beetle-pce-fast-libretro/mednafen/cdrom/galois.cpp

138 lines
4.0 KiB
C++
Raw Normal View History

2016-08-14 09:54:31 +00:00
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* The Reed-Solomon error correction draws a lot of inspiration - and even code -
* from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
#include "galois-inlines.h"
/***
*** Galois field arithmetic.
***
* Calculations are done over the extension field GF(2**n).
* Be careful not to overgeneralize these arithmetics;
* they only work for the case of GF(p**n) with p being prime.
*/
/* Initialize the Galois field tables */
GaloisTables* CreateGaloisTables(int32_t gf_generator)
{
GaloisTables *gt = (GaloisTables *)calloc(1, sizeof(GaloisTables));
int32_t b,log;
/* Allocate the tables.
The encoder uses a special version of alpha_to which has the mod_fieldmax()
folded into the table. */
gt->gfGenerator = gf_generator;
gt->indexOf = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t));
gt->alphaTo = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t));
gt->encAlphaTo = (int32_t *)calloc(2*GF_FIELDSIZE, sizeof(int32_t));
/* create the log/ilog values */
for(b=1, log=0; log<GF_FIELDMAX; log++)
{ gt->indexOf[b] = log;
gt->alphaTo[log] = b;
b = b << 1;
if(b & GF_FIELDSIZE)
b = b ^ gf_generator;
}
/* we're even closed using infinity (makes things easier) */
gt->indexOf[0] = GF_ALPHA0; /* log(0) = inf */
gt->alphaTo[GF_ALPHA0] = 0; /* and the other way around */
for(b=0; b<2*GF_FIELDSIZE; b++)
gt->encAlphaTo[b] = gt->alphaTo[mod_fieldmax(b)];
return gt;
}
void FreeGaloisTables(GaloisTables *gt)
{
if(gt->indexOf) free(gt->indexOf);
if(gt->alphaTo) free(gt->alphaTo);
if(gt->encAlphaTo) free(gt->encAlphaTo);
free(gt);
}
/***
*** Create the the Reed-Solomon generator polynomial
*** and some auxiliary data structures.
*/
ReedSolomonTables *CreateReedSolomonTables(GaloisTables *gt,
int32_t first_consecutive_root,
int32_t prim_elem,
int nroots_in)
{ ReedSolomonTables *rt = (ReedSolomonTables *)calloc(1, sizeof(ReedSolomonTables));
int32_t i,j,root;
rt->gfTables = gt;
rt->fcr = first_consecutive_root;
rt->primElem = prim_elem;
rt->nroots = nroots_in;
rt->ndata = GF_FIELDMAX - rt->nroots;
rt->gpoly = (int32_t *)calloc((rt->nroots+1), sizeof(int32_t));
/* Create the RS code generator polynomial */
rt->gpoly[0] = 1;
for(i=0, root=first_consecutive_root*prim_elem; i<rt->nroots; i++, root+=prim_elem)
{ rt->gpoly[i+1] = 1;
/* Multiply gpoly by alpha**(root+x) */
for(j=i; j>0; j--)
{
if(rt->gpoly[j] != 0)
rt->gpoly[j] = rt->gpoly[j-1] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[j]] + root)];
else
rt->gpoly[j] = rt->gpoly[j-1];
}
rt->gpoly[0] = gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[0]] + root)];
}
/* Store the polynomials index for faster encoding */
for(i=0; i<=rt->nroots; i++)
rt->gpoly[i] = gt->indexOf[rt->gpoly[i]];
return rt;
}
void FreeReedSolomonTables(ReedSolomonTables *rt)
{
if(rt->gpoly) free(rt->gpoly);
free(rt);
}