mirror of
https://github.com/libretro/beetle-pce-fast-libretro.git
synced 2024-11-27 01:50:21 +00:00
138 lines
4.0 KiB
C++
138 lines
4.0 KiB
C++
|
/* dvdisaster: Additional error correction for optical media.
|
||
|
* Copyright (C) 2004-2007 Carsten Gnoerlich.
|
||
|
* Project home page: http://www.dvdisaster.com
|
||
|
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
|
||
|
*
|
||
|
* The Reed-Solomon error correction draws a lot of inspiration - and even code -
|
||
|
* from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
|
||
|
* or direct your browser at http://www.gnu.org.
|
||
|
*/
|
||
|
|
||
|
#include "dvdisaster.h"
|
||
|
|
||
|
#include "galois-inlines.h"
|
||
|
|
||
|
/***
|
||
|
*** Galois field arithmetic.
|
||
|
***
|
||
|
* Calculations are done over the extension field GF(2**n).
|
||
|
* Be careful not to overgeneralize these arithmetics;
|
||
|
* they only work for the case of GF(p**n) with p being prime.
|
||
|
*/
|
||
|
|
||
|
/* Initialize the Galois field tables */
|
||
|
|
||
|
|
||
|
GaloisTables* CreateGaloisTables(int32_t gf_generator)
|
||
|
{
|
||
|
GaloisTables *gt = (GaloisTables *)calloc(1, sizeof(GaloisTables));
|
||
|
int32_t b,log;
|
||
|
|
||
|
/* Allocate the tables.
|
||
|
The encoder uses a special version of alpha_to which has the mod_fieldmax()
|
||
|
folded into the table. */
|
||
|
|
||
|
gt->gfGenerator = gf_generator;
|
||
|
|
||
|
gt->indexOf = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t));
|
||
|
gt->alphaTo = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t));
|
||
|
gt->encAlphaTo = (int32_t *)calloc(2*GF_FIELDSIZE, sizeof(int32_t));
|
||
|
|
||
|
/* create the log/ilog values */
|
||
|
|
||
|
for(b=1, log=0; log<GF_FIELDMAX; log++)
|
||
|
{ gt->indexOf[b] = log;
|
||
|
gt->alphaTo[log] = b;
|
||
|
b = b << 1;
|
||
|
if(b & GF_FIELDSIZE)
|
||
|
b = b ^ gf_generator;
|
||
|
}
|
||
|
|
||
|
/* we're even closed using infinity (makes things easier) */
|
||
|
|
||
|
gt->indexOf[0] = GF_ALPHA0; /* log(0) = inf */
|
||
|
gt->alphaTo[GF_ALPHA0] = 0; /* and the other way around */
|
||
|
|
||
|
for(b=0; b<2*GF_FIELDSIZE; b++)
|
||
|
gt->encAlphaTo[b] = gt->alphaTo[mod_fieldmax(b)];
|
||
|
|
||
|
return gt;
|
||
|
}
|
||
|
|
||
|
void FreeGaloisTables(GaloisTables *gt)
|
||
|
{
|
||
|
if(gt->indexOf) free(gt->indexOf);
|
||
|
if(gt->alphaTo) free(gt->alphaTo);
|
||
|
if(gt->encAlphaTo) free(gt->encAlphaTo);
|
||
|
|
||
|
free(gt);
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
*** Create the the Reed-Solomon generator polynomial
|
||
|
*** and some auxiliary data structures.
|
||
|
*/
|
||
|
|
||
|
ReedSolomonTables *CreateReedSolomonTables(GaloisTables *gt,
|
||
|
int32_t first_consecutive_root,
|
||
|
int32_t prim_elem,
|
||
|
int nroots_in)
|
||
|
{ ReedSolomonTables *rt = (ReedSolomonTables *)calloc(1, sizeof(ReedSolomonTables));
|
||
|
int32_t i,j,root;
|
||
|
|
||
|
rt->gfTables = gt;
|
||
|
rt->fcr = first_consecutive_root;
|
||
|
rt->primElem = prim_elem;
|
||
|
rt->nroots = nroots_in;
|
||
|
rt->ndata = GF_FIELDMAX - rt->nroots;
|
||
|
|
||
|
rt->gpoly = (int32_t *)calloc((rt->nroots+1), sizeof(int32_t));
|
||
|
|
||
|
/* Create the RS code generator polynomial */
|
||
|
|
||
|
rt->gpoly[0] = 1;
|
||
|
|
||
|
for(i=0, root=first_consecutive_root*prim_elem; i<rt->nroots; i++, root+=prim_elem)
|
||
|
{ rt->gpoly[i+1] = 1;
|
||
|
|
||
|
/* Multiply gpoly by alpha**(root+x) */
|
||
|
|
||
|
for(j=i; j>0; j--)
|
||
|
{
|
||
|
if(rt->gpoly[j] != 0)
|
||
|
rt->gpoly[j] = rt->gpoly[j-1] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[j]] + root)];
|
||
|
else
|
||
|
rt->gpoly[j] = rt->gpoly[j-1];
|
||
|
}
|
||
|
|
||
|
rt->gpoly[0] = gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[0]] + root)];
|
||
|
}
|
||
|
|
||
|
/* Store the polynomials index for faster encoding */
|
||
|
|
||
|
for(i=0; i<=rt->nroots; i++)
|
||
|
rt->gpoly[i] = gt->indexOf[rt->gpoly[i]];
|
||
|
return rt;
|
||
|
}
|
||
|
|
||
|
void FreeReedSolomonTables(ReedSolomonTables *rt)
|
||
|
{
|
||
|
if(rt->gpoly) free(rt->gpoly);
|
||
|
|
||
|
free(rt);
|
||
|
}
|