//printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
//printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
//rlist();
//if(tracedebug) {
//if(Count>=-2084597794) {
if((signed int)Count>=-2084597794&&(signed int)Count<0) {
//if(0) {
printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
//printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
//printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
rlist();
#ifdef __i386__
printf("TRACE: %x\n",(&i)[-1]);
#endif
#ifdef __arm__
int j;
printf("TRACE: %x \n",(&j)[10]);
printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
#endif
//fflush(stdout);
}
//printf("TRACE: %x\n",(&i)[-1]);
}
#endif
void alu_assemble(int i,struct regstat *i_regs)
{
if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
if(rt1[i]) {
signed char s1,s2,t;
t=get_reg(i_regs->regmap,rt1[i]);
if(t>=0) {
s1=get_reg(i_regs->regmap,rs1[i]);
s2=get_reg(i_regs->regmap,rs2[i]);
if(rs1[i]&&rs2[i]) {
assert(s1>=0);
assert(s2>=0);
if(opcode2[i]&2) emit_sub(s1,s2,t);
else emit_add(s1,s2,t);
}
else if(rs1[i]) {
if(s1>=0) emit_mov(s1,t);
else emit_loadreg(rs1[i],t);
}
else if(rs2[i]) {
if(s2>=0) {
if(opcode2[i]&2) emit_neg(s2,t);
else emit_mov(s2,t);
}
else {
emit_loadreg(rs2[i],t);
if(opcode2[i]&2) emit_neg(t,t);
}
}
else emit_zeroreg(t);
}
}
}
if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
if(rt1[i]) {
signed char s1l,s2l,s1h,s2h,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);
assert(s2l>=0);
if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
else emit_adds(s1l,s2l,tl);
if(th>=0) {
#ifdef INVERTED_CARRY
if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
#else
if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
#endif
else emit_add(s1h,s2h,th);
}
}
else if(rs1[i]) {
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl);
if(th>=0) {
if(s1h>=0) emit_mov(s1h,th);
else emit_loadreg(rs1[i]|64,th);
}
}
else if(rs2[i]) {
if(s2l>=0) {
if(opcode2[i]&2) emit_negs(s2l,tl);
else emit_mov(s2l,tl);
}
else {
emit_loadreg(rs2[i],tl);
if(opcode2[i]&2) emit_negs(tl,tl);
}
if(th>=0) {
#ifdef INVERTED_CARRY
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
if(opcode2[i]&2) {
emit_adcimm(-1,th); // x86 has inverted carry flag
emit_not(th,th);
}
#else
if(opcode2[i]&2) {
if(s2h>=0) emit_rscimm(s2h,0,th);
else {
emit_loadreg(rs2[i]|64,th);
emit_rscimm(th,0,th);
}
}else{
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
}
#endif
}
}
else {
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
}
}
}
if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
if(rt1[i]) {
signed char s1l,s1h,s2l,s2h,t;
if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
{
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2l=get_reg(i_regs->regmap,rs2[i]);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs2[i]==0) // rx<r0
{
assert(s1h>=0);
if(opcode2[i]==0x2a) // SLT
emit_shrimm(s1h,31,t);
else // SLTU (unsigned can not be less than zero)
emit_zeroreg(t);
}
else if(rs1[i]==0) // r0<rx
{
assert(s2h>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_gz64_32(s2h,s2l,t);
else // SLTU (set if not zero)
emit_set_nz64_32(s2h,s2l,t);
}
else {
assert(s1l>=0);assert(s1h>=0);
assert(s2l>=0);assert(s2h>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
else // SLTU
emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
}
}
} else {
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
if(rs2[i]==0) // rx<r0
{
assert(s1l>=0);
if(opcode2[i]==0x2a) // SLT
emit_shrimm(s1l,31,t);
else // SLTU (unsigned can not be less than zero)
emit_zeroreg(t);
}
else if(rs1[i]==0) // r0<rx
{
assert(s2l>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_gz32(s2l,t);
else // SLTU (set if not zero)
emit_set_nz32(s2l,t);
}
else{
assert(s1l>=0);assert(s2l>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_if_less32(s1l,s2l,t);
else // SLTU
emit_set_if_carry32(s1l,s2l,t);
}
}
}
}
}
if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
if(rt1[i]) {
signed char s1l,s1h,s2l,s2h,th,tl;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
{
assert(tl>=0);
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2l=get_reg(i_regs->regmap,rs2[i]);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);assert(s1h>=0);
assert(s2l>=0);assert(s2h>=0);
if(opcode2[i]==0x24) { // AND
emit_and(s1l,s2l,tl);
emit_and(s1h,s2h,th);
} else
if(opcode2[i]==0x25) { // OR
emit_or(s1l,s2l,tl);
emit_or(s1h,s2h,th);
} else
if(opcode2[i]==0x26) { // XOR
emit_xor(s1l,s2l,tl);
emit_xor(s1h,s2h,th);
} else
if(opcode2[i]==0x27) { // NOR
emit_or(s1l,s2l,tl);
emit_or(s1h,s2h,th);
emit_not(tl,tl);
emit_not(th,th);
}
}
else
{
if(opcode2[i]==0x24) { // AND
emit_zeroreg(tl);
emit_zeroreg(th);
} else
if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
if(rs1[i]){
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl);
if(s1h>=0) emit_mov(s1h,th);
else emit_loadreg(rs1[i]|64,th);
}
else
if(rs2[i]){
if(s2l>=0) emit_mov(s2l,tl);
else emit_loadreg(rs2[i],tl);
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
}
else{
emit_zeroreg(tl);
emit_zeroreg(th);
}
} else
if(opcode2[i]==0x27) { // NOR
if(rs1[i]){
if(s1l>=0) emit_not(s1l,tl);
else{
emit_loadreg(rs1[i],tl);
emit_not(tl,tl);
}
if(s1h>=0) emit_not(s1h,th);
else{
emit_loadreg(rs1[i]|64,th);
emit_not(th,th);
}
}
else
if(rs2[i]){
if(s2l>=0) emit_not(s2l,tl);
else{
emit_loadreg(rs2[i],tl);
emit_not(tl,tl);
}
if(s2h>=0) emit_not(s2h,th);
else{
emit_loadreg(rs2[i]|64,th);
emit_not(th,th);
}
}
else {
emit_movimm(-1,tl);
emit_movimm(-1,th);
}
}
}
}
}
else
{
// 32 bit
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);
assert(s2l>=0);
if(opcode2[i]==0x24) { // AND
emit_and(s1l,s2l,tl);
} else
if(opcode2[i]==0x25) { // OR
emit_or(s1l,s2l,tl);
} else
if(opcode2[i]==0x26) { // XOR
emit_xor(s1l,s2l,tl);
} else
if(opcode2[i]==0x27) { // NOR
emit_or(s1l,s2l,tl);
emit_not(tl,tl);
}
}
else
{
if(opcode2[i]==0x24) { // AND
emit_zeroreg(tl);
} else
if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
if(rs1[i]){
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
}
else
if(rs2[i]){
if(s2l>=0) emit_mov(s2l,tl);
else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
}
else emit_zeroreg(tl);
} else
if(opcode2[i]==0x27) { // NOR
if(rs1[i]){
if(s1l>=0) emit_not(s1l,tl);
else {
emit_loadreg(rs1[i],tl);
emit_not(tl,tl);
}
}
else
if(rs2[i]){
if(s2l>=0) emit_not(s2l,tl);
else {
emit_loadreg(rs2[i],tl);
emit_not(tl,tl);
}
}
else emit_movimm(-1,tl);
}
}
}
}
}
}
}
void imm16_assemble(int i,struct regstat *i_regs)
{
if (opcode[i]==0x0f) { // LUI
if(rt1[i]) {
signed char t;
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
if(!((i_regs->isconst>>t)&1))
emit_movimm(imm[i]<<16,t);
}
}
}
if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
if(rt1[i]) {
signed char s,t;
t=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
if(rs1[i]) {
//assert(t>=0);
//assert(s>=0);
if(t>=0) {
if(!((i_regs->isconst>>t)&1)) {
if(s<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_addimm(t,imm[i],t);
}else{
if(!((i_regs->wasconst>>s)&1))
emit_addimm(s,imm[i],t);
else
emit_movimm(constmap[i][s]+imm[i],t);
}
}
}
} else {
if(t>=0) {
if(!((i_regs->isconst>>t)&1))
emit_movimm(imm[i],t);
}
}
}
}
if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0) {
if(rs1[i]) {
assert(sh>=0);
assert(sl>=0);
if(th>=0) {
emit_addimm64_32(sh,sl,imm[i],th,tl);
}
else {
emit_addimm(sl,imm[i],tl);
}
} else {
emit_movimm(imm[i],tl);
if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
}
}
}
}
else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
if(rt1[i]) {
//assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
signed char sh,sl,t;
t=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
//assert(t>=0);
if(t>=0) {
if(rs1[i]>0) {
if(sh<0) assert((i_regs->was32>>rs1[i])&1);
if(sh<0||((i_regs->was32>>rs1[i])&1)) {
if(opcode[i]==0x0a) { // SLTI
if(sl<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_slti32(t,imm[i],t);
}else{
emit_slti32(sl,imm[i],t);
}
}
else { // SLTIU
if(sl<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_sltiu32(t,imm[i],t);
}else{
emit_sltiu32(sl,imm[i],t);
}
}
}else{ // 64-bit
assert(sl>=0);
if(opcode[i]==0x0a) // SLTI
emit_slti64_32(sh,sl,imm[i],t);
else // SLTIU
emit_sltiu64_32(sh,sl,imm[i],t);
}
}else{
// SLTI(U) with r0 is just stupid,
// nonetheless examples can be found
if(opcode[i]==0x0a) // SLTI
if(0<imm[i]) emit_movimm(1,t);
else emit_zeroreg(t);
else // SLTIU
{
if(imm[i]) emit_movimm(1,t);
else emit_zeroreg(t);
}
}
}
}
}
else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
if(opcode[i]==0x0c) //ANDI
{
if(rs1[i]) {
if(sl<0) {
if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
emit_andimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_andimm(sl,imm[i],tl);
else
emit_movimm(constmap[i][sl]&imm[i],tl);
}
}
else
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
else
{
if(rs1[i]) {
if(sl<0) {
if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
}
if(th>=0) {
if(sh<0) {
emit_loadreg(rs1[i]|64,th);
}else{
emit_mov(sh,th);
}
}
if(opcode[i]==0x0d) { // ORI
if(sl<0) {
emit_orimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_orimm(sl,imm[i],tl);
else
emit_movimm(constmap[i][sl]|imm[i],tl);
}
}
if(opcode[i]==0x0e) { // XORI
if(sl<0) {
emit_xorimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_xorimm(sl,imm[i],tl);
else
emit_movimm(constmap[i][sl]^imm[i],tl);
}
}
}
else {
emit_movimm(imm[i],tl);
if(th>=0) emit_zeroreg(th);
}
}
}
}
}
}
void shiftimm_assemble(int i,struct regstat *i_regs)
{
if(opcode2[i]<=0x3) // SLL/SRL/SRA
{
if(rt1[i]) {
signed char s,t;
t=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
//assert(t>=0);
if(t>=0&&!((i_regs->isconst>>t)&1)){
if(rs1[i]==0)
{
emit_zeroreg(t);
}
else
{
if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
if(imm[i]) {
if(opcode2[i]==0) // SLL
{
emit_shlimm(s<0?t:s,imm[i],t);
}
if(opcode2[i]==2) // SRL
{
emit_shrimm(s<0?t:s,imm[i],t);
}
if(opcode2[i]==3) // SRA
{
emit_sarimm(s<0?t:s,imm[i],t);
}
}else{
// Shift by zero
if(s>=0 && s!=t) emit_mov(s,t);
}
}
}
//emit_storereg(rt1[i],t); //DEBUG
}
}
if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
{
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0) {
if(rs1[i]==0)
{
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
else
{
assert(sl>=0);
assert(sh>=0);
if(imm[i]) {
if(opcode2[i]==0x38) // DSLL
{
if(th>=0) emit_shldimm(sh,sl,imm[i],th);
emit_shlimm(sl,imm[i],tl);
}
if(opcode2[i]==0x3a) // DSRL
{
emit_shrdimm(sl,sh,imm[i],tl);
if(th>=0) emit_shrimm(sh,imm[i],th);
}
if(opcode2[i]==0x3b) // DSRA
{
emit_shrdimm(sl,sh,imm[i],tl);
if(th>=0) emit_sarimm(sh,imm[i],th);
}
}else{
// Shift by zero
if(sl!=tl) emit_mov(sl,tl);
if(th>=0&&sh!=th) emit_mov(sh,th);
}
}
}
}
}
if(opcode2[i]==0x3c) // DSLL32
{
if(rt1[i]) {
signed char sl,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(th>=0||tl>=0){
assert(tl>=0);
assert(th>=0);
assert(sl>=0);
emit_mov(sl,th);
emit_zeroreg(tl);
if(imm[i]>32)
{
emit_shlimm(th,imm[i]&31,th);
}
}
}
}
if(opcode2[i]==0x3e) // DSRL32
{
if(rt1[i]) {
signed char sh,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
sh=get_reg(i_regs->regmap,rs1[i]|64);
if(tl>=0){
assert(sh>=0);
emit_mov(sh,tl);
if(th>=0) emit_zeroreg(th);
if(imm[i]>32)
{
emit_shrimm(tl,imm[i]&31,tl);
}
}
}
}
if(opcode2[i]==0x3f) // DSRA32
{
if(rt1[i]) {
signed char sh,tl;
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
if(tl>=0){
assert(sh>=0);
emit_mov(sh,tl);
if(imm[i]>32)
{
emit_sarimm(tl,imm[i]&31,tl);
}
}
}
}
}
#ifndef shift_assemble
void shift_assemble(int i,struct regstat *i_regs)
{
printf("Need shift_assemble for this architecture.\n");
exit(1);
}
#endif
void load_assemble(int i,struct regstat *i_regs)
{
int s,th,tl,addr,map=-1;
int offset;
int jaddr=0;
int memtarget=0,c=0;
int fastload_reg_override=0;
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
offset=imm[i];
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
if(s>=0) {
c=(i_regs->wasconst>>s)&1;
if (c) {
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
}
}
//printf("load_assemble: c=%d\n",c);
//if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
// FIXME: Even if the load is a NOP, we should check for pagefaults...
if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
||rt1[i]==0) {
// could be FIFO, must perform the read
// ||dummy read
assem_debug("(forced read)\n");
tl=get_reg(i_regs->regmap,-1);
assert(tl>=0);
}
if(offset||s<0||c) addr=tl;
else addr=s;
//if(tl<0) tl=get_reg(i_regs->regmap,-1);
if(tl>=0) {
//printf("load_assemble: c=%d\n",c);
//if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
reglist&=~(1<<tl);
if(th>=0) reglist&=~(1<<th);
if(!c) {
#ifdef RAM_OFFSET
map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
#endif
#ifdef R29_HACK
// Strmnnrmn's speed hack
if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
#endif
{
jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
}
}
else if(ram_offset&&memtarget) {
emit_addimm(addr,ram_offset,HOST_TEMPREG);
fastload_reg_override=HOST_TEMPREG;
}
int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
if (opcode[i]==0x20) { // LB
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
else
#endif
{
//emit_xorimm(addr,3,tl);
//emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
int x=0,a=tl;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,3,tl);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(fastload_reg_override) a=fastload_reg_override;
emit_movsbl_indexed_tlb(x,a,map,tl);
}
}
if(jaddr)
add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x21) { // LH
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
else
#endif
{
int x=0,a=tl;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,2,tl);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(fastload_reg_override) a=fastload_reg_override;
//#ifdef
//emit_movswl_indexed_tlb(x,tl,map,tl);
//else
if(map>=0) {
emit_movswl_indexed(x,a,tl);
}else{
#if 1 //def RAM_OFFSET
emit_movswl_indexed(x,a,tl);
#else
emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
#endif
}
}
}
if(jaddr)
add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x23) { // LW
if(!c||memtarget) {
if(!dummy) {
int a=addr;
if(fastload_reg_override) a=fastload_reg_override;
//emit_readword_indexed((int)rdram-0x80000000,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readword_tlb(constmap[i][s]+offset,map,tl);
else
#endif
emit_readword_indexed_tlb(0,a,map,tl);
}
if(jaddr)
add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x24) { // LBU
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
else
#endif
{
//emit_xorimm(addr,3,tl);
//emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
int x=0,a=tl;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,3,tl);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(fastload_reg_override) a=fastload_reg_override;
emit_movzbl_indexed_tlb(x,a,map,tl);
}
}
if(jaddr)
add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x25) { // LHU
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
else
#endif
{
int x=0,a=tl;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,2,tl);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(fastload_reg_override) a=fastload_reg_override;
//#ifdef
//emit_movzwl_indexed_tlb(x,tl,map,tl);
//#else
if(map>=0) {
emit_movzwl_indexed(x,a,tl);
}else{
#if 1 //def RAM_OFFSET
emit_movzwl_indexed(x,a,tl);
#else
emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
#endif
}
}
}
if(jaddr)
add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x27) { // LWU
assert(th>=0);
if(!c||memtarget) {
if(!dummy) {
int a=addr;
if(fastload_reg_override) a=fastload_reg_override;
//emit_readword_indexed((int)rdram-0x80000000,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readword_tlb(constmap[i][s]+offset,map,tl);
else
#endif
emit_readword_indexed_tlb(0,a,map,tl);
}
if(jaddr)
add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else {
inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
emit_zeroreg(th);
}
if (opcode[i]==0x37) { // LD
if(!c||memtarget) {
if(!dummy) {
int a=addr;
if(fastload_reg_override) a=fastload_reg_override;
//if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
//emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
else
#endif
emit_readdword_indexed_tlb(0,a,map,th,tl);
}
if(jaddr)
add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
}
//emit_storereg(rt1[i],tl); // DEBUG
//if(opcode[i]==0x23)
//if(opcode[i]==0x24)
//if(opcode[i]==0x23||opcode[i]==0x24)
/*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
{
//emit_pusha();
save_regs(0x100f);
emit_readword((int)&last_count,ECX);
#ifdef __i386__
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&Count);
#endif
#ifdef __arm__
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,0);
else
emit_mov(HOST_CCREG,0);
emit_add(0,ECX,0);
emit_addimm(0,2*ccadj[i],0);
emit_writeword(0,(int)&Count);
#endif
emit_call((int)memdebug);
//emit_popa();
restore_regs(0x100f);
}*/
}
#ifndef loadlr_assemble
void loadlr_assemble(int i,struct regstat *i_regs)
{
printf("Need loadlr_assemble for this architecture.\n");
exit(1);
}
#endif
void store_assemble(int i,struct regstat *i_regs)
{
int s,th,tl,map=-1;
int addr,temp;
int offset;
int jaddr=0,type;
int memtarget=0,c=0;
int agr=AGEN1+(i&1);
int faststore_reg_override=0;
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rs2[i]|64);
tl=get_reg(i_regs->regmap,rs2[i]);
s=get_reg(i_regs->regmap,rs1[i]);
temp=get_reg(i_regs->regmap,agr);
if(temp<0) temp=get_reg(i_regs->regmap,-1);
offset=imm[i];
if(s>=0) {
c=(i_regs->wasconst>>s)&1;
if(c) {
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
}
}
assert(tl>=0);
assert(temp>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
if(offset||s<0||c) addr=temp;
else addr=s;
if(!c) {
jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
}
else if(ram_offset&&memtarget) {
emit_addimm(addr,ram_offset,HOST_TEMPREG);
faststore_reg_override=HOST_TEMPREG;
}
if (opcode[i]==0x28) { // SB
if(!c||memtarget) {
int x=0,a=temp;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,3,temp);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(faststore_reg_override) a=faststore_reg_override;
//emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
emit_writebyte_indexed_tlb(tl,x,a,map,a);
}
type=STOREB_STUB;
}
if (opcode[i]==0x29) { // SH
if(!c||memtarget) {
int x=0,a=temp;
#ifdef BIG_ENDIAN_MIPS
if(!c) emit_xorimm(addr,2,temp);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
#else
if(!c) a=addr;
#endif
if(faststore_reg_override) a=faststore_reg_override;
//#ifdef
//emit_writehword_indexed_tlb(tl,x,temp,map,temp);
//#else
if(map>=0) {
emit_writehword_indexed(tl,x,a);
}else
//emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
emit_writehword_indexed(tl,x,a);
}
type=STOREH_STUB;
}
if (opcode[i]==0x2B) { // SW
if(!c||memtarget) {
int a=addr;
if(faststore_reg_override) a=faststore_reg_override;
//emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
emit_writeword_indexed_tlb(tl,0,a,map,temp);
}
type=STOREW_STUB;
}
if (opcode[i]==0x3F) { // SD
if(!c||memtarget) {
int a=addr;
if(faststore_reg_override) a=faststore_reg_override;
if(rs2[i]) {
assert(th>=0);
//emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
//emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
}else{
// Store zero
//emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
//emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
}
}
type=STORED_STUB;
}
if(jaddr) {
// PCSX store handlers don't check invcode again
reglist|=1<<addr;
add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
jaddr=0;
}
if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
if(!c||memtarget) {
#ifdef DESTRUCTIVE_SHIFT
// The x86 shift operation is 'destructive'; it overwrites the
// source register, so we need to make a copy first and use that.
addr=temp;
#endif
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,addr,1);
#else
emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[addr]);
#else
int jaddr2=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
#endif
}
}
u_int addr_val=constmap[i][s]+offset;
if(jaddr) {
add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
} else if(c&&!memtarget) {
inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
}
// basic current block modification detection..
// not looking back as that should be in mips cache already
if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
assert(i_regs->regmap==regs[i].regmap); // not delay slot
if(i_regs->regmap==regs[i].regmap) {
load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
emit_movimm(start+i*4+4,0);
emit_writeword(0,(int)&pcaddr);
emit_jmp((int)do_interrupt);
}
}
//if(opcode[i]==0x2B || opcode[i]==0x3F)
//if(opcode[i]==0x2B || opcode[i]==0x28)
//if(opcode[i]==0x2B || opcode[i]==0x29)
//if(opcode[i]==0x2B)
/*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
{
#ifdef __i386__
emit_pusha();
#endif
#ifdef __arm__
save_regs(0x100f);
#endif
emit_readword((int)&last_count,ECX);
#ifdef __i386__
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&Count);
#endif
#ifdef __arm__
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,0);
else
emit_mov(HOST_CCREG,0);
emit_add(0,ECX,0);
emit_addimm(0,2*ccadj[i],0);
emit_writeword(0,(int)&Count);
#endif
emit_call((int)memdebug);
#ifdef __i386__
emit_popa();
#endif
#ifdef __arm__
restore_regs(0x100f);
#endif
}*/
}
void storelr_assemble(int i,struct regstat *i_regs)
{
int s,th,tl;
int temp;
int temp2=-1;
int offset;
int jaddr=0;
int case1,case2,case3;
int done0,done1,done2;
int memtarget=0,c=0;
int agr=AGEN1+(i&1);
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rs2[i]|64);
tl=get_reg(i_regs->regmap,rs2[i]);
s=get_reg(i_regs->regmap,rs1[i]);
temp=get_reg(i_regs->regmap,agr);
if(temp<0) temp=get_reg(i_regs->regmap,-1);
offset=imm[i];
if(s>=0) {
c=(i_regs->isconst>>s)&1;
if(c) {
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
}
}
assert(tl>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
assert(temp>=0);
if(!c) {
emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
if(!offset&&s!=temp) emit_mov(s,temp);
jaddr=(int)out;
emit_jno(0);
}
else
{
if(!memtarget||!rs1[i]) {
jaddr=(int)out;
emit_jmp(0);
}
}
#ifdef RAM_OFFSET
int map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
#else
if((u_int)rdram!=0x80000000)
emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
#endif
if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
temp2=get_reg(i_regs->regmap,FTEMP);
if(!rs2[i]) temp2=th=tl;
}
#ifndef BIG_ENDIAN_MIPS
emit_xorimm(temp,3,temp);
#endif
emit_testimm(temp,2);
case2=(int)out;
emit_jne(0);
emit_testimm(temp,1);
case1=(int)out;
emit_jne(0);
// 0
if (opcode[i]==0x2A) { // SWL
emit_writeword_indexed(tl,0,temp);
}
if (opcode[i]==0x2E) { // SWR
emit_writebyte_indexed(tl,3,temp);
}
if (opcode[i]==0x2C) { // SDL
emit_writeword_indexed(th,0,temp);
if(rs2[i]) emit_mov(tl,temp2);
}
if (opcode[i]==0x2D) { // SDR
emit_writebyte_indexed(tl,3,temp);
if(rs2[i]) emit_shldimm(th,tl,24,temp2);
}
done0=(int)out;
emit_jmp(0);
// 1
set_jump_target(case1,(int)out);
if (opcode[i]==0x2A) { // SWL
// Write 3 msb into three least significant bytes
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,16,tl);
emit_writebyte_indexed(tl,1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write two lsb into two most significant bytes
emit_writehword_indexed(tl,1,temp);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
// Write 3 msb into three least significant bytes
if(rs2[i]) emit_rorimm(th,8,th);
emit_writehword_indexed(th,-1,temp);
if(rs2[i]) emit_rorimm(th,16,th);
emit_writebyte_indexed(th,1,temp);
if(rs2[i]) emit_rorimm(th,8,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_shldimm(th,tl,16,temp2);
// Write two lsb into two most significant bytes
emit_writehword_indexed(tl,1,temp);
}
done1=(int)out;
emit_jmp(0);
// 2
set_jump_target(case2,(int)out);
emit_testimm(temp,1);
case3=(int)out;
emit_jne(0);
if (opcode[i]==0x2A) { // SWL
// Write two msb into two least significant bytes
if(rs2[i]) emit_rorimm(tl,16,tl);
emit_writehword_indexed(tl,-2,temp);
if(rs2[i]) emit_rorimm(tl,16,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write 3 lsb into three most significant bytes
emit_writebyte_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,0,temp);
if(rs2[i]) emit_rorimm(tl,24,tl);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
// Write two msb into two least significant bytes
if(rs2[i]) emit_rorimm(th,16,th);
emit_writehword_indexed(th,-2,temp);
if(rs2[i]) emit_rorimm(th,16,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_shldimm(th,tl,8,temp2);
// Write 3 lsb into three most significant bytes
emit_writebyte_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,0,temp);
if(rs2[i]) emit_rorimm(tl,24,tl);
}
done2=(int)out;
emit_jmp(0);
// 3
set_jump_target(case3,(int)out);
if (opcode[i]==0x2A) { // SWL
// Write msb into least significant byte
if(rs2[i]) emit_rorimm(tl,24,tl);
emit_writebyte_indexed(tl,-3,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write entire word
emit_writeword_indexed(tl,-3,temp);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
// Write msb into least significant byte
if(rs2[i]) emit_rorimm(th,24,th);
emit_writebyte_indexed(th,-3,temp);
if(rs2[i]) emit_rorimm(th,8,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_mov(th,temp2);
// Write entire word
emit_writeword_indexed(tl,-3,temp);
}
set_jump_target(done0,(int)out);
set_jump_target(done1,(int)out);
set_jump_target(done2,(int)out);
if (opcode[i]==0x2C) { // SDL
emit_testimm(temp,4);
done0=(int)out;
emit_jne(0);
emit_andimm(temp,~3,temp);
emit_writeword_indexed(temp2,4,temp);
set_jump_target(done0,(int)out);
}
if (opcode[i]==0x2D) { // SDR
emit_testimm(temp,4);
done0=(int)out;
emit_jeq(0);
emit_andimm(temp,~3,temp);
emit_writeword_indexed(temp2,-4,temp);
set_jump_target(done0,(int)out);
}
if(!c||!memtarget)
add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
#ifdef RAM_OFFSET
int map=get_reg(i_regs->regmap,ROREG);
if(map<0) map=HOST_TEMPREG;
gen_orig_addr_w(temp,map);
#else
emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
#endif
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,temp,1);
#else
emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[temp]);
#else
int jaddr2=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
#endif
}
/*
emit_pusha();
//save_regs(0x100f);
emit_readword((int)&last_count,ECX);
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&Count);
emit_call((int)memdebug);
emit_popa();
//restore_regs(0x100f);
*/
}
void c1ls_assemble(int i,struct regstat *i_regs)
{
cop1_unusable(i, i_regs);
}
void c2ls_assemble(int i,struct regstat *i_regs)
{
int s,tl;
int ar;
int offset;
int memtarget=0,c=0;
int jaddr2=0,type;
int agr=AGEN1+(i&1);
int fastio_reg_override=0;
u_int hr,reglist=0;
u_int copr=(source[i]>>16)&0x1f;
s=get_reg(i_regs->regmap,rs1[i]);
tl=get_reg(i_regs->regmap,FTEMP);
offset=imm[i];
assert(rs1[i]>0);
assert(tl>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG)
reglist&=~(1<<HOST_CCREG);
// get the address
if (opcode[i]==0x3a) { // SWC2
ar=get_reg(i_regs->regmap,agr);
if(ar<0) ar=get_reg(i_regs->regmap,-1);
reglist|=1<<ar;
} else { // LWC2
ar=tl;
}
if(s>=0) c=(i_regs->wasconst>>s)&1;
memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
if (!offset&&!c&&s>=0) ar=s;
assert(ar>=0);
if (opcode[i]==0x3a) { // SWC2
cop2_get_dreg(copr,tl,HOST_TEMPREG);
type=STOREW_STUB;
}
else
type=LOADW_STUB;
if(c&&!memtarget) {
jaddr2=(int)out;
emit_jmp(0); // inline_readstub/inline_writestub?
}
else {
if(!c) {
jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
}
else if(ram_offset&&memtarget) {
emit_addimm(ar,ram_offset,HOST_TEMPREG);
fastio_reg_override=HOST_TEMPREG;
}
if (opcode[i]==0x32) { // LWC2
#ifdef HOST_IMM_ADDR32
if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
else
#endif
int a=ar;
if(fastio_reg_override) a=fastio_reg_override;
emit_readword_indexed(0,a,tl);
}
if (opcode[i]==0x3a) { // SWC2
#ifdef DESTRUCTIVE_SHIFT
if(!offset&&!c&&s>=0) emit_mov(s,ar);
#endif
int a=ar;
if(fastio_reg_override) a=fastio_reg_override;
emit_writeword_indexed(tl,0,a);
}
}
if(jaddr2)
add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
if(opcode[i]==0x3a) // SWC2
if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,ar,1);
#else
emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[ar]);
#else
int jaddr3=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
#endif
}
if (opcode[i]==0x32) { // LWC2
cop2_put_dreg(copr,tl,HOST_TEMPREG);
}
}
#ifndef multdiv_assemble
void multdiv_assemble(int i,struct regstat *i_regs)
{
printf("Need multdiv_assemble for this architecture.\n");
exit(1);
}
#endif
void mov_assemble(int i,struct regstat *i_regs)
{
//if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
//if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
//assert(tl>=0);
if(tl>=0) {
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(sl>=0) emit_mov(sl,tl);
else emit_loadreg(rs1[i],tl);
if(th>=0) {
if(sh>=0) emit_mov(sh,th);
else emit_loadreg(rs1[i]|64,th);
}
}
}
}
#ifndef fconv_assemble
void fconv_assemble(int i,struct regstat *i_regs)
{
printf("Need fconv_assemble for this architecture.\n");
exit(1);
}
#endif
#if 0
void float_assemble(int i,struct regstat *i_regs)
{
printf("Need float_assemble for this architecture.\n");
exit(1);
}
#endif
void syscall_assemble(int i,struct regstat *i_regs)
{
signed char ccreg=get_reg(i_regs->regmap,CCREG);
assert(ccreg==HOST_CCREG);
assert(!is_delayslot);
(void)ccreg;
emit_movimm(start+i*4,EAX); // Get PC
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
emit_jmp((int)jump_syscall_hle); // XXX
}
void hlecall_assemble(int i,struct regstat *i_regs)
{
signed char ccreg=get_reg(i_regs->regmap,CCREG);
assert(ccreg==HOST_CCREG);
assert(!is_delayslot);
(void)ccreg;
emit_movimm(start+i*4+4,0); // Get PC
emit_movimm((int)psxHLEt[source[i]&7],1);
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
emit_jmp((int)jump_hlecall);
}
void intcall_assemble(int i,struct regstat *i_regs)
{
signed char ccreg=get_reg(i_regs->regmap,CCREG);
assert(ccreg==HOST_CCREG);
assert(!is_delayslot);
(void)ccreg;
emit_movimm(start+i*4,0); // Get PC
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
emit_jmp((int)jump_intcall);
}
void ds_assemble(int i,struct regstat *i_regs)
{
speculate_register_values(i);
is_delayslot=1;
switch(itype[i]) {
case ALU:
alu_assemble(i,i_regs);break;
case IMM16:
imm16_assemble(i,i_regs);break;
case SHIFT:
shift_assemble(i,i_regs);break;
case SHIFTIMM:
shiftimm_assemble(i,i_regs);break;
case LOAD:
load_assemble(i,i_regs);break;
case LOADLR:
loadlr_assemble(i,i_regs);break;
case STORE:
store_assemble(i,i_regs);break;
case STORELR:
storelr_assemble(i,i_regs);break;
case COP0:
cop0_assemble(i,i_regs);break;
case COP1:
cop1_assemble(i,i_regs);break;
case C1LS:
c1ls_assemble(i,i_regs);break;
case COP2:
cop2_assemble(i,i_regs);break;
case C2LS:
c2ls_assemble(i,i_regs);break;
case C2OP:
c2op_assemble(i,i_regs);break;
case FCONV:
fconv_assemble(i,i_regs);break;
case FLOAT:
float_assemble(i,i_regs);break;
case FCOMP:
fcomp_assemble(i,i_regs);break;
case MULTDIV:
multdiv_assemble(i,i_regs);break;
case MOV:
mov_assemble(i,i_regs);break;
case SYSCALL:
case HLECALL:
case INTCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
SysPrintf("Jump in the delay slot. This is probably a bug.\n");
}
is_delayslot=0;
}
// Is the branch target a valid internal jump?
int internal_branch(uint64_t i_is32,int addr)
{
if(addr&1) return 0; // Indirect (register) jump
if(addr>=start && addr<start+slen*4-4)
{
//int t=(addr-start)>>2;
// Delay slots are not valid branch targets
//if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
// 64 -> 32 bit transition requires a recompile
/*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
{
if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
else printf("optimizable: yes\n");
}*/
//if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
return 1;
}
return 0;
}
#ifndef wb_invalidate
void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
uint64_t u,uint64_t uu)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(pre[hr]>=0) {
if((dirty>>hr)&1) {
if(get_reg(entry,pre[hr])<0) {
if(pre[hr]<64) {
if(!((u>>pre[hr])&1)) {
emit_storereg(pre[hr],hr);
if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
emit_sarimm(hr,31,hr);
emit_storereg(pre[hr]|64,hr);
}
}
}else{
if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
emit_storereg(pre[hr],hr);
}
}
}
}
}
}
}
}
// Move from one register to another (no writeback)
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
int nr;
if((nr=get_reg(entry,pre[hr]))>=0) {
emit_mov(hr,nr);
}
}
}
}
}
}
#endif
// Load the specified registers
// This only loads the registers given as arguments because
// we don't want to load things that will be overwritten
void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
{
int hr;
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
if(entry[hr]!=regmap[hr]) {
if(regmap[hr]==rs1||regmap[hr]==rs2)
{
if(regmap[hr]==0) {
emit_zeroreg(hr);
}
else
{
emit_loadreg(regmap[hr],hr);
}
}
}
}
}
//Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
if(entry[hr]!=regmap[hr]) {
if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
{
assert(regmap[hr]!=64);
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
if(lr>=0)
emit_sarimm(lr,31,hr);
else
emit_loadreg(regmap[hr],hr);
}
else
{
emit_loadreg(regmap[hr],hr);
}
}
}
}
}
}
// Load registers prior to the start of a loop
// so that they are not loaded within the loop
static void loop_preload(signed char pre[],signed char entry[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(entry[hr]>=0) {
if(get_reg(pre,entry[hr])<0) {
assem_debug("loop preload:\n");
//printf("loop preload: %d\n",hr);
if(entry[hr]==0) {
emit_zeroreg(hr);
}
else if(entry[hr]<TEMPREG)
{
emit_loadreg(entry[hr],hr);
}
else if(entry[hr]-64<TEMPREG)
{
emit_loadreg(entry[hr],hr);
}
}
}
}
}
}
}
// Generate address for load/store instruction
// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
void address_generation(int i,struct regstat *i_regs,signed char entry[])
{
if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
int ra=-1;
int agr=AGEN1+(i&1);
if(itype[i]==LOAD) {
ra=get_reg(i_regs->regmap,rt1[i]);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
assert(ra>=0);
}
if(itype[i]==LOADLR) {
ra=get_reg(i_regs->regmap,FTEMP);
}
if(itype[i]==STORE||itype[i]==STORELR) {
ra=get_reg(i_regs->regmap,agr);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
}
if(itype[i]==C1LS||itype[i]==C2LS) {
if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
ra=get_reg(i_regs->regmap,FTEMP);
else { // SWC1/SDC1/SWC2/SDC2
ra=get_reg(i_regs->regmap,agr);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
}
}
int rs=get_reg(i_regs->regmap,rs1[i]);
if(ra>=0) {
int offset=imm[i];
int c=(i_regs->wasconst>>rs)&1;
if(rs1[i]==0) {
// Using r0 as a base address
if(!entry||entry[ra]!=agr) {
if (opcode[i]==0x22||opcode[i]==0x26) {
emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i]==0x1a||opcode[i]==0x1b) {
emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
}else{
emit_movimm(offset,ra);
}
} // else did it in the previous cycle
}
else if(rs<0) {
if(!entry||entry[ra]!=rs1[i])
emit_loadreg(rs1[i],ra);
//if(!entry||entry[ra]!=rs1[i])
// printf("poor load scheduling!\n");
}
else if(c) {
if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
if(!entry||entry[ra]!=agr) {
if (opcode[i]==0x22||opcode[i]==0x26) {
emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i]==0x1a||opcode[i]==0x1b) {
emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
}else{
#ifdef HOST_IMM_ADDR32
if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
#endif
emit_movimm(constmap[i][rs]+offset,ra);
regs[i].loadedconst|=1<<ra;
}
} // else did it in the previous cycle
} // else load_consts already did it
}
if(offset&&!c&&rs1[i]) {
if(rs>=0) {
emit_addimm(rs,offset,ra);
}else{
emit_addimm(ra,offset,ra);
}
}
}
}
// Preload constants for next instruction
if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
int agr,ra;
// Actual address
agr=AGEN1+((i+1)&1);
ra=get_reg(i_regs->regmap,agr);
if(ra>=0) {
int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
int offset=imm[i+1];
int c=(regs[i+1].wasconst>>rs)&1;
if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
}else{
#ifdef HOST_IMM_ADDR32
if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
#endif
emit_movimm(constmap[i+1][rs]+offset,ra);
regs[i+1].loadedconst|=1<<ra;
}
}
else if(rs1[i+1]==0) {
// Using r0 as a base address
if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
}else{
emit_movimm(offset,ra);
}
}
}
}
}
static int get_final_value(int hr, int i, int *value)
{
int reg=regs[i].regmap[hr];
while(i<slen-1) {
if(regs[i+1].regmap[hr]!=reg) break;
if(!((regs[i+1].isconst>>hr)&1)) break;
if(bt[i+1]) break;
i++;
}
if(i<slen-1) {
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
*value=constmap[i][hr];
return 1;
}
if(!bt[i+1]) {
if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
// Load in delay slot, out-of-order execution
if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
{
// Precompute load address
*value=constmap[i][hr]+imm[i+2];
return 1;
}
}
if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
{
// Precompute load address
*value=constmap[i][hr]+imm[i+1];
//printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
return 1;
}
}
}
*value=constmap[i][hr];
//printf("c=%x\n",(int)constmap[i][hr]);
if(i==slen-1) return 1;
if(reg<64) {
return !((unneeded_reg[i+1]>>reg)&1);
}else{
return !((unneeded_reg_upper[i+1]>>reg)&1);
}
}
// Load registers with known constants
void load_consts(signed char pre[],signed char regmap[],int is32,int i)
{
int hr,hr2;
// propagate loaded constant flags
if(i==0||bt[i])
regs[i].loadedconst=0;
else {
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
&&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
{
regs[i].loadedconst|=1<<hr;
}
}
}
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
//if(entry[hr]!=regmap[hr]) {
if(!((regs[i].loadedconst>>hr)&1)) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
int value,similar=0;
if(get_final_value(hr,i,&value)) {
// see if some other register has similar value
for(hr2=0;hr2<HOST_REGS;hr2++) {
if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
if(is_similar_value(value,constmap[i][hr2])) {
similar=1;
break;
}
}
}
if(similar) {
int value2;
if(get_final_value(hr2,i,&value2)) // is this needed?
emit_movimm_from(value2,hr2,value,hr);
else
emit_movimm(value,hr);
}
else if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
regs[i].loadedconst|=1<<hr;
}
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
//if(entry[hr]!=regmap[hr]) {
if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
assert(lr>=0);
emit_sarimm(lr,31,hr);
}
else
{
int value;
if(get_final_value(hr,i,&value)) {
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
}
}
}
}
void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
{
int hr;
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
int value=constmap[i][hr];
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
assert(lr>=0);
emit_sarimm(lr,31,hr);
}
else
{
int value=constmap[i][hr];
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
}
}
// Write out all dirty registers (except cycle count)
void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0) {
if(i_regmap[hr]!=CCREG) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
emit_storereg(i_regmap[hr],hr);
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
// Write out dirty registers that we need to reload (pair with load_needed_regs)
// This writes the registers not written by store_regs_bt
void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
int hr;
int t=(addr-start)>>2;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0) {
if(i_regmap[hr]!=CCREG) {
if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
emit_storereg(i_regmap[hr],hr);
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
}
// Load all registers (except cycle count)
void load_all_regs(signed char i_regmap[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]==0) {
emit_zeroreg(hr);
}
else
if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
{
emit_loadreg(i_regmap[hr],hr);
}
}
}
}
// Load all current registers also needed by next instruction
void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(get_reg(next_regmap,i_regmap[hr])>=0) {
if(i_regmap[hr]==0) {
emit_zeroreg(hr);
}
else
if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
{
emit_loadreg(i_regmap[hr],hr);
}
}
}
}
}
// Load all regs, storing cycle count if necessary
void load_regs_entry(int t)
{
int hr;
if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
emit_storereg(CCREG,HOST_CCREG);
}
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
if(regs[t].regmap_entry[hr]==0) {
emit_zeroreg(hr);
}
else if(regs[t].regmap_entry[hr]!=CCREG)
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
assert(regs[t].regmap_entry[hr]!=64);
if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
if(lr<0) {
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
else
{
emit_sarimm(lr,31,hr);
}
}
else
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
}
// Store dirty registers prior to branch
void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
if(internal_branch(i_is32,addr))
{
int t=(addr-start)>>2;
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
emit_storereg(i_regmap[hr],hr);
if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
#ifdef DESTRUCTIVE_WRITEBACK
emit_sarimm(hr,31,hr);
emit_storereg(i_regmap[hr]|64,hr);
#else
emit_sarimm(hr,31,HOST_TEMPREG);
emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
#endif
}
}
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
else
{
// Branch out of this block, write out all dirty regs
wb_dirtys(i_regmap,i_is32,i_dirty);
}
}
// Load all needed registers for branch target
void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
//if(addr>=start && addr<(start+slen*4))
if(internal_branch(i_is32,addr))
{
int t=(addr-start)>>2;
int hr;
// Store the cycle count before loading something else
if(i_regmap[HOST_CCREG]!=CCREG) {
assert(i_regmap[HOST_CCREG]==-1);
}
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
emit_storereg(CCREG,HOST_CCREG);
}
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
#ifdef DESTRUCTIVE_WRITEBACK
if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
#else
if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
#endif
if(regs[t].regmap_entry[hr]==0) {
emit_zeroreg(hr);
}
else if(regs[t].regmap_entry[hr]!=CCREG)
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
}
//Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
assert(regs[t].regmap_entry[hr]!=64);
if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
if(lr<0) {
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
else
{
emit_sarimm(lr,31,hr);
}
}
else
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
assert(lr>=0);
emit_sarimm(lr,31,hr);
}
}
}
}
}
int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
if(addr>=start && addr<start+slen*4-4)
{
int t=(addr-start)>>2;
int hr;
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG)
{
if(i_regmap[hr]!=regs[t].regmap_entry[hr])
{
if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
{
return 0;
}
else
if((i_dirty>>hr)&1)
{
if(i_regmap[hr]<TEMPREG)
{
if(!((unneeded_reg[t]>>i_regmap[hr])&1))
return 0;
}
else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
{
if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
return 0;
}
}
}
else // Same register but is it 32-bit or dirty?
if(i_regmap[hr]>=0)
{
if(!((regs[t].dirty>>hr)&1))
{
if((i_dirty>>hr)&1)
{
if(!((unneeded_reg[t]>>i_regmap[hr])&1))
{
//printf("%x: dirty no match\n",addr);
return 0;
}
}
}
if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
{
//printf("%x: is32 no match\n",addr);
return 0;
}
}
}
}
//if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
// Delay slots are not valid branch targets
//if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
// Delay slots require additional processing, so do not match
if(is_ds[t]) return 0;
}
else
{
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG)
{
if(i_regmap[hr]>=0)
{
if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
{
if((i_dirty>>hr)&1)
{
return 0;
}
}
}
}
}
}
return 1;
}
// Used when a branch jumps into the delay slot of another branch
void ds_assemble_entry(int i)
{
int t=(ba[i]-start)>>2;
if(!instr_addr[t]) instr_addr[t]=(u_int)out;
assem_debug("Assemble delay slot at %x\n",ba[i]);
assem_debug("<->\n");
if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
address_generation(t,&regs[t],regs[t].regmap_entry);
if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
cop1_usable=0;
is_delayslot=0;
switch(itype[t]) {
case ALU:
alu_assemble(t,&regs[t]);break;
case IMM16:
imm16_assemble(t,&regs[t]);break;
case SHIFT:
shift_assemble(t,&regs[t]);break;
case SHIFTIMM:
shiftimm_assemble(t,&regs[t]);break;
case LOAD:
load_assemble(t,&regs[t]);break;
case LOADLR:
loadlr_assemble(t,&regs[t]);break;
case STORE:
store_assemble(t,&regs[t]);break;
case STORELR:
storelr_assemble(t,&regs[t]);break;
case COP0:
cop0_assemble(t,&regs[t]);break;
case COP1:
cop1_assemble(t,&regs[t]);break;
case C1LS:
c1ls_assemble(t,&regs[t]);break;
case COP2:
cop2_assemble(t,&regs[t]);break;
case C2LS:
c2ls_assemble(t,&regs[t]);break;
case C2OP:
c2op_assemble(t,&regs[t]);break;
case FCONV:
fconv_assemble(t,&regs[t]);break;
case FLOAT:
float_assemble(t,&regs[t]);break;
case FCOMP:
fcomp_assemble(t,&regs[t]);break;
case MULTDIV:
multdiv_assemble(t,&regs[t]);break;
case MOV:
mov_assemble(t,&regs[t]);break;
case SYSCALL:
case HLECALL:
case INTCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
SysPrintf("Jump in the delay slot. This is probably a bug.\n");
}
store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
if(internal_branch(regs[t].is32,ba[i]+4))
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
assert(internal_branch(regs[t].is32,ba[i]+4));
add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
emit_jmp(0);
}
void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
{
int count;
int jaddr;
int idle=0;
int t=0;
if(itype[i]==RJUMP)
{
*adj=0;
}
//if(ba[i]>=start && ba[i]<(start+slen*4))
if(internal_branch(branch_regs[i].is32,ba[i]))
{
t=(ba[i]-start)>>2;
if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
else *adj=ccadj[t];
}
else
{
*adj=0;
}
count=ccadj[i];
if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
// Idle loop
if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
idle=(int)out;
//emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
emit_andimm(HOST_CCREG,3,HOST_CCREG);
jaddr=(int)out;
emit_jmp(0);
}
else if(*adj==0||invert) {
int cycles=CLOCK_ADJUST(count+2);
// faster loop HACK
if (t&&*adj) {
int rel=t-i;
if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
}
emit_addimm_and_set_flags(cycles,HOST_CCREG);
jaddr=(int)out;
emit_jns(0);
}
else
{
emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
jaddr=(int)out;
emit_jns(0);
}
add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
}
void do_ccstub(int n)
{
literal_pool(256);
assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
set_jump_target(stubs[n][1],(int)out);
int i=stubs[n][4];
if(stubs[n][6]==NULLDS) {
// Delay slot instruction is nullified ("likely" branch)
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
}
else if(stubs[n][6]!=TAKEN) {
wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
}
else {
if(internal_branch(branch_regs[i].is32,ba[i]))
wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
}
if(stubs[n][5]!=-1)
{
// Save PC as return address
emit_movimm(stubs[n][5],EAX);
emit_writeword(EAX,(int)&pcaddr);
}
else
{
// Return address depends on which way the branch goes
if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
}
if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
s1h=s2h=-1;
}
assert(s1l>=0);
#ifdef DESTRUCTIVE_WRITEBACK
if(rs1[i]) {
if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
emit_loadreg(rs1[i],s1l);
}
else {
if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
emit_loadreg(rs2[i],s1l);
}
if(s2l>=0)
if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
emit_loadreg(rs2[i],s2l);
#endif
int hr=0;
int addr=-1,alt=-1,ntaddr=-1;
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
addr=hr++;break;
}
hr++;
}
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
alt=hr++;break;
}
hr++;
}
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
{
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
ntaddr=hr;break;
}
hr++;
}
assert(hr<HOST_REGS);
}
if((opcode[i]&0x2f)==4) // BEQ
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
}
else
#endif
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==5) // BNE
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
}
else
#endif
{
emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==6) // BLEZ
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,ntaddr);
emit_cmovl_reg(alt,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(ntaddr,addr);
emit_cmovs_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==7) // BGTZ
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,ntaddr);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,alt);
emit_cmovl_reg(ntaddr,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
emit_cmovs_reg(ntaddr,addr);
}
}
if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
if(s1h>=0) emit_test(s1h,s1h);
else emit_test(s1l,s1l);
emit_cmovs_reg(alt,addr);
}
if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,alt);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) emit_test(s1h,s1h);
else emit_test(s1l,s1l);
emit_cmovs_reg(alt,addr);
}
if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
if(source[i]&0x10000) // BC1T
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
else // BC1F
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,alt);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
}
emit_writeword(addr,(int)&pcaddr);
}
else
if(itype[i]==RJUMP)
{
int r=get_reg(branch_regs[i].regmap,rs1[i]);
if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
r=get_reg(branch_regs[i].regmap,RTEMP);
}
emit_writeword(r,(int)&pcaddr);
}
else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
}
// Update cycle count
assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
emit_call((int)cc_interrupt);
if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
if(stubs[n][6]==TAKEN) {
if(internal_branch(branch_regs[i].is32,ba[i]))
load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
else if(itype[i]==RJUMP) {
if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
else
emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
}
}else if(stubs[n][6]==NOTTAKEN) {
if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
else load_all_regs(branch_regs[i].regmap);
}else if(stubs[n][6]==NULLDS) {
// Delay slot instruction is nullified ("likely" branch)
if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
else load_all_regs(regs[i].regmap);
}else{
load_all_regs(branch_regs[i].regmap);
}
emit_jmp(stubs[n][2]); // return address
/* This works but uses a lot of memory...
emit_readword((int)&last_count,ECX);
emit_add(HOST_CCREG,ECX,EAX);
emit_writeword(EAX,(int)&Count);
emit_call((int)gen_interupt);
emit_readword((int)&Count,HOST_CCREG);
emit_readword((int)&next_interupt,EAX);
emit_readword((int)&pending_exception,EBX);
emit_writeword(EAX,(int)&last_count);
emit_sub(HOST_CCREG,EAX,HOST_CCREG);
emit_test(EBX,EBX);
int jne_instr=(int)out;
emit_jne(0);
if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
load_all_regs(branch_regs[i].regmap);
emit_jmp(stubs[n][2]); // return address
set_jump_target(jne_instr,(int)out);
emit_readword((int)&pcaddr,EAX);
// Call get_addr_ht instead of doing the hash table here.
// This code is executed infrequently and takes up a lot of space
// so smaller is better.
emit_storereg(CCREG,HOST_CCREG);
emit_pushreg(EAX);
emit_call((int)get_addr_ht);
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(ESP,4,ESP);
emit_jmpreg(EAX);*/
}
static void add_to_linker(int addr,int target,int ext)
{
link_addr[linkcount][0]=addr;
link_addr[linkcount][1]=target;
link_addr[linkcount][2]=ext;
linkcount++;
}
static void ujump_assemble_write_ra(int i)
{
int rt;
unsigned int return_address;
rt=get_reg(branch_regs[i].regmap,31);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
//assert(rt>=0);
return_address=start+i*4+8;
if(rt>=0) {
#ifdef USE_MINI_HT
if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
int temp=-1; // note: must be ds-safe
#ifdef HOST_TEMPREG
temp=HOST_TEMPREG;
#endif
if(temp>=0) do_miniht_insert(return_address,rt,temp);
else emit_movimm(return_address,rt);
}
else
#endif
{
#ifdef REG_PREFETCH
if(temp>=0)
{
if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
}
}
void ujump_assemble(int i,struct regstat *i_regs)
{
int ra_done=0;
if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
address_generation(i+1,i_regs,regs[i].regmap_entry);
#ifdef REG_PREFETCH
int temp=get_reg(branch_regs[i].regmap,PTEMP);
if(rt1[i]==31&&temp>=0)
{
signed char *i_regmap=i_regs->regmap;
int return_address=start+i*4+8;
if(get_reg(branch_regs[i].regmap,31)>0)
if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
ujump_assemble_write_ra(i); // writeback ra for DS
ra_done=1;
}
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded|=1|(1LL<<rt1[i]);
bc_unneeded_upper|=1|(1LL<<rt1[i]);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(!ra_done&&rt1[i]==31)
ujump_assemble_write_ra(i);
int cc,adj;
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
#ifdef REG_PREFETCH
if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
#endif
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal_branch(branch_regs[i].is32,ba[i]))
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
emit_jmp(0);
}
}
static void rjump_assemble_write_ra(int i)
{
int rt,return_address;
assert(rt1[i+1]!=rt1[i]);
assert(rt2[i+1]!=rt1[i]);
rt=get_reg(branch_regs[i].regmap,rt1[i]);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(rt>=0);
return_address=start+i*4+8;
#ifdef REG_PREFETCH
if(temp>=0)
{
if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
void rjump_assemble(int i,struct regstat *i_regs)
{
int temp;
int rs,cc;
int ra_done=0;
rs=get_reg(branch_regs[i].regmap,rs1[i]);
assert(rs>=0);
if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
// Delay slot abuse, make a copy of the branch address register
temp=get_reg(branch_regs[i].regmap,RTEMP);
assert(temp>=0);
assert(regs[i].regmap[temp]==RTEMP);
emit_mov(rs,temp);
rs=temp;
}
address_generation(i+1,i_regs,regs[i].regmap_entry);
#ifdef REG_PREFETCH
if(rt1[i]==31)
{
if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
signed char *i_regmap=i_regs->regmap;
int return_address=start+i*4+8;
if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
}
#endif
#ifdef USE_MINI_HT
if(rs1[i]==31) {
int rh=get_reg(regs[i].regmap,RHASH);
if(rh>=0) do_preload_rhash(rh);
}
#endif
if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
rjump_assemble_write_ra(i);
ra_done=1;
}
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded|=1|(1LL<<rt1[i]);
bc_unneeded_upper|=1|(1LL<<rt1[i]);
bc_unneeded&=~(1LL<<rs1[i]);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
if(!ra_done&&rt1[i]!=0)
rjump_assemble_write_ra(i);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
(void)cc;
#ifdef USE_MINI_HT
int rh=get_reg(branch_regs[i].regmap,RHASH);
int ht=get_reg(branch_regs[i].regmap,RHTBL);
if(rs1[i]==31) {
if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
do_preload_rhtbl(ht);
do_rhash(rs,rh);
}
#endif
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
#ifdef DESTRUCTIVE_WRITEBACK
if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
emit_loadreg(rs1[i],rs);
}
}
#endif
#ifdef REG_PREFETCH
if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
#endif
#ifdef USE_MINI_HT
if(rs1[i]==31) {
do_miniht_load(ht,rh);
}
#endif
//do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
//if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
//assert(adj==0);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
// special case for RFE
emit_jmp(0);
else
emit_jns(0);
//load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
#ifdef USE_MINI_HT
if(rs1[i]==31) {
do_miniht_jump(rs,rh,ht);
}
else
#endif
{
//if(rs!=EAX) emit_mov(rs,EAX);
//emit_jmp((int)jump_vaddr_eax);
emit_jmp(jump_vaddr_reg[rs]);
}
/* Check hash table
temp=!rs;
emit_mov(rs,temp);
emit_shrimm(rs,16,rs);
emit_xor(temp,rs,rs);
emit_movzwl_reg(rs,rs);
emit_shlimm(rs,4,rs);
emit_cmpmem_indexed((int)hash_table,rs,temp);
emit_jne((int)out+14);
emit_readword_indexed((int)hash_table+4,rs,rs);
emit_jmpreg(rs);
emit_cmpmem_indexed((int)hash_table+8,rs,temp);
emit_addimm_no_flags(8,rs);
emit_jeq((int)out-17);
// No hit on hash table, call compiler
emit_pushreg(temp);
//DEBUG >
#ifdef DEBUG_CYCLE_COUNT
emit_readword((int)&last_count,ECX);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_readword((int)&next_interupt,ECX);
emit_writeword(HOST_CCREG,(int)&Count);
emit_sub(HOST_CCREG,ECX,HOST_CCREG);
emit_writeword(ECX,(int)&last_count);
#endif
//DEBUG <
emit_storereg(CCREG,HOST_CCREG);
emit_call((int)get_addr);
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(ESP,4,ESP);
emit_jmpreg(EAX);*/
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
#endif
}
void cjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("match=%d\n",match);
int s1h,s1l,s2h,s2l;
int prev_cop1_usable=cop1_usable;
int unconditional=0,nop=0;
int only32=0;
int invert=0;
int internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
if(ooo[i]) {
s1l=get_reg(branch_regs[i].regmap,rs1[i]);
s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
s2l=get_reg(branch_regs[i].regmap,rs2[i]);
s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
}
else {
s1l=get_reg(i_regmap,rs1[i]);
s1h=get_reg(i_regmap,rs1[i]|64);
s2l=get_reg(i_regmap,rs2[i]);
s2h=get_reg(i_regmap,rs2[i]|64);
}
if(rs1[i]==0&&rs2[i]==0)
{
if(opcode[i]&1) nop=1;
else unconditional=1;
//assert(opcode[i]!=5);
//assert(opcode[i]!=7);
//assert(opcode[i]!=0x15);
//assert(opcode[i]!=0x17);
}
else if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
only32=(regs[i].was32>>rs2[i])&1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
only32=(regs[i].was32>>rs1[i])&1;
}
else {
only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//printf("OOOE\n");
address_generation(i+1,i_regs,regs[i].regmap_entry);
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
if(unconditional)
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
//do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
//assem_debug("cycle count (adj)\n");
if(unconditional) {
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(((u_int)out)&7) emit_addnop(0);
#endif
}
}
else if(nop) {
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
}
else {
int taken=0,nottaken=0,nottaken1=0;
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
if(!only32)
{
assert(s1h>=0);
if(opcode[i]==4) // BEQ
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken1=(int)out;
emit_jne(1);
}
if(opcode[i]==5) // BNE
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],internal);
emit_jne(0);
}
if(opcode[i]==6) // BLEZ
{
emit_test(s1h,s1h);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],internal);
emit_js(0);
nottaken1=(int)out;
emit_jne(1);
}
if(opcode[i]==7) // BGTZ
{
emit_test(s1h,s1h);
nottaken1=(int)out;
emit_js(1);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],internal);
emit_jne(0);
}
} // if(!only32)
//printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(s1l>=0);
if(opcode[i]==4) // BEQ
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jne(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jeq(0);
}
}
if(opcode[i]==5) // BNE
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jeq(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jne(0);
}
}
if(opcode[i]==6) // BLEZ
{
emit_cmpimm(s1l,1);
if(invert){
nottaken=(int)out;
emit_jge(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jl(0);
}
}
if(opcode[i]==7) // BGTZ
{
emit_cmpimm(s1l,1);
if(invert){
nottaken=(int)out;
emit_jl(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jge(0);
}
}
if(invert) {
if(taken) set_jump_target(taken,(int)out);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
if(adj) {
emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
add_to_linker((int)out,ba[i],internal);
}else{
emit_addnop(13);
add_to_linker((int)out,ba[i],internal*2);
}
emit_jmp(0);
}else
#endif
{
if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
}
set_jump_target(nottaken,(int)out);
}
if(nottaken1) set_jump_target(nottaken1,(int)out);
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//if(likely[i]) printf("IOL\n");
//else
//printf("IOE\n");
int taken=0,nottaken=0,nottaken1=0;
if(!unconditional&&!nop) {
if(!only32)
{
assert(s1h>=0);
if((opcode[i]&0x2f)==4) // BEQ
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken1=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==5) // BNE
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
taken=(int)out;
emit_jne(1);
}
if((opcode[i]&0x2f)==6) // BLEZ
{
emit_test(s1h,s1h);
taken=(int)out;
emit_js(1);
nottaken1=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==7) // BGTZ
{
emit_test(s1h,s1h);
nottaken1=(int)out;
emit_js(2);
taken=(int)out;
emit_jne(1);
}
} // if(!only32)
//printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(s1l>=0);
if((opcode[i]&0x2f)==4) // BEQ
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==5) // BNE
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jeq(2);
}
if((opcode[i]&0x2f)==6) // BLEZ
{
emit_cmpimm(s1l,1);
nottaken=(int)out;
emit_jge(2);
}
if((opcode[i]&0x2f)==7) // BGTZ
{
emit_cmpimm(s1l,1);
nottaken=(int)out;
emit_jl(2);
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
if(!nop) {
if(taken) set_jump_target(taken,(int)out);
assem_debug("1:\n");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)\n");
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
}
// branch not taken
cop1_usable=prev_cop1_usable;
if(!unconditional) {
if(nottaken1) set_jump_target(nottaken1,(int)out);
set_jump_target(nottaken,(int)out);
assem_debug("2:\n");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
void sjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("smatch=%d\n",match);
int s1h,s1l;
int prev_cop1_usable=cop1_usable;
int unconditional=0,nevertaken=0;
int only32=0;
int invert=0;
int internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
//if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
//assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
if(ooo[i]) {
s1l=get_reg(branch_regs[i].regmap,rs1[i]);
s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
}
else {
s1l=get_reg(i_regmap,rs1[i]);
s1h=get_reg(i_regmap,rs1[i]|64);
}
if(rs1[i]==0)
{
if(opcode2[i]&1) unconditional=1;
else nevertaken=1;
// These are never taken (r0 is never less than zero)
//assert(opcode2[i]!=0);
//assert(opcode2[i]!=2);
//assert(opcode2[i]!=0x10);
//assert(opcode2[i]!=0x12);
}
else {
only32=(regs[i].was32>>rs1[i])&1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//printf("OOOE\n");
address_generation(i+1,i_regs,regs[i].regmap_entry);
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(rt1[i]==31) {
int rt,return_address;
rt=get_reg(branch_regs[i].regmap,31);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(rt>=0) {
// Save the PC even if the branch is not taken
return_address=start+i*4+8;
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
}
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
if(unconditional)
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
//do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
assem_debug("cycle count (adj)\n");
if(unconditional) {
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(((u_int)out)&7) emit_addnop(0);
#endif
}
}
else if(nevertaken) {
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
}
else {
int nottaken=0;
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
if(!only32)
{
assert(s1h>=0);
if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
{
emit_test(s1h,s1h);
if(invert){
nottaken=(int)out;
emit_jns(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_js(0);
}
}
if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
{
emit_test(s1h,s1h);
if(invert){
nottaken=(int)out;
emit_js(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jns(0);
}
}
} // if(!only32)
else
{
assert(s1l>=0);
if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
{
emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jns(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_js(0);
}
}
if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
{
emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_js(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jns(0);
}
}
} // if(!only32)
if(invert) {
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
if(adj) {
emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
add_to_linker((int)out,ba[i],internal);
}else{
emit_addnop(13);
add_to_linker((int)out,ba[i],internal*2);
}
emit_jmp(0);
}else
#endif
{
if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
}
set_jump_target(nottaken,(int)out);
}
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//printf("IOE\n");
int nottaken=0;
if(rt1[i]==31) {
int rt,return_address;
rt=get_reg(branch_regs[i].regmap,31);
if(rt>=0) {
// Save the PC even if the branch is not taken
return_address=start+i*4+8;
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
}
if(!unconditional) {
//printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(!only32)
{
assert(s1h>=0);
if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
{
emit_test(s1h,s1h);
nottaken=(int)out;
emit_jns(1);
}
if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
{
emit_test(s1h,s1h);
nottaken=(int)out;
emit_js(1);
}
} // if(!only32)
else
{
assert(s1l>=0);
if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
{
emit_test(s1l,s1l);
nottaken=(int)out;
emit_jns(1);
}
if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
{
emit_test(s1l,s1l);
nottaken=(int)out;
emit_js(1);
}
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
if(!nevertaken) {
//assem_debug("1:\n");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)\n");
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
}
// branch not taken
cop1_usable=prev_cop1_usable;
if(!unconditional) {
set_jump_target(nottaken,(int)out);
assem_debug("1:\n");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
void fjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("fmatch=%d\n",match);
int fs,cs;
int eaddr;
int invert=0;
int internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
if(ooo[i]) {
fs=get_reg(branch_regs[i].regmap,FSREG);
address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
}
else {
fs=get_reg(i_regmap,FSREG);
}
// Check cop1 unusable
if(!cop1_usable) {
cs=get_reg(i_regmap,CSREG);
assert(cs>=0);
emit_testimm(cs,0x20000000);
eaddr=(int)out;
emit_jeq(0);
add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
cop1_usable=1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//printf("OOOE\n");
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
assem_debug("cycle count (adj)\n");
if(1) {
int nottaken=0;
if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
if(1) {
assert(fs>=0);
emit_testimm(fs,0x800000);
if(source[i]&0x10000) // BC1T
{
if(invert){
nottaken=(int)out;
emit_jeq(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jne(0);
}
}
else // BC1F
if(invert){
nottaken=(int)out;
emit_jne(1);
}else{
add_to_linker((int)out,ba[i],internal);
emit_jeq(0);
}
{
}
} // if(!only32)
if(invert) {
if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
else if(match) emit_addnop(13);
#endif
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
set_jump_target(nottaken,(int)out);
}
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//printf("IOE\n");
int nottaken=0;
if(1) {
//printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(1) {
assert(fs>=0);
emit_testimm(fs,0x800000);
if(source[i]&0x10000) // BC1T
{
nottaken=(int)out;
emit_jeq(1);
}
else // BC1F
{
nottaken=(int)out;
emit_jne(1);
}
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
//assem_debug("1:\n");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)\n");
if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal)
assem_debug("branch: internal\n");
else
assem_debug("branch: external\n");
if(internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal);
emit_jmp(0);
}
// branch not taken
if(1) { // <- FIXME (don't need this)
set_jump_target(nottaken,(int)out);
assem_debug("1:\n");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
static void pagespan_assemble(int i,struct regstat *i_regs)
{
int s1l=get_reg(i_regs->regmap,rs1[i]);
int s1h=get_reg(i_regs->regmap,rs1[i]|64);
int s2l=get_reg(i_regs->regmap,rs2[i]);
int s2h=get_reg(i_regs->regmap,rs2[i]|64);
int taken=0;
int nottaken=0;
int unconditional=0;
if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
}
if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
s1h=s2h=-1;
}
int hr=0;
int addr=-1,alt=-1,ntaddr=-1;
if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
else {
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
addr=hr++;break;
}
hr++;
}
}
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
alt=hr++;break;
}
hr++;
}
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
{
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
ntaddr=hr;break;
}
hr++;
}
}
assert(hr<HOST_REGS);
if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
}
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
if(opcode[i]==2) // J
{
unconditional=1;
}
if(opcode[i]==3) // JAL
{
// TODO: mini_ht
int rt=get_reg(i_regs->regmap,31);
emit_movimm(start+i*4+8,rt);
unconditional=1;
}
if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
{
emit_mov(s1l,addr);
if(opcode2[i]==9) // JALR
{
int rt=get_reg(i_regs->regmap,rt1[i]);
emit_movimm(start+i*4+8,rt);
}
}
if((opcode[i]&0x3f)==4) // BEQ
{
if(rs1[i]==rs2[i])
{
unconditional=1;
}
else
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
}
else
#endif
{
assert(s1l>=0);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==5) // BNE
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
}
else
#endif
{
assert(s1l>=0);
emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==0x14) // BEQL
{
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken=(int)out;
emit_jne(0);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(nottaken) set_jump_target(nottaken,(int)out);
nottaken=(int)out;
emit_jne(0);
}
if((opcode[i]&0x3f)==0x15) // BNEL
{
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
taken=(int)out;
emit_jne(0);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jeq(0);
if(taken) set_jump_target(taken,(int)out);
}
if((opcode[i]&0x3f)==6) // BLEZ
{
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,ntaddr);
emit_cmovl_reg(alt,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(ntaddr,addr);
emit_cmovs_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==7) // BGTZ
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,alt);
emit_cmovl_reg(ntaddr,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
emit_cmovs_reg(ntaddr,addr);
}
}
if((opcode[i]&0x3f)==0x16) // BLEZL
{
assert((opcode[i]&0x3f)!=0x16);
}
if((opcode[i]&0x3f)==0x17) // BGTZL
{
assert((opcode[i]&0x3f)!=0x17);
}
assert(opcode[i]!=1); // BLTZ/BGEZ
//FIXME: Check CSREG
if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
if((source[i]&0x30000)==0) // BC1F
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
if((source[i]&0x30000)==0x10000) // BC1T
{
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
if((source[i]&0x30000)==0x20000) // BC1FL
{
emit_testimm(s1l,0x800000);
nottaken=(int)out;
emit_jne(0);
}
if((source[i]&0x30000)==0x30000) // BC1TL
{
emit_testimm(s1l,0x800000);
nottaken=(int)out;
emit_jeq(0);
}
}
assert(i_regs->regmap[HOST_CCREG]==CCREG);
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
if(likely[i]||unconditional)
{
emit_movimm(ba[i],HOST_BTREG);
}
else if(addr!=HOST_BTREG)
{
emit_mov(addr,HOST_BTREG);
}
void *branch_addr=out;
emit_jmp(0);
int target_addr=start+i*4+5;
void *stub=out;
void *compiled_target_addr=check_addr(target_addr);
emit_extjump_ds((int)branch_addr,target_addr);
if(compiled_target_addr) {
set_jump_target((int)branch_addr,(int)compiled_target_addr);
add_link(target_addr,stub);
}
else set_jump_target((int)branch_addr,(int)stub);
if(likely[i]) {
// Not-taken path
set_jump_target((int)nottaken,(int)out);
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
void *branch_addr=out;
emit_jmp(0);
int target_addr=start+i*4+8;
void *stub=out;
void *compiled_target_addr=check_addr(target_addr);
emit_extjump_ds((int)branch_addr,target_addr);
if(compiled_target_addr) {
set_jump_target((int)branch_addr,(int)compiled_target_addr);
add_link(target_addr,stub);
}
else set_jump_target((int)branch_addr,(int)stub);
}
}
// Assemble the delay slot for the above
static void pagespan_ds()
{
assem_debug("initial delay slot:\n");
u_int vaddr=start+1;
u_int page=get_page(vaddr);
u_int vpage=get_vpage(vaddr);
ll_add(jump_dirty+vpage,vaddr,(void *)out);
do_dirty_stub_ds();
ll_add(jump_in+page,vaddr,(void *)out);
assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
if(regs[0].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
if(regs[0].regmap[HOST_BTREG]!=BTREG)
emit_writeword(HOST_BTREG,(int)&branch_target);
load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
address_generation(0,&regs[0],regs[0].regmap_entry);
if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
cop1_usable=0;
is_delayslot=0;
switch(itype[0]) {
case ALU:
alu_assemble(0,&regs[0]);break;
case IMM16:
imm16_assemble(0,&regs[0]);break;
case SHIFT:
shift_assemble(0,&regs[0]);break;
case SHIFTIMM:
shiftimm_assemble(0,&regs[0]);break;
case LOAD:
load_assemble(0,&regs[0]);break;
case LOADLR:
loadlr_assemble(0,&regs[0]);break;
case STORE:
store_assemble(0,&regs[0]);break;
case STORELR:
storelr_assemble(0,&regs[0]);break;
case COP0:
cop0_assemble(0,&regs[0]);break;
case COP1:
cop1_assemble(0,&regs[0]);break;
case C1LS:
c1ls_assemble(0,&regs[0]);break;
case COP2:
cop2_assemble(0,&regs[0]);break;
case C2LS:
c2ls_assemble(0,&regs[0]);break;
case C2OP:
c2op_assemble(0,&regs[0]);break;
case FCONV:
fconv_assemble(0,&regs[0]);break;
case FLOAT:
float_assemble(0,&regs[0]);break;
case FCOMP:
fcomp_assemble(0,&regs[0]);break;
case MULTDIV:
multdiv_assemble(0,&regs[0]);break;
case MOV:
mov_assemble(0,&regs[0]);break;
case SYSCALL:
case HLECALL:
case INTCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
SysPrintf("Jump in the delay slot. This is probably a bug.\n");
}
int btaddr=get_reg(regs[0].regmap,BTREG);
if(btaddr<0) {
btaddr=get_reg(regs[0].regmap,-1);
emit_readword((int)&branch_target,btaddr);
}
assert(btaddr!=HOST_CCREG);
if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
#ifdef HOST_IMM8
emit_movimm(start+4,HOST_TEMPREG);
emit_cmp(btaddr,HOST_TEMPREG);
#else
emit_cmpimm(btaddr,start+4);
#endif
int branch=(int)out;
emit_jeq(0);
store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
emit_jmp(jump_vaddr_reg[btaddr]);
set_jump_target(branch,(int)out);
store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
}
// Basic liveness analysis for MIPS registers
void unneeded_registers(int istart,int iend,int r)
{
int i;
uint64_t u,uu,gte_u,b,bu,gte_bu;
uint64_t temp_u,temp_uu,temp_gte_u=0;
uint64_t tdep;
uint64_t gte_u_unknown=0;
if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
gte_u_unknown=~0ll;
if(iend==slen-1) {
u=1;uu=1;
gte_u=gte_u_unknown;
}else{
u=unneeded_reg[iend+1];
uu=unneeded_reg_upper[iend+1];
u=1;uu=1;
gte_u=gte_unneeded[iend+1];
}
for (i=iend;i>=istart;i--)
{
//printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
// If subroutine call, flag return address as a possible branch target
if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, flush all regs
u=1;
uu=1;
gte_u=gte_u_unknown;
/* Hexagon hack
if(itype[i]==UJUMP&&rt1[i]==31)
{
uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
}
if(itype[i]==RJUMP&&rs1[i]==31)
{
uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
}
if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
if(itype[i]==UJUMP&&rt1[i]==31)
{
//uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
}
if(itype[i]==RJUMP&&rs1[i]==31)
{
//uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
}
}*/
branch_unneeded_reg[i]=u;
branch_unneeded_reg_upper[i]=uu;
// Merge in delay slot
tdep=(~uu>>rt1[i+1])&1;
u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
u|=1;uu|=1;
gte_u|=gte_rt[i+1];
gte_u&=~gte_rs[i+1];
// If branch is "likely" (and conditional)
// then we skip the delay slot on the fall-thru path
if(likely[i]) {
if(i<slen-1) {
u&=unneeded_reg[i+2];
uu&=unneeded_reg_upper[i+2];
gte_u&=gte_unneeded[i+2];
}
else
{
u=1;
uu=1;
gte_u=gte_u_unknown;
}
}
}
else
{
// Internal branch, flag target
bt[(ba[i]-start)>>2]=1;
if(ba[i]<=start+i*4) {
// Backward branch
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
temp_u=1;temp_uu=1;
temp_gte_u=0;
} else {
// Conditional branch (not taken case)
temp_u=unneeded_reg[i+2];
temp_uu=unneeded_reg_upper[i+2];
temp_gte_u&=gte_unneeded[i+2];
}
// Merge in delay slot
tdep=(~temp_uu>>rt1[i+1])&1;
temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
temp_u|=1;temp_uu|=1;
temp_gte_u|=gte_rt[i+1];
temp_gte_u&=~gte_rs[i+1];
// If branch is "likely" (and conditional)
// then we skip the delay slot on the fall-thru path
if(likely[i]) {
if(i<slen-1) {
temp_u&=unneeded_reg[i+2];
temp_uu&=unneeded_reg_upper[i+2];
temp_gte_u&=gte_unneeded[i+2];
}
else
{
temp_u=1;
temp_uu=1;
temp_gte_u=gte_u_unknown;
}
}
tdep=(~temp_uu>>rt1[i])&1;
temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
temp_u|=1;temp_uu|=1;
temp_gte_u|=gte_rt[i];
temp_gte_u&=~gte_rs[i];
unneeded_reg[i]=temp_u;
unneeded_reg_upper[i]=temp_uu;
gte_unneeded[i]=temp_gte_u;
// Only go three levels deep. This recursion can take an
// excessive amount of time if there are a lot of nested loops.
if(r<2) {
unneeded_registers((ba[i]-start)>>2,i-1,r+1);
}else{
unneeded_reg[(ba[i]-start)>>2]=1;
unneeded_reg_upper[(ba[i]-start)>>2]=1;
gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
}
} /*else*/ if(1) {
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
u=unneeded_reg[(ba[i]-start)>>2];
uu=unneeded_reg_upper[(ba[i]-start)>>2];
gte_u=gte_unneeded[(ba[i]-start)>>2];
branch_unneeded_reg[i]=u;
branch_unneeded_reg_upper[i]=uu;
//u=1;
//uu=1;
//branch_unneeded_reg[i]=u;
//branch_unneeded_reg_upper[i]=uu;
// Merge in delay slot
tdep=(~uu>>rt1[i+1])&1;
u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
u|=1;uu|=1;
gte_u|=gte_rt[i+1];
gte_u&=~gte_rs[i+1];
} else {
// Conditional branch
b=unneeded_reg[(ba[i]-start)>>2];
bu=unneeded_reg_upper[(ba[i]-start)>>2];
gte_bu=gte_unneeded[(ba[i]-start)>>2];
branch_unneeded_reg[i]=b;
branch_unneeded_reg_upper[i]=bu;
//b=1;
//bu=1;
//branch_unneeded_reg[i]=b;
//branch_unneeded_reg_upper[i]=bu;
// Branch delay slot
tdep=(~uu>>rt1[i+1])&1;
b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
b|=1;bu|=1;
gte_bu|=gte_rt[i+1];
gte_bu&=~gte_rs[i+1];
// If branch is "likely" then we skip the
// delay slot on the fall-thru path
if(likely[i]) {
u=b;
uu=bu;
gte_u=gte_bu;
if(i<slen-1) {
u&=unneeded_reg[i+2];
uu&=unneeded_reg_upper[i+2];
gte_u&=gte_unneeded[i+2];
//u=1;
//uu=1;
}
} else {
u&=b;
uu&=bu;
gte_u&=gte_bu;
//u=1;
//uu=1;
}
if(i<slen-1) {
branch_unneeded_reg[i]&=unneeded_reg[i+2];
branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
//branch_unneeded_reg[i]=1;
//branch_unneeded_reg_upper[i]=1;
} else {
branch_unneeded_reg[i]=1;
branch_unneeded_reg_upper[i]=1;
}
}
}
}
}
else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
{
// SYSCALL instruction (software interrupt)
u=1;
uu=1;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
u=1;
uu=1;
}
//u=uu=1; // DEBUG
tdep=(~uu>>rt1[i])&1;
// Written registers are unneeded
u|=1LL<<rt1[i];
u|=1LL<<rt2[i];
uu|=1LL<<rt1[i];
uu|=1LL<<rt2[i];
gte_u|=gte_rt[i];
// Accessed registers are needed
u&=~(1LL<<rs1[i]);
u&=~(1LL<<rs2[i]);
uu&=~(1LL<<us1[i]);
uu&=~(1LL<<us2[i]);
gte_u&=~gte_rs[i];
if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
// Source-target dependencies
uu&=~(tdep<<dep1[i]);
uu&=~(tdep<<dep2[i]);
// R0 is always unneeded
u|=1;uu|=1;
// Save it
unneeded_reg[i]=u;
unneeded_reg_upper[i]=uu;
gte_unneeded[i]=gte_u;
/*
printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
printf("U:");
int r;
for(r=1;r<=CCREG;r++) {
if((unneeded_reg[i]>>r)&1) {
if(r==HIREG) printf(" HI");
else if(r==LOREG) printf(" LO");
else printf(" r%d",r);
}
}
printf(" UU:");
for(r=1;r<=CCREG;r++) {
if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
if(r==HIREG) printf(" HI");
else if(r==LOREG) printf(" LO");
else printf(" r%d",r);
}
}
printf("\n");*/
}
for (i=iend;i>=istart;i--)
{
unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
}
}
// Write back dirty registers as soon as we will no longer modify them,
// so that we don't end up with lots of writes at the branches.
void clean_registers(int istart,int iend,int wr)
{
int i;
int r;
u_int will_dirty_i,will_dirty_next,temp_will_dirty;
u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
if(iend==slen-1) {
will_dirty_i=will_dirty_next=0;
wont_dirty_i=wont_dirty_next=0;
}else{
will_dirty_i=will_dirty_next=will_dirty[iend+1];
wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
}
for (i=iend;i>=istart;i--)
{
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, flush all regs
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
will_dirty_i=0;
wont_dirty_i=0;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
else
{
// Conditional branch
will_dirty_i=0;
wont_dirty_i=wont_dirty_next;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Might not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
}
// Merge in delay slot (wont dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
}
}
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
branch_regs[i].dirty&=wont_dirty_i;
#endif
branch_regs[i].dirty|=will_dirty_i;
}
}
else
{
// Internal branch
if(ba[i]<=start+i*4) {
// Backward branch
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
temp_will_dirty=0;
temp_wont_dirty=0;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
}
}
} else {
// Conditional branch (not taken case)
temp_will_dirty=will_dirty_next;
temp_wont_dirty=wont_dirty_next;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Will not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
}
}
}
}
// Merge in delay slot (wont dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
}
}
// Deal with changed mappings
if(i<iend) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]!=regmap_pre[i][r]) {
temp_will_dirty&=~(1<<r);
temp_wont_dirty&=~(1<<r);
if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
} else {
temp_will_dirty|=1<<r;
temp_wont_dirty|=1<<r;
}
}
}
}
}
if(wr) {
will_dirty[i]=temp_will_dirty;
wont_dirty[i]=temp_wont_dirty;
clean_registers((ba[i]-start)>>2,i-1,0);
}else{
// Limit recursion. It can take an excessive amount
// of time if there are a lot of nested loops.
will_dirty[(ba[i]-start)>>2]=0;
wont_dirty[(ba[i]-start)>>2]=-1;
}
}
/*else*/ if(1)
{
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
will_dirty_i=0;
wont_dirty_i=0;
//if(ba[i]>start+i*4) { // Disable recursion (for debugging)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
if(branch_regs[i].regmap[r]>=0) {
will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
}
}
}
//}
// Merge in delay slot
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
} else {
// Conditional branch
will_dirty_i=will_dirty_next;
wont_dirty_i=wont_dirty_next;
//if(ba[i]>start+i*4) { // Disable recursion (for debugging)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
signed char target_reg=branch_regs[i].regmap[r];
if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
else if(target_reg>=0) {
will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
}
// Treat delay slot as part of branch too
/*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
else
{
will_dirty[i+1]&=~(1<<r);
}*/
}
}
//}
// Merge in delay slot
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Might not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
}
// Merge in delay slot (won't dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
}
}
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
branch_regs[i].dirty&=wont_dirty_i;
#endif
branch_regs[i].dirty|=will_dirty_i;
}
}
}
}
else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
{
// SYSCALL instruction (software interrupt)
will_dirty_i=0;
wont_dirty_i=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
will_dirty_i=0;
wont_dirty_i=0;
}
will_dirty_next=will_dirty_i;
wont_dirty_next=wont_dirty_i;
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if(i>istart) {
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
{
// Don't store a register immediately after writing it,
// may prevent dual-issue.
if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
}
}
}
}
// Save it
will_dirty[i]=will_dirty_i;
wont_dirty[i]=wont_dirty_i;
// Mark registers that won't be dirtied as not dirty
if(wr) {
/*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
for(r=0;r<HOST_REGS;r++) {
if((will_dirty_i>>r)&1) {
printf(" r%d",r);
}
}
printf("\n");*/
//if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
regs[i].dirty|=will_dirty_i;
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].dirty&=wont_dirty_i;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
}else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
}
}
}
}
else
{
if(i<iend) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
}else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
}
}
}
}
#endif
//}
}
// Deal with changed mappings
temp_will_dirty=will_dirty_i;
temp_wont_dirty=wont_dirty_i;
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
int nr;
if(regs[i].regmap[r]==regmap_pre[i][r]) {
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].wasdirty&=wont_dirty_i|~(1<<r);
#endif
regs[i].wasdirty|=will_dirty_i&(1<<r);
}
}
else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
// Register moved to a different register
will_dirty_i&=~(1<<r);
wont_dirty_i&=~(1<<r);
will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].wasdirty&=wont_dirty_i|~(1<<r);
#endif
regs[i].wasdirty|=will_dirty_i&(1<<r);
}
}
else {
will_dirty_i&=~(1<<r);
wont_dirty_i&=~(1<<r);
if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
} else {
wont_dirty_i|=1<<r;
/*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
}
}
}
}
}
}
#ifdef DISASM
/* disassembly */
void disassemble_inst(int i)
{
if (bt[i]) printf("*"); else printf(" ");
switch(itype[i]) {
case UJUMP:
printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
case CJUMP:
printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
case SJUMP:
printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
case FJUMP:
printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
case RJUMP:
if (opcode[i]==0x9&&rt1[i]!=31)
printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
else
printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
break;
case SPAN:
printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
case IMM16:
if(opcode[i]==0xf) //LUI
printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
else
printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case LOAD:
case LOADLR:
printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case STORE:
case STORELR:
printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
break;
case ALU:
case SHIFT:
printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
break;
case MULTDIV:
printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
break;
case SHIFTIMM:
printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case MOV:
if((opcode2[i]&0x1d)==0x10)
printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
else if((opcode2[i]&0x1d)==0x11)
printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
else
printf (" %x: %s\n",start+i*4,insn[i]);
break;
case COP0:
if(opcode2[i]==0)
printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
else if(opcode2[i]==4)
printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
else printf (" %x: %s\n",start+i*4,insn[i]);
break;
case COP1:
if(opcode2[i]<3)
printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
else if(opcode2[i]>3)
printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
else printf (" %x: %s\n",start+i*4,insn[i]);
break;
case COP2:
if(opcode2[i]<3)
printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
else if(opcode2[i]>3)
printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
else printf (" %x: %s\n",start+i*4,insn[i]);
break;
case C1LS:
printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
break;
case C2LS:
printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
break;
case INTCALL:
printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
break;
default:
//printf (" %s %8x\n",insn[i],source[i]);
printf (" %x: %s\n",start+i*4,insn[i]);
}
}
#else
static void disassemble_inst(int i) {}
#endif // DISASM
#define DRC_TEST_VAL 0x74657374
static int new_dynarec_test(void)
{
int (*testfunc)(void) = (void *)out;
void *beginning;
int ret;
beginning = start_block();
emit_movimm(DRC_TEST_VAL,0); // test
emit_jmpreg(14);
literal_pool(0);
end_block(beginning);
SysPrintf("testing if we can run recompiled code..\n");
ret = testfunc();
if (ret == DRC_TEST_VAL)
SysPrintf("test passed.\n");
else
SysPrintf("test failed: %08x\n", ret);
out=(u_char *)BASE_ADDR;
return ret == DRC_TEST_VAL;
}
// clear the state completely, instead of just marking
// things invalid like invalidate_all_pages() does
void new_dynarec_clear_full(void)
{
int n;
out=(u_char *)BASE_ADDR;
memset(invalid_code,1,sizeof(invalid_code));
memset(hash_table,0xff,sizeof(hash_table));
memset(mini_ht,-1,sizeof(mini_ht));
memset(restore_candidate,0,sizeof(restore_candidate));
memset(shadow,0,sizeof(shadow));
copy=shadow;
expirep=16384; // Expiry pointer, +2 blocks
pending_exception=0;
literalcount=0;
stop_after_jal=0;
inv_code_start=inv_code_end=~0;
// TLB
for(n=0;n<4096;n++) ll_clear(jump_in+n);
for(n=0;n<4096;n++) ll_clear(jump_out+n);
for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
}
void new_dynarec_init(void)
{
SysPrintf("Init new dynarec\n");
// allocate/prepare a buffer for translation cache
// see assem_arm.h for some explanation
#if defined(BASE_ADDR_FIXED)
if (mmap (translation_cache, 1 << TARGET_SIZE_2,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0) != translation_cache)
{
SysPrintf("mmap() failed: %s\n", strerror(errno));
SysPrintf("disable BASE_ADDR_FIXED and recompile\n");
abort();
}
#elif defined(BASE_ADDR_DYNAMIC)
#ifdef VITA
sceBlock = getVMBlock();//sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
if (sceBlock < 0)
SysPrintf("sceKernelAllocMemBlockForVM failed\n");
int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&translation_cache);
if (ret < 0)
SysPrintf("sceKernelGetMemBlockBase failed\n");
sceClibPrintf("translation_cache = 0x%08X \n ", translation_cache);
#elif defined(_MSC_VER)
base_addr = VirtualAlloc(NULL, 1<<TARGET_SIZE_2, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
#else
translation_cache = mmap (NULL, 1 << TARGET_SIZE_2,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (translation_cache == MAP_FAILED) {
SysPrintf("mmap() failed: %s\n", strerror(errno));
abort();
}
#endif
#else
#ifndef NO_WRITE_EXEC
// not all systems allow execute in data segment by default
if (mprotect((void*)BASE_ADDR, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
SysPrintf("mprotect() failed: %s\n", strerror(errno));
#endif
#endif
out=(u_char *)BASE_ADDR;
cycle_multiplier=200;
new_dynarec_clear_full();
#ifdef HOST_IMM8
// Copy this into local area so we don't have to put it in every literal pool
invc_ptr=invalid_code;
#endif
arch_init();
new_dynarec_test();
#ifndef RAM_FIXED
ram_offset=(u_int)rdram-0x80000000;
#endif
if (ram_offset!=0)
SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
}
void new_dynarec_cleanup(void)
{
int n;
#if defined(BASE_ADDR_FIXED) || defined(BASE_ADDR_DYNAMIC)
#ifndef VITA
#if defined(_MSC_VER)
VirtualFree(base_addr, 0, MEM_RELEASE);
#else
if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0)
SysPrintf("munmap() failed\n");
#endif
#endif
#endif
for(n=0;n<4096;n++)
ll_clear(jump_in+n);
for(n=0;n<4096;n++)
ll_clear(jump_out+n);
for(n=0;n<4096;n++)
ll_clear(jump_dirty+n);
#ifdef ROM_COPY
if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
#endif
}
static u_int *get_source_start(u_int addr, u_int *limit)
{
if (addr < 0x00200000 ||
(0xa0000000 <= addr && addr < 0xa0200000)) {
// used for BIOS calls mostly?
*limit = (addr&0xa0000000)|0x00200000;
return (u_int *)((u_int)rdram + (addr&0x1fffff));
}
else if (!Config.HLE && (
/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
(0xbfc00000 <= addr && addr < 0xbfc80000))) {
// BIOS
*limit = (addr & 0xfff00000) | 0x80000;
return (u_int *)((u_int)psxR + (addr&0x7ffff));
}
else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
*limit = (addr & 0x80600000) + 0x00200000;
return (u_int *)((u_int)rdram + (addr&0x1fffff));
}
return NULL;
}
static u_int scan_for_ret(u_int addr)
{
u_int limit = 0;
u_int *mem;
mem = get_source_start(addr, &limit);
if (mem == NULL)
return addr;
if (limit > addr + 0x1000)
limit = addr + 0x1000;
for (; addr < limit; addr += 4, mem++) {
if (*mem == 0x03e00008) // jr $ra
return addr + 8;
}
return addr;
}
struct savestate_block {
uint32_t addr;
uint32_t regflags;
};
static int addr_cmp(const void *p1_, const void *p2_)
{
const struct savestate_block *p1 = p1_, *p2 = p2_;
return p1->addr - p2->addr;
}
int new_dynarec_save_blocks(void *save, int size)
{
struct savestate_block *blocks = save;
int maxcount = size / sizeof(blocks[0]);
struct savestate_block tmp_blocks[1024];
struct ll_entry *head;
int p, s, d, o, bcnt;
u_int addr;
o = 0;
for (p = 0; p < sizeof(jump_in) / sizeof(jump_in[0]); p++) {
bcnt = 0;
for (head = jump_in[p]; head != NULL; head = head->next) {
tmp_blocks[bcnt].addr = head->vaddr;
tmp_blocks[bcnt].regflags = head->reg_sv_flags;
bcnt++;
}
if (bcnt < 1)
continue;
qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
addr = tmp_blocks[0].addr;
for (s = d = 0; s < bcnt; s++) {
if (tmp_blocks[s].addr < addr)
continue;
if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
tmp_blocks[d++] = tmp_blocks[s];
addr = scan_for_ret(tmp_blocks[s].addr);
}
if (o + d > maxcount)
d = maxcount - o;
memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
o += d;
}
return o * sizeof(blocks[0]);
}
void new_dynarec_load_blocks(const void *save, int size)
{
const struct savestate_block *blocks = save;
int count = size / sizeof(blocks[0]);
u_int regs_save[32];
uint32_t f;
int i, b;
get_addr(psxRegs.pc);
// change GPRs for speculation to at least partially work..
memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
for (i = 1; i < 32; i++)
psxRegs.GPR.r[i] = 0x80000000;
for (b = 0; b < count; b++) {
for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
if (f & 1)
psxRegs.GPR.r[i] = 0x1f800000;
}
get_addr(blocks[b].addr);
for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
if (f & 1)
psxRegs.GPR.r[i] = 0x80000000;
}
}
memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
}
int new_recompile_block(int addr)
{
u_int pagelimit = 0;
u_int state_rflags = 0;
int i;
assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
//printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
//printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
//if(debug)
//printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
//printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
/*if(Count>=312978186) {
rlist();
}*/
//rlist();
// this is just for speculation
for (i = 1; i < 32; i++) {
if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
state_rflags |= 1 << i;
}
start = (u_int)addr&~3;
//assert(((u_int)addr&1)==0);
new_dynarec_did_compile=1;
if (Config.HLE && start == 0x80001000) // hlecall
{
// XXX: is this enough? Maybe check hleSoftCall?
void *beginning=start_block();
u_int page=get_page(start);
invalid_code[start>>12]=0;
emit_movimm(start,0);
emit_writeword(0,(int)&pcaddr);
emit_jmp((int)new_dyna_leave);
literal_pool(0);
end_block(beginning);
ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
return 0;
}
source = get_source_start(start, &pagelimit);
if (source == NULL) {
SysPrintf("Compile at bogus memory address: %08x\n", addr);
exit(1);
}
/* Pass 1: disassemble */
/* Pass 2: register dependencies, branch targets */
/* Pass 3: register allocation */
/* Pass 4: branch dependencies */
/* Pass 5: pre-alloc */
/* Pass 6: optimize clean/dirty state */
/* Pass 7: flag 32-bit registers */
/* Pass 8: assembly */
/* Pass 9: linker */
/* Pass 10: garbage collection / free memory */
int j;
int done=0;
unsigned int type,op,op2;
//printf("addr = %x source = %x %x\n", addr,source,source[0]);
/* Pass 1 disassembly */
for(i=0;!done;i++) {
bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
minimum_free_regs[i]=0;
opcode[i]=op=source[i]>>26;
switch(op)
{
case 0x00: strcpy(insn[i],"special"); type=NI;
op2=source[i]&0x3f;
switch(op2)
{
case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
#if 0
case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
#endif
}
break;
case 0x01: strcpy(insn[i],"regimm"); type=NI;
op2=(source[i]>>16)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
}
break;
case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
case 0x10: strcpy(insn[i],"cop0"); type=NI;
op2=(source[i]>>21)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
case 0x10: strcpy(insn[i],"tlb"); type=NI;
switch(source[i]&0x3f)
{
case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
//case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
}
}
break;
case 0x11: strcpy(insn[i],"cop1"); type=NI;
op2=(source[i]>>21)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
switch((source[i]>>16)&0x3)
{
case 0x00: strcpy(insn[i],"BC1F"); break;
case 0x01: strcpy(insn[i],"BC1T"); break;
case 0x02: strcpy(insn[i],"BC1FL"); break;
case 0x03: strcpy(insn[i],"BC1TL"); break;
}
break;
case 0x10: strcpy(insn[i],"C1.S"); type=NI;
switch(source[i]&0x3f)
{
case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
}
break;
case 0x11: strcpy(insn[i],"C1.D"); type=NI;
switch(source[i]&0x3f)
{
case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
}
break;
case 0x14: strcpy(insn[i],"C1.W"); type=NI;
switch(source[i]&0x3f)
{
case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
}
break;
case 0x15: strcpy(insn[i],"C1.L"); type=NI;
switch(source[i]&0x3f)
{
case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
}
break;
}
break;
#if 0
case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
#endif
case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
#if 0
case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
#endif
case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
#if 0
case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
#endif
case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
case 0x30: strcpy(insn[i],"LL"); type=NI; break;
case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
#if 0
case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
#endif
case 0x38: strcpy(insn[i],"SC"); type=NI; break;
case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
#if 0
case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
#endif
case 0x12: strcpy(insn[i],"COP2"); type=NI;
op2=(source[i]>>21)&0x1f;
//if (op2 & 0x10) {
if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
if (gte_handlers[source[i]&0x3f]!=NULL) {
if (gte_regnames[source[i]&0x3f]!=NULL)
strcpy(insn[i],gte_regnames[source[i]&0x3f]);
else
snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
type=C2OP;
}
}
else switch(op2)
{
case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
}
break;
case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
default: strcpy(insn[i],"???"); type=NI;
SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
break;
}
itype[i]=type;
opcode2[i]=op2;
/* Get registers/immediates */
lt1[i]=0;
us1[i]=0;
us2[i]=0;
dep1[i]=0;
dep2[i]=0;
gte_rs[i]=gte_rt[i]=0;
switch(type) {
case LOAD:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
imm[i]=(short)source[i];
break;
case STORE:
case STORELR:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=0;
rt2[i]=0;
imm[i]=(short)source[i];
if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
break;
case LOADLR:
// LWL/LWR only load part of the register,
// therefore the target register must be treated as a source too
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
imm[i]=(short)source[i];
if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
if(op==0x26) dep1[i]=rt1[i]; // LWR
break;
case IMM16:
if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
else rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
imm[i]=(unsigned short)source[i];
}else{
imm[i]=(short)source[i];
}
if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
break;
case UJUMP:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
// The JAL instruction writes to r31.
if (op&1) {
rt1[i]=31;
}
rs2[i]=CCREG;
break;
case RJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
// The JALR instruction writes to rd.
if (op2&1) {
rt1[i]=(source[i]>>11)&0x1f;
}
rs2[i]=CCREG;
break;
case CJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=0;
rt2[i]=0;
if(op&2) { // BGTZ/BLEZ
rs2[i]=0;
}
us1[i]=rs1[i];
us2[i]=rs2[i];
likely[i]=op>>4;
break;
case SJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=CCREG;
rt1[i]=0;
rt2[i]=0;
us1[i]=rs1[i];
if(op2&0x10) { // BxxAL
rt1[i]=31;
// NOTE: If the branch is not taken, r31 is still overwritten
}
likely[i]=(op2&2)>>1;
break;
case FJUMP:
rs1[i]=FSREG;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
likely[i]=((source[i])>>17)&1;
break;
case ALU:
rs1[i]=(source[i]>>21)&0x1f; // source
rs2[i]=(source[i]>>16)&0x1f; // subtract amount
rt1[i]=(source[i]>>11)&0x1f; // destination
rt2[i]=0;
if(op2==0x2a||op2==0x2b) { // SLT/SLTU
us1[i]=rs1[i];us2[i]=rs2[i];
}
else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
dep1[i]=rs1[i];dep2[i]=rs2[i];
}
else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
dep1[i]=rs1[i];dep2[i]=rs2[i];
}
break;
case MULTDIV:
rs1[i]=(source[i]>>21)&0x1f; // source
rs2[i]=(source[i]>>16)&0x1f; // divisor
rt1[i]=HIREG;
rt2[i]=LOREG;
if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
us1[i]=rs1[i];us2[i]=rs2[i];
}
break;
case MOV:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2==0x10) rs1[i]=HIREG; // MFHI
if(op2==0x11) rt1[i]=HIREG; // MTHI
if(op2==0x12) rs1[i]=LOREG; // MFLO
if(op2==0x13) rt1[i]=LOREG; // MTLO
if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
dep1[i]=rs1[i];
break;
case SHIFT:
rs1[i]=(source[i]>>16)&0x1f; // target of shift
rs2[i]=(source[i]>>21)&0x1f; // shift amount
rt1[i]=(source[i]>>11)&0x1f; // destination
rt2[i]=0;
// DSLLV/DSRLV/DSRAV are 64-bit
if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
break;
case SHIFTIMM:
rs1[i]=(source[i]>>16)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>11)&0x1f;
rt2[i]=0;
imm[i]=(source[i]>>6)&0x1f;
// DSxx32 instructions
if(op2>=0x3c) imm[i]|=0x20;
// DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
break;
case COP0:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
break;
case COP1:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
if(op2==5) us1[i]=rs1[i]; // DMTC1
rs2[i]=CSREG;
break;
case COP2:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
rs2[i]=CSREG;
int gr=(source[i]>>11)&0x1F;
switch(op2)
{
case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
}
break;
case C1LS:
rs1[i]=(source[i]>>21)&0x1F;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
imm[i]=(short)source[i];
break;
case C2LS:
rs1[i]=(source[i]>>21)&0x1F;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
imm[i]=(short)source[i];
if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
break;
case C2OP:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
gte_rs[i]=gte_reg_reads[source[i]&0x3f];
gte_rt[i]=gte_reg_writes[source[i]&0x3f];
gte_rt[i]|=1ll<<63; // every op changes flags
if((source[i]&0x3f)==GTE_MVMVA) {
int v = (source[i] >> 15) & 3;
gte_rs[i]&=~0xe3fll;
if(v==3) gte_rs[i]|=0xe00ll;
else gte_rs[i]|=3ll<<(v*2);
}
break;
case FLOAT:
case FCONV:
rs1[i]=0;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
break;
case FCOMP:
rs1[i]=FSREG;
rs2[i]=CSREG;
rt1[i]=FSREG;
rt2[i]=0;
break;
case SYSCALL:
case HLECALL:
case INTCALL:
rs1[i]=CCREG;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
break;
default:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
}
/* Calculate branch target addresses */
if(type==UJUMP)
ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
ba[i]=start+i*4+8; // Ignore never taken branch
else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
ba[i]=start+i*4+8; // Ignore never taken branch
else if(type==CJUMP||type==SJUMP||type==FJUMP)
ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
else ba[i]=-1;
if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
int do_in_intrp=0;
// branch in delay slot?
if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
// don't handle first branch and call interpreter if it's hit
SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
do_in_intrp=1;
}
// basic load delay detection
else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
int t=(ba[i-1]-start)/4;
if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
// jump target wants DS result - potential load delay effect
SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
do_in_intrp=1;
bt[t+1]=1; // expected return from interpreter
}
else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
!(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
// v0 overwrite like this is a sign of trouble, bail out
SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
do_in_intrp=1;
}
}
if(do_in_intrp) {
rs1[i-1]=CCREG;
rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
ba[i-1]=-1;
itype[i-1]=INTCALL;
done=2;
i--; // don't compile the DS
}
}
/* Is this the end of the block? */
if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
done=2;
}
else {
if(stop_after_jal) done=1;
// Stop on BREAK
if((source[i+1]&0xfc00003f)==0x0d) done=1;
}
// Don't recompile stuff that's already compiled
if(check_addr(start+i*4+4)) done=1;
// Don't get too close to the limit
if(i>MAXBLOCK/2) done=1;
}
if(itype[i]==SYSCALL&&stop_after_jal) done=1;
if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
if(done==2) {
// Does the block continue due to a branch?
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
if(ba[j]==start+i*4+4) done=j=0;
if(ba[j]==start+i*4+8) done=j=0;
}
}
//assert(i<MAXBLOCK-1);
if(start+i*4==pagelimit-4) done=1;
assert(start+i*4<pagelimit);
if (i==MAXBLOCK-1) done=1;
// Stop if we're compiling junk
if(itype[i]==NI&&opcode[i]==0x11) {
done=stop_after_jal=1;
SysPrintf("Disabled speculative precompilation\n");
}
}
slen=i;
if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
if(start+i*4==pagelimit) {
itype[i-1]=SPAN;
}
}
assert(slen>0);
/* Pass 2 - Register dependencies and branch targets */
unneeded_registers(0,slen-1,0);
/* Pass 3 - Register allocation */
struct regstat current; // Current register allocations/status
current.is32=1;
current.dirty=0;
current.u=unneeded_reg[0];
current.uu=unneeded_reg_upper[0];
clear_all_regs(current.regmap);
alloc_reg(&current,0,CCREG);
dirty_reg(&current,CCREG);
current.isconst=0;
current.wasconst=0;
current.waswritten=0;
int ds=0;
int cc=0;
int hr=-1;
if((u_int)addr&1) {
// First instruction is delay slot
cc=-1;
bt[1]=1;
ds=1;
unneeded_reg[0]=1;
unneeded_reg_upper[0]=1;
current.regmap[HOST_BTREG]=BTREG;
}
for(i=0;i<slen;i++)
{
if(bt[i])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
// Is this really necessary?
if(current.regmap[hr]==0) current.regmap[hr]=-1;
}
current.isconst=0;
current.waswritten=0;
}
if(i>1)
{
if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
{
if(rs1[i-2]==0||rs2[i-2]==0)
{
if(rs1[i-2]) {
current.is32|=1LL<<rs1[i-2];
int hr=get_reg(current.regmap,rs1[i-2]|64);
if(hr>=0) current.regmap[hr]=-1;
}
if(rs2[i-2]) {
current.is32|=1LL<<rs2[i-2];
int hr=get_reg(current.regmap,rs2[i-2]|64);
if(hr>=0) current.regmap[hr]=-1;
}
}
}
}
current.is32=-1LL;
memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
regs[i].wasconst=current.isconst;
regs[i].was32=current.is32;
regs[i].wasdirty=current.dirty;
regs[i].loadedconst=0;
if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
if(i+1<slen) {
current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
} else {
current.u=1;
current.uu=1;
}
} else {
if(i+1<slen) {
current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
current.u|=1;
current.uu|=1;
} else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
}
is_ds[i]=ds;
if(ds) {
ds=0; // Skip delay slot, already allocated as part of branch
// ...but we need to alloc it in case something jumps here
if(i+1<slen) {
current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
}else{
current.u=branch_unneeded_reg[i-1];
current.uu=branch_unneeded_reg_upper[i-1];
}
current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
struct regstat temp;
memcpy(&temp,&current,sizeof(current));
temp.wasdirty=temp.dirty;
temp.was32=temp.is32;
// TODO: Take into account unconditional branches, as below
delayslot_alloc(&temp,i);
memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
regs[i].wasdirty=temp.wasdirty;
regs[i].was32=temp.was32;
regs[i].dirty=temp.dirty;
regs[i].is32=temp.is32;
regs[i].isconst=0;
regs[i].wasconst=0;
current.isconst=0;
// Create entry (branch target) regmap
for(hr=0;hr<HOST_REGS;hr++)
{
int r=temp.regmap[hr];
if(r>=0) {
if(r!=regmap_pre[i][hr]) {
regs[i].regmap_entry[hr]=-1;
}
else
{
if(r<64){
if((current.u>>r)&1) {
regs[i].regmap_entry[hr]=-1;
regs[i].regmap[hr]=-1;
//Don't clear regs in the delay slot as the branch might need them
//current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
else {
if((current.uu>>(r&63))&1) {
regs[i].regmap_entry[hr]=-1;
regs[i].regmap[hr]=-1;
//Don't clear regs in the delay slot as the branch might need them
//current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
}
} else {
// First instruction expects CCREG to be allocated
if(i==0&&hr==HOST_CCREG)
regs[i].regmap_entry[hr]=CCREG;
else
regs[i].regmap_entry[hr]=-1;
}
}
}
else { // Not delay slot
switch(itype[i]) {
case UJUMP:
//current.isconst=0; // DEBUG
//current.wasconst=0; // DEBUG
//regs[i].wasconst=0; // DEBUG
clear_const(&current,rt1[i]);
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if (rt1[i]==31) {
alloc_reg(&current,i,31);
dirty_reg(&current,31);
//assert(rs1[i+1]!=31&&rs2[i+1]!=31);
//assert(rt1[i+1]!=rt1[i]);
#ifdef REG_PREFETCH
alloc_reg(&current,i,PTEMP);
#endif
//current.is32|=1LL<<rt1[i];
}
ooo[i]=1;
delayslot_alloc(&current,i+1);
//current.isconst=0; // DEBUG
ds=1;
//printf("i=%d, isconst=%x\n",i,current.isconst);
break;
case RJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rt1[i]);
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
alloc_reg(&current,i,rs1[i]);
if (rt1[i]!=0) {
alloc_reg(&current,i,rt1[i]);
dirty_reg(&current,rt1[i]);
assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
assert(rt1[i+1]!=rt1[i]);
#ifdef REG_PREFETCH
alloc_reg(&current,i,PTEMP);
#endif
}
#ifdef USE_MINI_HT
if(rs1[i]==31) { // JALR
alloc_reg(&current,i,RHASH);
#ifndef HOST_IMM_ADDR32
alloc_reg(&current,i,RHTBL);
#endif
}
#endif
delayslot_alloc(&current,i+1);
} else {
// The delay slot overwrites our source register,
// allocate a temporary register to hold the old value.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
delayslot_alloc(&current,i+1);
current.isconst=0;
alloc_reg(&current,i,RTEMP);
}
//current.isconst=0; // DEBUG
ooo[i]=1;
ds=1;
break;
case CJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rs2[i]);
if((opcode[i]&0x3E)==4) // BEQ/BNE
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(rs2[i]) alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
}
if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
(rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
// The delay slot overwrites one of our conditions.
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(rs2[i]) alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
// The delay slot overwrites one of our conditions.
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(!((current.is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
alloc_reg64(&current,i,rs1[i]);
alloc_reg64(&current,i,rs2[i]);
}
}
else
if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
}
ds=1;
//current.isconst=0;
break;
case SJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rt1[i]);
//if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
if (rt1[i]==31) { // BLTZAL/BGEZAL
alloc_reg(&current,i,31);
dirty_reg(&current,31);
//#ifdef REG_PREFETCH
//alloc_reg(&current,i,PTEMP);
//#endif
//current.is32|=1LL<<rt1[i];
}
if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(!((current.is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
}
ds=1;
//current.isconst=0;
break;
case FJUMP:
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(likely[i]==0) // BC1F/BC1T
{
// TODO: Theoretically we can run out of registers here on x86.
// The delay slot can allocate up to six, and we need to check
// CSREG before executing the delay slot. Possibly we can drop
// the cycle count and then reload it after checking that the
// FPU is in a usable state, or don't do out-of-order execution.
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,FSREG);
alloc_reg(&current,i,CSREG);
if(itype[i+1]==FCOMP) {
// The delay slot overwrites the branch condition.
// Allocate the branch condition registers instead.
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,CSREG);
alloc_reg(&current,i,FSREG);
}
else {
ooo[i]=1;
delayslot_alloc(&current,i+1);
alloc_reg(&current,i+1,CSREG);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if(likely[i]) // BC1FL/BC1TL
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,CSREG);
alloc_reg(&current,i,FSREG);
}
ds=1;
current.isconst=0;
break;
case IMM16:
imm16_alloc(&current,i);
break;
case LOAD:
case LOADLR:
load_alloc(&current,i);
break;
case STORE:
case STORELR:
store_alloc(&current,i);
break;
case ALU:
alu_alloc(&current,i);
break;
case SHIFT:
shift_alloc(&current,i);
break;
case MULTDIV:
multdiv_alloc(&current,i);
break;
case SHIFTIMM:
shiftimm_alloc(&current,i);
break;
case MOV:
mov_alloc(&current,i);
break;
case COP0:
cop0_alloc(&current,i);
break;
case COP1:
case COP2:
cop1_alloc(&current,i);
break;
case C1LS:
c1ls_alloc(&current,i);
break;
case C2LS:
c2ls_alloc(&current,i);
break;
case C2OP:
c2op_alloc(&current,i);
break;
case FCONV:
fconv_alloc(&current,i);
break;
case FLOAT:
float_alloc(&current,i);
break;
case FCOMP:
fcomp_alloc(&current,i);
break;
case SYSCALL:
case HLECALL:
case INTCALL:
syscall_alloc(&current,i);
break;
case SPAN:
pagespan_alloc(&current,i);
break;
}
// Drop the upper half of registers that have become 32-bit
current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.uu|=1;
} else {
current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
current.uu|=1;
}
// Create entry (branch target) regmap
for(hr=0;hr<HOST_REGS;hr++)
{
int r,or;
r=current.regmap[hr];
if(r>=0) {
if(r!=regmap_pre[i][hr]) {
// TODO: delay slot (?)
or=get_reg(regmap_pre[i],r); // Get old mapping for this register
if(or<0||(r&63)>=TEMPREG){
regs[i].regmap_entry[hr]=-1;
}
else
{
// Just move it to a different register
regs[i].regmap_entry[hr]=r;
// If it was dirty before, it's still dirty
if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
}
}
else
{
// Unneeded
if(r==0){
regs[i].regmap_entry[hr]=0;
}
else
if(r<64){
if((current.u>>r)&1) {
regs[i].regmap_entry[hr]=-1;
//regs[i].regmap[hr]=-1;
current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
else {
if((current.uu>>(r&63))&1) {
regs[i].regmap_entry[hr]=-1;
//regs[i].regmap[hr]=-1;
current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
}
} else {
// Branches expect CCREG to be allocated at the target
if(regmap_pre[i][hr]==CCREG)
regs[i].regmap_entry[hr]=CCREG;
else
regs[i].regmap_entry[hr]=-1;
}
}
memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
}
if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
current.waswritten|=1<<rs1[i-1];
current.waswritten&=~(1<<rt1[i]);
current.waswritten&=~(1<<rt2[i]);
if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
current.waswritten&=~(1<<rs1[i]);
/* Branch post-alloc */
if(i>0)
{
current.was32=current.is32;
current.wasdirty=current.dirty;
switch(itype[i-1]) {
case UJUMP:
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
alloc_cc(&branch_regs[i-1],i-1);
dirty_reg(&branch_regs[i-1],CCREG);
if(rt1[i-1]==31) { // JAL
alloc_reg(&branch_regs[i-1],i-1,31);
dirty_reg(&branch_regs[i-1],31);
branch_regs[i-1].is32|=1LL<<31;
}
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
break;
case RJUMP:
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
alloc_cc(&branch_regs[i-1],i-1);
dirty_reg(&branch_regs[i-1],CCREG);
alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
if(rt1[i-1]!=0) { // JALR
alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
dirty_reg(&branch_regs[i-1],rt1[i-1]);
branch_regs[i-1].is32|=1LL<<rt1[i-1];
}
#ifdef USE_MINI_HT
if(rs1[i-1]==31) { // JALR
alloc_reg(&branch_regs[i-1],i-1,RHASH);
#ifndef HOST_IMM_ADDR32
alloc_reg(&branch_regs[i-1],i-1,RHTBL);
#endif
}
#endif
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
break;
case CJUMP:
if((opcode[i-1]&0x3E)==4) // BEQ/BNE
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
(rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
// The delay slot overwrote one of our conditions
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
// Alloc the branch condition registers
if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
{
if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
}
else
if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,rs1[i-1]);
if(!(current.is32>>rs1[i-1]&1))
{
alloc_reg64(&current,i-1,rs1[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
}
else
// Alloc the delay slot in case the branch is taken
if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
else
if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
break;
case SJUMP:
//if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,rs1[i-1]);
if(!(current.is32>>rs1[i-1]&1))
{
alloc_reg64(&current,i-1,rs1[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
}
else
// Alloc the delay slot in case the branch is taken
if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
// FIXME: BLTZAL/BGEZAL
if(opcode2[i-1]&0x10) { // BxxZAL
alloc_reg(&branch_regs[i-1],i-1,31);
dirty_reg(&branch_regs[i-1],31);
branch_regs[i-1].is32|=1LL<<31;
}
break;
case FJUMP:
if(likely[i-1]==0) // BC1F/BC1T
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(itype[i]==FCOMP) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,FSREG);
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
}
else // BC1FL/BC1TL
{
// Alloc the delay slot in case the branch is taken
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
break;
}
if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
{
if(rt1[i-1]==31) // JAL/JALR
{
// Subroutine call will return here, don't alloc any registers
current.is32=1;
current.dirty=0;
clear_all_regs(current.regmap);
alloc_reg(&current,i,CCREG);
dirty_reg(&current,CCREG);
}
else if(i+1<slen)
{
// Internal branch will jump here, match registers to caller
current.is32=0x3FFFFFFFFLL;
current.dirty=0;
clear_all_regs(current.regmap);
alloc_reg(&current,i,CCREG);
dirty_reg(&current,CCREG);
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4+4) {
memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
current.is32=branch_regs[j].is32;
current.dirty=branch_regs[j].dirty;
break;
}
}
while(j>=0) {
if(ba[j]==start+i*4+4) {
for(hr=0;hr<HOST_REGS;hr++) {
if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
current.regmap[hr]=-1;
}
current.is32&=branch_regs[j].is32;
current.dirty&=branch_regs[j].dirty;
}
}
j--;
}
}
}
}
// Count cycles in between branches
ccadj[i]=cc;
if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
{
cc=0;
}
#if !defined(DRC_DBG)
else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
{
// GTE runs in parallel until accessed, divide by 2 for a rough guess
cc+=gte_cycletab[source[i]&0x3f]/2;
}
else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
{
cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
}
else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
{
cc+=4;
}
else if(itype[i]==C2LS)
{
cc+=4;
}
#endif
else
{
cc++;
}
flush_dirty_uppers(&current);
if(!is_ds[i]) {
regs[i].is32=current.is32;
regs[i].dirty=current.dirty;
regs[i].isconst=current.isconst;
memcpy(constmap[i],current_constmap,sizeof(current_constmap));
}
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
regs[i].wasconst&=~(1<<hr);
}
}
}
if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
regs[i].waswritten=current.waswritten;
}
/* Pass 4 - Cull unused host registers */
uint64_t nr=0;
for (i=slen-1;i>=0;i--)
{
int hr;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, don't need anything
nr=0;
}
else
{
// Internal branch
// Need whatever matches the target
nr=0;
int t=(ba[i]-start)>>2;
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap_entry[hr]>=0) {
if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
}
}
}
// Conditional branch may need registers for following instructions
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(i<slen-2) {
nr|=needed_reg[i+2];
for(hr=0;hr<HOST_REGS;hr++)
{
if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
//if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
}
}
}
// Don't need stuff which is overwritten
//if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
//if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
// Merge in delay slot
for(hr=0;hr<HOST_REGS;hr++)
{
if(!likely[i]) {
// These are overwritten unless the branch is "likely"
// and the delay slot is nullified if not taken
if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
}
if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
}
if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
}
if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
}
}
}
else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
{
// SYSCALL instruction (software interrupt)
nr=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
nr=0;
}
else // Non-branch
{
if(i<slen-1) {
for(hr=0;hr<HOST_REGS;hr++) {
if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
}
}
}
for(hr=0;hr<HOST_REGS;hr++)
{
// Overwritten registers are not needed
if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
// Source registers are needed
if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
}
if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
}
if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
}
// Don't store a register immediately after writing it,
// may prevent dual-issue.
// But do so if this is a branch target, otherwise we
// might have to load the register before the branch.
if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
(regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
}
if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
(regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
}
}
}
// Cycle count is needed at branches. Assume it is needed at the target too.
if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
}
// Save it
needed_reg[i]=nr;
// Deallocate unneeded registers
for(hr=0;hr<HOST_REGS;hr++)
{
if(!((nr>>hr)&1)) {
if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
{
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(likely[i]) {
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
if(i<slen-2) {
regmap_pre[i+2][hr]=-1;
regs[i+2].wasconst&=~(1<<hr);
}
}
}
}
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
int d1=0,d2=0,map=0,temp=0;
if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
{
d1=dep1[i+1];
d2=dep2[i+1];
}
if(itype[i+1]==STORE || itype[i+1]==STORELR ||
(opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
map=INVCP;
}
if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
itype[i+1]==C1LS || itype[i+1]==C2LS)
temp=FTEMP;
if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
(regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
(regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
(regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
regs[i].regmap[hr]!=map )
{
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
(branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
(branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
(branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
(branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
(branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
branch_regs[i].regmap[hr]!=map)
{
branch_regs[i].regmap[hr]=-1;
branch_regs[i].regmap_entry[hr]=-1;
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(!likely[i]&&i<slen-2) {
regmap_pre[i+2][hr]=-1;
regs[i+2].wasconst&=~(1<<hr);
}
}
}
}
}
else
{
// Non-branch
if(i>0)
{
int d1=0,d2=0,map=-1,temp=-1;
if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
{
d1=dep1[i];
d2=dep2[i];
}
if(itype[i]==STORE || itype[i]==STORELR ||
(opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
map=INVCP;
}
if(itype[i]==LOADLR || itype[i]==STORELR ||
itype[i]==C1LS || itype[i]==C2LS)
temp=FTEMP;
if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
(regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
(regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
(itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
{
if(i<slen-1&&!is_ds[i]) {
if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
{
SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
}
regmap_pre[i+1][hr]=-1;
if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
regs[i+1].wasconst&=~(1<<hr);
}
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
}
}
}
}
}
}
/* Pass 5 - Pre-allocate registers */
// If a register is allocated during a loop, try to allocate it for the
// entire loop, if possible. This avoids loading/storing registers
// inside of the loop.
signed char f_regmap[HOST_REGS];
clear_all_regs(f_regmap);
for(i=0;i<slen-1;i++)
{
if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]>=start && ba[i]<(start+i*4))
if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
||itype[i+1]==FCOMP||itype[i+1]==FCONV
||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
{
int t=(ba[i]-start)>>2;
if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap[hr]>64) {
if(!((regs[i].dirty>>hr)&1))
f_regmap[hr]=regs[i].regmap[hr];
else f_regmap[hr]=-1;
}
else if(regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=regs[i].regmap[hr];
}
}
if(branch_regs[i].regmap[hr]>64) {
if(!((branch_regs[i].dirty>>hr)&1))
f_regmap[hr]=branch_regs[i].regmap[hr];
else f_regmap[hr]=-1;
}
else if(branch_regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=branch_regs[i].regmap[hr];
}
}
if(ooo[i]) {
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
f_regmap[hr]=branch_regs[i].regmap[hr];
}else{
if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
f_regmap[hr]=branch_regs[i].regmap[hr];
}
// Avoid dirty->clean transition
#ifdef DESTRUCTIVE_WRITEBACK
if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
#endif
// This check is only strictly required in the DESTRUCTIVE_WRITEBACK
// case above, however it's always a good idea. We can't hoist the
// load if the register was already allocated, so there's no point
// wasting time analyzing most of these cases. It only "succeeds"
// when the mapping was different and the load can be replaced with
// a mov, which is of negligible benefit. So such cases are
// skipped below.
if(f_regmap[hr]>0) {
if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
int r=f_regmap[hr];
for(j=t;j<=i;j++)
{
//printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
if(r<34&&((unneeded_reg[j]>>r)&1)) break;
if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
if(r>63) {
// NB This can exclude the case where the upper-half
// register is lower numbered than the lower-half
// register. Not sure if it's worth fixing...
if(get_reg(regs[j].regmap,r&63)<0) break;
if(get_reg(regs[j].regmap_entry,r&63)<0) break;
if(regs[j].is32&(1LL<<(r&63))) break;
}
if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
//printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
int k;
if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
if(r>63) {
if(get_reg(regs[i].regmap,r&63)<0) break;
if(get_reg(branch_regs[i].regmap,r&63)<0) break;
}
k=i;
while(k>1&&regs[k-1].regmap[hr]==-1) {
if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
//printf("no free regs for store %x\n",start+(k-1)*4);
break;
}
if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
//printf("no-match due to different register\n");
break;
}
if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
//printf("no-match due to branch\n");
break;
}
// call/ret fast path assumes no registers allocated
if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
break;
}
if(r>63) {
// NB This can exclude the case where the upper-half
// register is lower numbered than the lower-half
// register. Not sure if it's worth fixing...
if(get_reg(regs[k-1].regmap,r&63)<0) break;
if(regs[k-1].is32&(1LL<<(r&63))) break;
}
k--;
}
if(i<slen-1) {
if((regs[k].is32&(1LL<<f_regmap[hr]))!=
(regs[i+2].was32&(1LL<<f_regmap[hr]))) {
//printf("bad match after branch\n");
break;
}
}
if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
//printf("Extend r%d, %x ->\n",hr,start+k*4);
while(k<i) {
regs[k].regmap_entry[hr]=f_regmap[hr];
regs[k].regmap[hr]=f_regmap[hr];
regmap_pre[k+1][hr]=f_regmap[hr];
regs[k].wasdirty&=~(1<<hr);
regs[k].dirty&=~(1<<hr);
regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
regs[k].wasconst&=~(1<<hr);
regs[k].isconst&=~(1<<hr);
k++;
}
}
else {
//printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
break;
}
assert(regs[i-1].regmap[hr]==f_regmap[hr]);
if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
//printf("OK fill %x (r%d)\n",start+i*4,hr);
regs[i].regmap_entry[hr]=f_regmap[hr];
regs[i].regmap[hr]=f_regmap[hr];
regs[i].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
regs[i].wasconst&=~(1<<hr);
regs[i].isconst&=~(1<<hr);
branch_regs[i].regmap_entry[hr]=f_regmap[hr];
branch_regs[i].wasdirty&=~(1<<hr);
branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
branch_regs[i].regmap[hr]=f_regmap[hr];
branch_regs[i].dirty&=~(1<<hr);
branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
branch_regs[i].wasconst&=~(1<<hr);
branch_regs[i].isconst&=~(1<<hr);
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
regmap_pre[i+2][hr]=f_regmap[hr];
regs[i+2].wasdirty&=~(1<<hr);
regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
(regs[i+2].was32&(1LL<<f_regmap[hr])));
}
}
}
for(k=t;k<j;k++) {
// Alloc register clean at beginning of loop,
// but may dirty it in pass 6
regs[k].regmap_entry[hr]=f_regmap[hr];
regs[k].regmap[hr]=f_regmap[hr];
regs[k].dirty&=~(1<<hr);
regs[k].wasconst&=~(1<<hr);
regs[k].isconst&=~(1<<hr);
if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
branch_regs[k].regmap_entry[hr]=f_regmap[hr];
branch_regs[k].regmap[hr]=f_regmap[hr];
branch_regs[k].dirty&=~(1<<hr);
branch_regs[k].wasconst&=~(1<<hr);
branch_regs[k].isconst&=~(1<<hr);
if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
regmap_pre[k+2][hr]=f_regmap[hr];
regs[k+2].wasdirty&=~(1<<hr);
assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
(regs[k+2].was32&(1LL<<f_regmap[hr])));
}
}
else
{
regmap_pre[k+1][hr]=f_regmap[hr];
regs[k+1].wasdirty&=~(1<<hr);
}
}
if(regs[j].regmap[hr]==f_regmap[hr])
regs[j].regmap_entry[hr]=f_regmap[hr];
break;
}
if(j==i) break;
if(regs[j].regmap[hr]>=0)
break;
if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
//printf("no-match due to different register\n");
break;
}
if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
//printf("32/64 mismatch %x %d\n",start+j*4,hr);
break;
}
if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
{
// Stop on unconditional branch
break;
}
if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
{
if(ooo[j]) {
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
break;
}else{
if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
break;
}
if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
//printf("no-match due to different register (branch)\n");
break;
}
}
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
//printf("No free regs for store %x\n",start+j*4);
break;
}
if(f_regmap[hr]>=64) {
if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
break;
}
else
{
if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
break;
}
}
}
}
}
}
}
}
}else{
// Non branch or undetermined branch target
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG) {
if(regs[i].regmap[hr]>64) {
if(!((regs[i].dirty>>hr)&1))
f_regmap[hr]=regs[i].regmap[hr];
}
else if(regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=regs[i].regmap[hr];
}
}
}
}
// Try to restore cycle count at branch targets
if(bt[i]) {
for(j=i;j<slen-1;j++) {
if(regs[j].regmap[HOST_CCREG]!=-1) break;
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
//printf("no free regs for store %x\n",start+j*4);
break;
}
}
if(regs[j].regmap[HOST_CCREG]==CCREG) {
int k=i;
//printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
while(k<j) {
regs[k].regmap_entry[HOST_CCREG]=CCREG;
regs[k].regmap[HOST_CCREG]=CCREG;
regmap_pre[k+1][HOST_CCREG]=CCREG;
regs[k+1].wasdirty|=1<<HOST_CCREG;
regs[k].dirty|=1<<HOST_CCREG;
regs[k].wasconst&=~(1<<HOST_CCREG);
regs[k].isconst&=~(1<<HOST_CCREG);
k++;
}
regs[j].regmap_entry[HOST_CCREG]=CCREG;
}
// Work backwards from the branch target
if(j>i&&f_regmap[HOST_CCREG]==CCREG)
{
//printf("Extend backwards\n");
int k;
k=i;
while(regs[k-1].regmap[HOST_CCREG]==-1) {
if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
//printf("no free regs for store %x\n",start+(k-1)*4);
break;
}
k--;
}
if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
//printf("Extend CC, %x ->\n",start+k*4);
while(k<=i) {
regs[k].regmap_entry[HOST_CCREG]=CCREG;
regs[k].regmap[HOST_CCREG]=CCREG;
regmap_pre[k+1][HOST_CCREG]=CCREG;
regs[k+1].wasdirty|=1<<HOST_CCREG;
regs[k].dirty|=1<<HOST_CCREG;
regs[k].wasconst&=~(1<<HOST_CCREG);
regs[k].isconst&=~(1<<HOST_CCREG);
k++;
}
}
else {
//printf("Fail Extend CC, %x ->\n",start+k*4);
}
}
}
if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
itype[i]!=FCONV&&itype[i]!=FCOMP)
{
memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
}
}
}
// Cache memory offset or tlb map pointer if a register is available
#ifndef HOST_IMM_ADDR32
#ifndef RAM_OFFSET
if(0)
#endif
{
int earliest_available[HOST_REGS];
int loop_start[HOST_REGS];
int score[HOST_REGS];
int end[HOST_REGS];
int reg=ROREG;
// Init
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=0;
loop_start[hr]=MAXBLOCK;
}
for(i=0;i<slen-1;i++)
{
// Can't do anything if no registers are available
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
if(!ooo[i]) {
if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
}else{
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
}
}
// Mark unavailable registers
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[i].regmap[hr]>=0) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
if(branch_regs[i].regmap[hr]>=0) {
score[hr]=0;earliest_available[hr]=i+2;
loop_start[hr]=MAXBLOCK;
}
}
}
// No register allocations after unconditional jumps
if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
{
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+2;
loop_start[hr]=MAXBLOCK;
}
i++; // Skip delay slot too
//printf("skip delay slot: %x\n",start+i*4);
}
else
// Possible match
if(itype[i]==LOAD||itype[i]==LOADLR||
itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
end[hr]=i-1;
for(j=i;j<slen-1;j++) {
if(regs[j].regmap[hr]>=0) break;
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
if(branch_regs[j].regmap[hr]>=0) break;
if(ooo[j]) {
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
}else{
if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
}
}
else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
int t=(ba[j]-start)>>2;
if(t<j&&t>=earliest_available[hr]) {
if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
// Score a point for hoisting loop invariant
if(t<loop_start[hr]) loop_start[hr]=t;
//printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
score[hr]++;
end[hr]=j;
}
}
else if(t<j) {
if(regs[t].regmap[hr]==reg) {
// Score a point if the branch target matches this register
score[hr]++;
end[hr]=j;
}
}
if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
score[hr]++;
end[hr]=j;
}
}
if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
{
// Stop on unconditional branch
break;
}
else
if(itype[j]==LOAD||itype[j]==LOADLR||
itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
score[hr]++;
end[hr]=j;
}
}
}
}
// Find highest score and allocate that register
int maxscore=0;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(score[hr]>score[maxscore]) {
maxscore=hr;
//printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
}
}
}
if(score[maxscore]>1)
{
if(i<loop_start[maxscore]) loop_start[maxscore]=i;
for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
//if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
assert(regs[j].regmap[maxscore]<0);
if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
regs[j].regmap[maxscore]=reg;
regs[j].dirty&=~(1<<maxscore);
regs[j].wasconst&=~(1<<maxscore);
regs[j].isconst&=~(1<<maxscore);
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
branch_regs[j].regmap[maxscore]=reg;
branch_regs[j].wasdirty&=~(1<<maxscore);
branch_regs[j].dirty&=~(1<<maxscore);
branch_regs[j].wasconst&=~(1<<maxscore);
branch_regs[j].isconst&=~(1<<maxscore);
if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
regmap_pre[j+2][maxscore]=reg;
regs[j+2].wasdirty&=~(1<<maxscore);
}
// loop optimization (loop_preload)
int t=(ba[j]-start)>>2;
if(t==loop_start[maxscore]) {
if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
regs[t].regmap_entry[maxscore]=reg;
}
}
else
{
if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
regmap_pre[j+1][maxscore]=reg;
regs[j+1].wasdirty&=~(1<<maxscore);
}
}
}
i=j-1;
if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+i;
loop_start[hr]=MAXBLOCK;
}
}
}
}
}
#endif
// This allocates registers (if possible) one instruction prior
// to use, which can avoid a load-use penalty on certain CPUs.
for(i=0;i<slen-1;i++)
{
if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
{
if(!bt[i+1])
{
if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
{
if(rs1[i+1]) {
if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=regs[i+1].regmap[hr];
regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
if(rs2[i+1]) {
if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=regs[i+1].regmap[hr];
regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Preload target address for load instruction (non-constant)
if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Load source into target register
if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Address for store instruction (non-constant)
if(itype[i+1]==STORE||itype[i+1]==STORELR
||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
assert(hr>=0);
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
int nr;
hr=get_reg(regs[i+1].regmap,FTEMP);
assert(hr>=0);
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
{
// move it to another register
regs[i+1].regmap[hr]=-1;
regmap_pre[i+2][hr]=-1;
regs[i+1].regmap[nr]=FTEMP;
regmap_pre[i+2][nr]=FTEMP;
regs[i].regmap[nr]=rs1[i+1];
regmap_pre[i+1][nr]=rs1[i+1];
regs[i+1].regmap_entry[nr]=rs1[i+1];
regs[i].isconst&=~(1<<nr);
regs[i+1].isconst&=~(1<<nr);
regs[i].dirty&=~(1<<nr);
regs[i+1].wasdirty&=~(1<<nr);
regs[i+1].dirty&=~(1<<nr);
regs[i+2].wasdirty&=~(1<<nr);
}
}
}
if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
if(itype[i+1]==LOAD)
hr=get_reg(regs[i+1].regmap,rt1[i+1]);
if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
hr=get_reg(regs[i+1].regmap,FTEMP);
if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
}
if(hr>=0&&regs[i].regmap[hr]<0) {
int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
regs[i].regmap[hr]=AGEN1+((i+1)&1);
regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
regs[i].isconst&=~(1<<hr);
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
}
}
}
}
/* Pass 6 - Optimize clean/dirty state */
clean_registers(0,slen-1,1);
/* Pass 7 - Identify 32-bit registers */
for (i=slen-1;i>=0;i--)
{
if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
// Conditional branch
if((source[i]>>16)!=0x1000&&i<slen-2) {
// Mark this address as a branch target since it may be called
// upon return from interrupt
bt[i+2]=1;
}
}
}
if(itype[slen-1]==SPAN) {
bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
}
#ifdef DISASM
/* Debug/disassembly */
for(i=0;i<slen;i++)
{
printf("U:");
int r;
for(r=1;r<=CCREG;r++) {
if((unneeded_reg[i]>>r)&1) {
if(r==HIREG) printf(" HI");
else if(r==LOREG) printf(" LO");
else printf(" r%d",r);
}
}
printf("\n");
#if defined(__i386__) || defined(__x86_64__)
printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
#endif
#ifdef __arm__
printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
#endif
printf("needs: ");
if(needed_reg[i]&1) printf("eax ");
if((needed_reg[i]>>1)&1) printf("ecx ");
if((needed_reg[i]>>2)&1) printf("edx ");
if((needed_reg[i]>>3)&1) printf("ebx ");
if((needed_reg[i]>>5)&1) printf("ebp ");
if((needed_reg[i]>>6)&1) printf("esi ");
if((needed_reg[i]>>7)&1) printf("edi ");
printf("\n");
#if defined(__i386__) || defined(__x86_64__)
printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
printf("dirty: ");
if(regs[i].wasdirty&1) printf("eax ");
if((regs[i].wasdirty>>1)&1) printf("ecx ");
if((regs[i].wasdirty>>2)&1) printf("edx ");
if((regs[i].wasdirty>>3)&1) printf("ebx ");
if((regs[i].wasdirty>>5)&1) printf("ebp ");
if((regs[i].wasdirty>>6)&1) printf("esi ");
if((regs[i].wasdirty>>7)&1) printf("edi ");
#endif
#ifdef __arm__
printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
printf("dirty: ");
if(regs[i].wasdirty&1) printf("r0 ");
if((regs[i].wasdirty>>1)&1) printf("r1 ");
if((regs[i].wasdirty>>2)&1) printf("r2 ");
if((regs[i].wasdirty>>3)&1) printf("r3 ");
if((regs[i].wasdirty>>4)&1) printf("r4 ");
if((regs[i].wasdirty>>5)&1) printf("r5 ");
if((regs[i].wasdirty>>6)&1) printf("r6 ");
if((regs[i].wasdirty>>7)&1) printf("r7 ");
if((regs[i].wasdirty>>8)&1) printf("r8 ");
if((regs[i].wasdirty>>9)&1) printf("r9 ");
if((regs[i].wasdirty>>10)&1) printf("r10 ");
if((regs[i].wasdirty>>12)&1) printf("r12 ");
#endif
printf("\n");
disassemble_inst(i);
//printf ("ccadj[%d] = %d\n",i,ccadj[i]);
#if defined(__i386__) || defined(__x86_64__)
printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
if(regs[i].dirty&1) printf("eax ");
if((regs[i].dirty>>1)&1) printf("ecx ");
if((regs[i].dirty>>2)&1) printf("edx ");
if((regs[i].dirty>>3)&1) printf("ebx ");
if((regs[i].dirty>>5)&1) printf("ebp ");
if((regs[i].dirty>>6)&1) printf("esi ");
if((regs[i].dirty>>7)&1) printf("edi ");
#endif
#ifdef __arm__
printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
if(regs[i].dirty&1) printf("r0 ");
if((regs[i].dirty>>1)&1) printf("r1 ");
if((regs[i].dirty>>2)&1) printf("r2 ");
if((regs[i].dirty>>3)&1) printf("r3 ");
if((regs[i].dirty>>4)&1) printf("r4 ");
if((regs[i].dirty>>5)&1) printf("r5 ");
if((regs[i].dirty>>6)&1) printf("r6 ");
if((regs[i].dirty>>7)&1) printf("r7 ");
if((regs[i].dirty>>8)&1) printf("r8 ");
if((regs[i].dirty>>9)&1) printf("r9 ");
if((regs[i].dirty>>10)&1) printf("r10 ");
if((regs[i].dirty>>12)&1) printf("r12 ");
#endif
printf("\n");
if(regs[i].isconst) {
printf("constants: ");
#if defined(__i386__) || defined(__x86_64__)
if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
#endif
#ifdef __arm__
if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
#endif
printf("\n");
}
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
#if defined(__i386__) || defined(__x86_64__)
printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(branch_regs[i].dirty&1) printf("eax ");
if((branch_regs[i].dirty>>1)&1) printf("ecx ");
if((branch_regs[i].dirty>>2)&1) printf("edx ");
if((branch_regs[i].dirty>>3)&1) printf("ebx ");
if((branch_regs[i].dirty>>5)&1) printf("ebp ");
if((branch_regs[i].dirty>>6)&1) printf("esi ");
if((branch_regs[i].dirty>>7)&1) printf("edi ");
#endif
#ifdef __arm__
printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
if(branch_regs[i].dirty&1) printf("r0 ");
if((branch_regs[i].dirty>>1)&1) printf("r1 ");
if((branch_regs[i].dirty>>2)&1) printf("r2 ");
if((branch_regs[i].dirty>>3)&1) printf("r3 ");
if((branch_regs[i].dirty>>4)&1) printf("r4 ");
if((branch_regs[i].dirty>>5)&1) printf("r5 ");
if((branch_regs[i].dirty>>6)&1) printf("r6 ");
if((branch_regs[i].dirty>>7)&1) printf("r7 ");
if((branch_regs[i].dirty>>8)&1) printf("r8 ");
if((branch_regs[i].dirty>>9)&1) printf("r9 ");
if((branch_regs[i].dirty>>10)&1) printf("r10 ");
if((branch_regs[i].dirty>>12)&1) printf("r12 ");
#endif
}
}
#endif // DISASM
/* Pass 8 - Assembly */
linkcount=0;stubcount=0;
ds=0;is_delayslot=0;
cop1_usable=0;
uint64_t is32_pre=0;
u_int dirty_pre=0;
void *beginning=start_block();
if((u_int)addr&1) {
ds=1;
pagespan_ds();
}
u_int instr_addr0_override=0;
if (start == 0x80030000) {
// nasty hack for fastbios thing
// override block entry to this code
instr_addr0_override=(u_int)out;
emit_movimm(start,0);
// abuse io address var as a flag that we
// have already returned here once
emit_readword((int)&address,1);
emit_writeword(0,(int)&pcaddr);
emit_writeword(0,(int)&address);
emit_cmp(0,1);
emit_jne((int)new_dyna_leave);
}
for(i=0;i<slen;i++)
{
//if(ds) printf("ds: ");
disassemble_inst(i);
if(ds) {
ds=0; // Skip delay slot
if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
instr_addr[i]=0;
} else {
speculate_register_values(i);
#ifndef DESTRUCTIVE_WRITEBACK
if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
{
wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
unneeded_reg[i],unneeded_reg_upper[i]);
}
if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
is32_pre=branch_regs[i].is32;
dirty_pre=branch_regs[i].dirty;
}else{
is32_pre=regs[i].is32;
dirty_pre=regs[i].dirty;
}
#endif
// write back
if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
{
wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
unneeded_reg[i],unneeded_reg_upper[i]);
loop_preload(regmap_pre[i],regs[i].regmap_entry);
}
// branch target entry point
instr_addr[i]=(u_int)out;
assem_debug("<->\n");
// load regs
if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
address_generation(i,&regs[i],regs[i].regmap_entry);
load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
// Load the delay slot registers if necessary
if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
}
else if(i+1<slen)
{
// Preload registers for following instruction
if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
}
// TODO: if(is_ooo(i)) address_generation(i+1);
if(itype[i]==CJUMP||itype[i]==FJUMP)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
if(bt[i]) cop1_usable=0;
// assemble
switch(itype[i]) {
case ALU:
alu_assemble(i,&regs[i]);break;
case IMM16:
imm16_assemble(i,&regs[i]);break;
case SHIFT:
shift_assemble(i,&regs[i]);break;
case SHIFTIMM:
shiftimm_assemble(i,&regs[i]);break;
case LOAD:
load_assemble(i,&regs[i]);break;
case LOADLR:
loadlr_assemble(i,&regs[i]);break;
case STORE:
store_assemble(i,&regs[i]);break;
case STORELR:
storelr_assemble(i,&regs[i]);break;
case COP0:
cop0_assemble(i,&regs[i]);break;
case COP1:
cop1_assemble(i,&regs[i]);break;
case C1LS:
c1ls_assemble(i,&regs[i]);break;
case COP2:
cop2_assemble(i,&regs[i]);break;
case C2LS:
c2ls_assemble(i,&regs[i]);break;
case C2OP:
c2op_assemble(i,&regs[i]);break;
case FCONV:
fconv_assemble(i,&regs[i]);break;
case FLOAT:
float_assemble(i,&regs[i]);break;
case FCOMP:
fcomp_assemble(i,&regs[i]);break;
case MULTDIV:
multdiv_assemble(i,&regs[i]);break;
case MOV:
mov_assemble(i,&regs[i]);break;
case SYSCALL:
syscall_assemble(i,&regs[i]);break;
case HLECALL:
hlecall_assemble(i,&regs[i]);break;
case INTCALL:
intcall_assemble(i,&regs[i]);break;
case UJUMP:
ujump_assemble(i,&regs[i]);ds=1;break;
case RJUMP:
rjump_assemble(i,&regs[i]);ds=1;break;
case CJUMP:
cjump_assemble(i,&regs[i]);ds=1;break;
case SJUMP:
sjump_assemble(i,&regs[i]);ds=1;break;
case FJUMP:
fjump_assemble(i,&regs[i]);ds=1;break;
case SPAN:
pagespan_assemble(i,&regs[i]);break;
}
if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
literal_pool(1024);
else
literal_pool_jumpover(256);
}
}
//assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
// If the block did not end with an unconditional branch,
// add a jump to the next instruction.
if(i>1) {
if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
assert(i==slen);
if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
}
else if(!likely[i-2])
{
store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
}
else
{
store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
}
add_to_linker((int)out,start+i*4,0);
emit_jmp(0);
}
}
else
{
assert(i>0);
assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
add_to_linker((int)out,start+i*4,0);
emit_jmp(0);
}
// TODO: delay slot stubs?
// Stubs
for(i=0;i<stubcount;i++)
{
switch(stubs[i][0])
{
case LOADB_STUB:
case LOADH_STUB:
case LOADW_STUB:
case LOADD_STUB:
case LOADBU_STUB:
case LOADHU_STUB:
do_readstub(i);break;
case STOREB_STUB:
case STOREH_STUB:
case STOREW_STUB:
case STORED_STUB:
do_writestub(i);break;
case CC_STUB:
do_ccstub(i);break;
case INVCODE_STUB:
do_invstub(i);break;
case FP_STUB:
do_cop1stub(i);break;
case STORELR_STUB:
do_unalignedwritestub(i);break;
}
}
if (instr_addr0_override)
instr_addr[0] = instr_addr0_override;
/* Pass 9 - Linker */
for(i=0;i<linkcount;i++)
{
assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
literal_pool(64);
if(!link_addr[i][2])
{
void *stub=out;
void *addr=check_addr(link_addr[i][1]);
emit_extjump(link_addr[i][0],link_addr[i][1]);
if(addr) {
set_jump_target(link_addr[i][0],(int)addr);
add_link(link_addr[i][1],stub);
}
else set_jump_target(link_addr[i][0],(int)stub);
}
else
{
// Internal branch
int target=(link_addr[i][1]-start)>>2;
assert(target>=0&&target<slen);
assert(instr_addr[target]);
//#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
//set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
//#else
set_jump_target(link_addr[i][0],instr_addr[target]);
//#endif
}
}
// External Branch Targets (jump_in)
if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
for(i=0;i<slen;i++)
{
if(bt[i]||i==0)
{
if(instr_addr[i]) // TODO - delay slots (=null)
{
u_int vaddr=start+i*4;
u_int page=get_page(vaddr);
u_int vpage=get_vpage(vaddr);
literal_pool(256);
{
assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
assem_debug("jump_in: %x\n",start+i*4);
ll_add(jump_dirty+vpage,vaddr,(void *)out);
int entry_point=do_dirty_stub(i);
ll_add_flags(jump_in+page,vaddr,state_rflags,(void *)entry_point);
// If there was an existing entry in the hash table,
// replace it with the new address.
// Don't add new entries. We'll insert the
// ones that actually get used in check_addr().
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
ht_bin[1]=entry_point;
}
if(ht_bin[2]==vaddr) {
ht_bin[3]=entry_point;
}
}
}
}
}
// Write out the literal pool if necessary
literal_pool(0);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
// Align code
if(((u_int)out)&7) emit_addnop(13);
#endif
assert((u_int)out-(u_int)beginning<MAX_OUTPUT_BLOCK_SIZE);
//printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
memcpy(copy,source,slen*4);
copy+=slen*4;
end_block(beginning);
// If we're within 256K of the end of the buffer,
// start over from the beginning. (Is 256K enough?)
if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
// Trap writes to any of the pages we compiled
for(i=start>>12;i<=(start+slen*4)>>12;i++) {
invalid_code[i]=0;
}
inv_code_start=inv_code_end=~0;
// for PCSX we need to mark all mirrors too
if(get_page(start)<(RAM_SIZE>>12))
for(i=start>>12;i<=(start+slen*4)>>12;i++)
invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
/* Pass 10 - Free memory by expiring oldest blocks */
int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
while(expirep!=end)
{
int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
inv_debug("EXP: Phase %d\n",expirep);
switch((expirep>>11)&3)
{
case 0:
// Clear jump_in and jump_dirty
ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
break;
case 1:
// Clear pointers
ll_kill_pointers(jump_out[expirep&2047],base,shift);
ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
break;
case 2:
// Clear hash table
for(i=0;i<32;i++) {
u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
if((ht_bin[3]>>shift)==(base>>shift) ||
((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
ht_bin[2]=ht_bin[3]=-1;
}
if((ht_bin[1]>>shift)==(base>>shift) ||
((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
ht_bin[0]=ht_bin[2];
ht_bin[1]=ht_bin[3];
ht_bin[2]=ht_bin[3]=-1;
}
}
break;
case 3:
// Clear jump_out
#ifdef __arm__
if((expirep&2047)==0)
do_clear_cache();
#endif
ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
break;
}
expirep=(expirep+1)&65535;
}
return 0;
}
// vim:shiftwidth=2:expandtab