(Mednafen bSNES) bsnes core running now - some issue with 'held down'

buttons and with games supporting srm RAM failing to load after first run -
investigate
This commit is contained in:
twinaphex 2012-11-24 17:14:05 +01:00
parent ea49364433
commit 13f69fa443
471 changed files with 59734 additions and 0 deletions

View File

@ -176,6 +176,63 @@ HW_SOUND_SOURCES += $(MEDNAFEN_DIR)/hw_sound/gb_apu/Gb_Apu.cpp \
$(MEDNAFEN_DIR)/hw_sound/gb_apu/Gb_Oscs.cpp
EXTRA_CORE_INCDIR = -I$(MEDNAFEN_DIR)/hw_sound/ -I$(MEDNAFEN_DIR)/include/blip
TARGET_NAME := mednafen_gba_libretro
else ifeq ($(core), snes)
core = snes
NEED_BPP = 32
NEED_BLIP = 1
NEED_STEREO_SOUND = 1
CORE_DEFINE := -DWANT_SNES_EMU
CORE_DIR := $(MEDNAFEN_DIR)/snes
CORE_SOURCES := $(CORE_DIR)/interface.cpp \
$(CORE_DIR)/src/cartridge/cartridge.cpp \
$(CORE_DIR)/src/cartridge/header.cpp \
$(CORE_DIR)/src/cartridge/gameboyheader.cpp \
$(CORE_DIR)/src/cartridge/serialization.cpp \
$(CORE_DIR)/src/cheat/cheat.cpp \
$(CORE_DIR)/src/chip/21fx/21fx.cpp \
$(CORE_DIR)/src/chip/bsx/bsx.cpp \
$(CORE_DIR)/src/chip/bsx/bsx_base.cpp \
$(CORE_DIR)/src/chip/bsx/bsx_cart.cpp \
$(CORE_DIR)/src/chip/bsx/bsx_flash.cpp \
$(CORE_DIR)/src/chip/cx4/cx4.cpp \
$(CORE_DIR)/src/chip/cx4/data.cpp \
$(CORE_DIR)/src/chip/cx4/functions.cpp \
$(CORE_DIR)/src/chip/cx4/oam.cpp \
$(CORE_DIR)/src/chip/cx4/opcodes.cpp \
$(CORE_DIR)/src/chip/cx4/serialization.cpp \
$(CORE_DIR)/src/chip/dsp1/dsp1.cpp \
$(CORE_DIR)/src/chip/dsp2/dsp2.cpp \
$(CORE_DIR)/src/chip/dsp3/dsp3.cpp \
$(CORE_DIR)/src/chip/dsp4/dsp4.cpp \
$(CORE_DIR)/src/chip/obc1/obc1.cpp \
$(CORE_DIR)/src/chip/sa1/sa1.cpp \
$(CORE_DIR)/src/chip/sdd1/sdd1.cpp \
$(CORE_DIR)/src/chip/spc7110/spc7110.cpp \
$(CORE_DIR)/src/chip/srtc/srtc.cpp \
$(CORE_DIR)/src/chip/st010/st010.cpp \
$(CORE_DIR)/src/chip/st011/st011.cpp \
$(CORE_DIR)/src/chip/st018/st018.cpp \
$(CORE_DIR)/src/chip/superfx/superfx.cpp \
$(CORE_DIR)/src/chip/supergameboy/supergameboy.cpp \
$(CORE_DIR)/src/cpu/cpu.cpp \
$(CORE_DIR)/src/cpu/core/core.cpp \
$(CORE_DIR)/src/cpu/scpu/scpu.cpp \
$(CORE_DIR)/src/dsp/sdsp/sdsp.cpp \
$(CORE_DIR)/src/lib/libco/libco.c \
$(CORE_DIR)/src/memory/memory.cpp \
$(CORE_DIR)/src/memory/smemory/smemory.cpp \
$(CORE_DIR)/src/ppu/ppu.cpp \
$(CORE_DIR)/src/ppu/bppu/bppu.cpp \
$(CORE_DIR)/src/smp/smp.cpp \
$(CORE_DIR)/src/smp/core/core.cpp \
$(CORE_DIR)/src/smp/ssmp/ssmp.cpp \
$(CORE_DIR)/src/system/system.cpp
HW_SOUND_SOURCES += $(MEDNAFEN_DIR)/sound/Fir_Resampler.cpp
EXTRA_CORE_INCDIR = -I$(MEDNAFEN_DIR)/hw_sound/ -I$(MEDNAFEN_DIR)/include/blip -I$(MEDNAFEN_DIR)/snes/src/lib
TARGET_NAME := mednafen_snes_libretro
LDFLAGS += -ldl
endif
ifeq ($(NEED_BLIP), 1)

View File

@ -100,6 +100,20 @@ static Deinterlacer deint;
#define FB_WIDTH 240
#define FB_HEIGHT 160
#elif defined(WANT_SNES_EMU)
#define MEDNAFEN_CORE_NAME_MODULE "snes"
#define MEDNAFEN_CORE_NAME "Mednafen bSNES"
#define MEDNAFEN_CORE_VERSION "v0.9.26"
#define MEDNAFEN_CORE_EXTENSIONS "sfc|SFC|zip|ZIP"
#define MEDNAFEN_CORE_TIMING_FPS 60.10
#define MEDNAFEN_CORE_GEOMETRY_BASE_W (game->nominal_width)
#define MEDNAFEN_CORE_GEOMETRY_BASE_H (game->nominal_height)
#define MEDNAFEN_CORE_GEOMETRY_MAX_W 512
#define MEDNAFEN_CORE_GEOMETRY_MAX_H 512
#define MEDNAFEN_CORE_GEOMETRY_ASPECT_RATIO (4.0 / 3.0)
#define FB_WIDTH 512
#define FB_HEIGHT 512
#endif
#ifdef WANT_16BPP
@ -396,6 +410,41 @@ static void update_input(void)
// Possible endian bug ...
game->SetInput(0, "gamepad", &input_buf);
#elif defined(WANT_SNES_EMU)
static uint8_t input_buf[5][2];
static unsigned map[] = {
RETRO_DEVICE_ID_JOYPAD_B,
RETRO_DEVICE_ID_JOYPAD_Y,
RETRO_DEVICE_ID_JOYPAD_SELECT,
RETRO_DEVICE_ID_JOYPAD_START,
RETRO_DEVICE_ID_JOYPAD_UP,
RETRO_DEVICE_ID_JOYPAD_DOWN,
RETRO_DEVICE_ID_JOYPAD_LEFT,
RETRO_DEVICE_ID_JOYPAD_RIGHT,
RETRO_DEVICE_ID_JOYPAD_A,
RETRO_DEVICE_ID_JOYPAD_X,
RETRO_DEVICE_ID_JOYPAD_L,
RETRO_DEVICE_ID_JOYPAD_R,
};
if (input_state_cb)
{
for (unsigned j = 0; j < 5; j++)
{
uint16_t input_state = 0;
for (unsigned i = 0; i < 13; i++)
input_state |= input_state_cb(j, RETRO_DEVICE_JOYPAD, 0, map[i]) ? (1 << i) : 0;
// Input data must be little endian.
input_buf[j][0] = (input_state >> 0) & 0xff;
input_buf[j][1] = (input_state >> 8) & 0xff;
}
}
// Possible endian bug ...
for (unsigned i = 0; i < 5; i++)
game->SetInput(i, "gamepad", &input_buf[i][0]);
#else
static uint16_t input_buf[1];
input_buf[0] = 0;

View File

@ -527,6 +527,8 @@ extern MDFNGI EmulatedWSwan;
extern MDFNGI EmulatedNGP;
#elif defined(WANT_GBA_EMU)
extern MDFNGI EmulatedGBA;
#elif defined(WANT_SNES_EMU)
extern MDFNGI EmulatedSNES;
#endif
bool MDFNI_InitializeModules(const std::vector<MDFNGI *> &ExternalSystems)

View File

@ -109,6 +109,13 @@ bool MDFN_GetSettingB(const char *name)
/* LIBRETRO */
if(!strcmp("libretro.cd_load_into_ram", name))
return 0;
/* SNES */
if(!strcmp("snes.correct_aspect", name))
return 0;
if(!strcmp("snes.input.port1.multitap", name))
return 0;
if(!strcmp("snes.input.port2.multitap", name))
return 0;
/* PCE_FAST */
if(!strcmp("pce_fast.input.multitap", name))
return 1;

80
mednafen/snes/Makefile.am Normal file
View File

@ -0,0 +1,80 @@
AM_CFLAGS = @AM_CFLAGS@ @SNES_EXTRA_FLAGS@
AM_CXXFLAGS = @AM_CXXFLAGS@ @SNES_EXTRA_FLAGS@ @SNES_EXTRA_CXXFLAGS@
AUTOMAKE_OPTIONS = subdir-objects
DEFS = -DLOCALEDIR=\"$(datadir)/locale\" @DEFS@ @MATH_OPTIMIZER_FLAGS@ -DNOMINMAX
DEFAULT_INCLUDES = -I$(top_builddir)/include -I$(top_srcdir)/intl -I$(top_srcdir)/src/snes/src/lib
noinst_LIBRARIES = libsnes.a
meow = interface.cpp
meow += src/lib/libco/libco.c
#meow += src/lib/nall/string.cpp
#################
### utilities ###
#################
meow += src/cartridge/cartridge.cpp src/cheat/cheat.cpp
##############
### memory ###
##############
meow += src/memory/memory.cpp src/memory/smemory/smemory.cpp
###########
### cpu ###
###########
meow += src/cpu/cpu.cpp src/cpu/core/core.cpp src/cpu/scpu/scpu.cpp
###########
### smp ###
###########
meow += src/smp/smp.cpp src/smp/core/core.cpp src/smp/ssmp/ssmp.cpp
###########
### dsp ###
###########
# src/dsp/adsp/adsp.cpp
meow += src/dsp/sdsp/sdsp.cpp
###########
### ppu ###
###########
meow += src/ppu/ppu.cpp src/ppu/bppu/bppu.cpp
##############
### system ###
##############
meow += src/system/system.cpp
#####################
### special chips ###
#####################
meow += src/chip/sa1/sa1.cpp src/chip/bsx/bsx.cpp src/chip/srtc/srtc.cpp src/chip/sdd1/sdd1.cpp
meow += src/chip/spc7110/spc7110.cpp src/chip/cx4/cx4.cpp
meow += src/chip/dsp1/dsp1.cpp src/chip/dsp2/dsp2.cpp src/chip/dsp3/dsp3.cpp src/chip/dsp4/dsp4.cpp
meow += src/chip/obc1/obc1.cpp
meow += src/chip/st010/st010.cpp src/chip/st011/st011.cpp src/chip/st018/st018.cpp
meow += src/chip/superfx/superfx.cpp
meow += src/chip/supergameboy/supergameboy.cpp
meow += src/chip/21fx/21fx.cpp
libsnes_a_SOURCES = $(meow)

1096
mednafen/snes/Makefile.in Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
bsnes v0.59 + Cx4 Op10 fix patch + blargg_libco_ppc64-5 + a few minor timing/scheduler related changes for Mednafen

940
mednafen/snes/interface.cpp Normal file
View File

@ -0,0 +1,940 @@
/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "../mednafen.h"
#include "../md5.h"
#include "../general.h"
#include "src/base.hpp"
#include "../mempatcher.h"
#include "Fir_Resampler.h"
#include <vector>
static void Cleanup(void);
static Fir_Resampler<24> resampler;
class MeowFace : public SNES::Interface
{
virtual void video_refresh(uint16_t *data, unsigned pitch, unsigned *line, unsigned width, unsigned height);
virtual void audio_sample(uint16_t l_sample, uint16_t r_sample);
virtual void input_poll();
virtual int16_t input_poll(bool port, unsigned device, unsigned index, unsigned id);
// virtual int16_t input_poll(unsigned deviceid, unsigned id);
};
static bool InProperEmu;
static bool SoundOn;
static double SoundLastRate = 0;
static MeowFace meowface;
static int32 CycleCounter;
static MDFN_Surface *tsurf = NULL;
static MDFN_Rect *tlw = NULL;
static MDFN_Rect *tdr = NULL;
static int InputType[2];
static uint8 *InputPtr[8] = { NULL };
static uint16 PadLatch[8];
static bool MultitapEnabled[2];
static bool HasPolledThisFrame;
static int16 MouseXLatch[2];
static int16 MouseYLatch[2];
static uint8 MouseBLatch[2];
static uint8 *CustomColorMap = NULL;
//static uint32 ColorMap[32768];
static std::vector<uint32> ColorMap;
static bool LoadCPalette(const char *syspalname, uint8 **ptr, uint32 num_entries)
{
std::string colormap_fn = MDFN_MakeFName(MDFNMKF_PALETTE, 0, syspalname).c_str();
FILE *fp;
MDFN_printf(_("Loading custom palette from \"%s\"...\n"), colormap_fn.c_str());
MDFN_indent(1);
if(!(fp = fopen(colormap_fn.c_str(), "rb")))
{
ErrnoHolder ene(errno);
MDFN_printf(_("Error opening file: %s\n"), ene.StrError());
MDFN_indent(-1);
return(ene.Errno() == ENOENT); // Return fatal error if it's an error other than the file not being found.
}
if(!(*ptr = (uint8 *)MDFN_malloc(num_entries * 3, _("custom color map"))))
{
MDFN_indent(-1);
fclose(fp);
return(false);
}
if(fread(*ptr, 1, num_entries * 3, fp) != (num_entries * 3))
{
ErrnoHolder ene(errno);
MDFN_printf(_("Error reading file: %s\n"), feof(fp) ? "EOF" : ene.StrError());
MDFN_indent(-1);
MDFN_free(*ptr);
*ptr = NULL;
fclose(fp);
return(false);
}
fclose(fp);
MDFN_indent(-1);
return(true);
}
static void BuildColorMap(MDFN_PixelFormat &format)
{
for(int x = 0; x < 32768; x++)
{
int r, g, b;
r = (x & (0x1F << 0)) << 3;
g = (x & (0x1F << 5)) >> (5 - 3);
b = (x & (0x1F << 10)) >> (5 * 2 - 3);
//r = ((((x >> 0) & 0x1F) * 255 + 15) / 31);
//g = ((((x >> 5) & 0x1F) * 255 + 15) / 31);
//b = ((((x >> 10) & 0x1F) * 255 + 15) / 31);
if(CustomColorMap)
{
r = CustomColorMap[x * 3 + 0];
g = CustomColorMap[x * 3 + 1];
b = CustomColorMap[x * 3 + 2];
}
ColorMap[x] = format.MakeColor(r, g, b);
}
}
void MeowFace::video_refresh(uint16_t *data, unsigned pitch, unsigned *line, unsigned width, unsigned height)
{
if(!tsurf || !tlw || !tdr)
return;
const uint16 *source_line = data;
uint32 *dest_line = tsurf->pixels;
assert(!(pitch & 1));
//if(height != 224)
// printf("%d\n", height);
//if(tsurf->format.bpp == 32)
//{
//
//}
//else
{
for(int y = 0; y < height; y++, source_line += pitch >> 1, dest_line += tsurf->pitch32)
for(int x = 0; x < width; tlw[y].x = 0, tlw[y].w = (width == 512) ? line[y] : 256, x++)
dest_line[x] = ColorMap[source_line[x] & 0x7FFF];
}
tdr->w = width;
tdr->h = height;
}
void MeowFace::audio_sample(uint16_t l_sample, uint16_t r_sample)
{
CycleCounter++;
if(!SoundOn)
return;
if(resampler.max_write() >= 2)
{
resampler.buffer()[0] = l_sample;
resampler.buffer()[1] = r_sample;
resampler.write(2);
}
else
{
MDFN_DispMessage("Buffer overflow?");
}
}
#if 0
class Input {
public:
enum Device {
DeviceNone,
DeviceJoypad,
DeviceMultitap,
DeviceMouse,
DeviceSuperScope,
DeviceJustifier,
DeviceJustifiers,
};
enum JoypadID {
JoypadB = 0, JoypadY = 1,
JoypadSelect = 2, JoypadStart = 3,
JoypadUp = 4, JoypadDown = 5,
JoypadLeft = 6, JoypadRight = 7,
JoypadA = 8, JoypadX = 9,
JoypadL = 10, JoypadR = 11,
};
#endif
void MeowFace::input_poll()
{
if(!InProperEmu)
return;
HasPolledThisFrame = true;
for(int port = 0; port < 2; port++)
{
switch(InputType[port])
{
case SNES::Input::DeviceJoypad:
PadLatch[port] = MDFN_de16lsb(InputPtr[port]);
break;
case SNES::Input::DeviceMultitap:
for(int index = 0; index < 4; index++)
{
if(!index)
PadLatch[port] = MDFN_de16lsb(InputPtr[port]);
else
{
int pi = 2 + 3 * (port ^ 1) + (index - 1);
PadLatch[pi] = MDFN_de16lsb(InputPtr[pi]);
}
}
break;
case SNES::Input::DeviceMouse:
MouseXLatch[port] = (int32)MDFN_de32lsb(InputPtr[port] + 0);
MouseYLatch[port] = (int32)MDFN_de32lsb(InputPtr[port] + 4);
MouseBLatch[port] = *(uint8 *)(InputPtr[port] + 8);
break;
}
}
}
static INLINE int16 sats32tos16(int32 val)
{
if(val > 32767)
val = 32767;
if(val < -32768)
val = -32768;
return(val);
}
int16_t MeowFace::input_poll(bool port, unsigned device, unsigned index, unsigned id)
{
if(!HasPolledThisFrame)
printf("input_poll(...) before input_poll() for frame, %d %d %d %d\n", port, device, index, id);
switch(device)
{
case SNES::Input::DeviceJoypad:
{
return((PadLatch[port] >> id) & 1);
}
break;
case SNES::Input::DeviceMultitap:
{
if(!index)
return((PadLatch[port] >> id) & 1);
else
return((PadLatch[2 + 3 * (port ^ 1) + (index - 1)] >> id) & 1);
}
break;
case SNES::Input::DeviceMouse:
{
assert(port < 2);
switch(id)
{
case SNES::Input::MouseX:
return(sats32tos16(MouseXLatch[port]));
break;
case SNES::Input::MouseY:
return(sats32tos16(MouseYLatch[port]));
break;
case SNES::Input::MouseLeft:
return((int)(bool)(MouseBLatch[port] & 1));
break;
case SNES::Input::MouseRight:
return((int)(bool)(MouseBLatch[port] & 2));
break;
}
}
break;
}
return(0);
}
#if 0
void MeowFace::init()
{
}
void MeowFace::term()
{
}
#endif
#if 0
namespace memory {
extern MappedRAM cartrom, cartram, cartrtc;
extern MappedRAM bsxflash, bsxram, bsxpram;
extern MappedRAM stArom, stAram;
extern MappedRAM stBrom, stBram;
extern MappedRAM gbrom, gbram;
};
#endif
// For loading: Return false on fatal error during loading, or true on success(or file not found)
static bool SaveMemorySub(bool load, const char *extension, SNES::MappedRAM *memoryA, SNES::MappedRAM *memoryB = NULL)
{
const std::string path = MDFN_MakeFName(MDFNMKF_SAV, 0, extension);
std::vector<PtrLengthPair> MemToSave;
if(load)
{
FILE *gp;
errno = 0;
gp = fopen(path.c_str(), "rb");
if(!gp)
{
ErrnoHolder ene(errno);
if(ene.Errno() == ENOENT)
return(true);
MDFN_PrintError(_("Error opening save file \"%s\": %s"), path.c_str(), ene.StrError());
return(false);
}
if(memoryA && memoryA->size() != 0 && memoryA->size() != -1U)
{
errno = 0;
if(fread(memoryA->data(), memoryA->size(), 1, gp) != memoryA->size())
{
ErrnoHolder ene(errno);
MDFN_PrintError(_("Error reading save file \"%s\": %s"), path.c_str(), ene.StrError());
return(false);
}
}
if(memoryB && memoryB->size() != 0 && memoryB->size() != -1U)
{
errno = 0;
if(fread(memoryB->data(), memoryB->size(), 1, gp) != memoryB->size())
{
ErrnoHolder ene(errno);
MDFN_PrintError(_("Error reading save file \"%s\": %s"), path.c_str(), ene.StrError());
return(false);
}
}
fclose(gp);
return(true);
}
else
{
if(memoryA && memoryA->size() != 0 && memoryA->size() != -1U)
MemToSave.push_back(PtrLengthPair(memoryA->data(), memoryA->size()));
if(memoryB && memoryB->size() != 0 && memoryB->size() != -1U)
MemToSave.push_back(PtrLengthPair(memoryB->data(), memoryB->size()));
return(MDFN_DumpToFile(path.c_str(), 6, MemToSave));
}
}
static bool SaveLoadMemory(bool load)
{
if(SNES::cartridge.loaded() == false)
return(FALSE);
bool ret = true;
switch(SNES::cartridge.mode())
{
case SNES::Cartridge::ModeNormal:
case SNES::Cartridge::ModeBsxSlotted:
{
ret &= SaveMemorySub(load, "srm", &SNES::memory::cartram);
ret &= SaveMemorySub(load, "rtc", &SNES::memory::cartrtc);
}
break;
case SNES::Cartridge::ModeBsx:
{
ret &= SaveMemorySub(load, "srm", &SNES::memory::bsxram );
ret &= SaveMemorySub(load, "psr", &SNES::memory::bsxpram);
}
break;
case SNES::Cartridge::ModeSufamiTurbo:
{
ret &= SaveMemorySub(load, "srm", &SNES::memory::stAram, &SNES::memory::stBram);
}
break;
case SNES::Cartridge::ModeSuperGameBoy:
{
ret &= SaveMemorySub(load, "sav", &SNES::memory::gbram);
ret &= SaveMemorySub(load, "rtc", &SNES::memory::gbrtc);
}
break;
}
return(ret);
}
static bool TestMagic(const char *name, MDFNFILE *fp)
{
if(strcasecmp(fp->ext, "smc") && strcasecmp(fp->ext, "swc") && strcasecmp(fp->ext, "sfc") && strcasecmp(fp->ext, "fig") &&
strcasecmp(fp->ext, "bs") && strcasecmp(fp->ext, "st"))
{
return(false);
}
return(true);
}
static void SetupMisc(bool PAL)
{
MDFNGameInfo->fps = PAL ? 838977920 : 1008307711;
MDFNGameInfo->MasterClock = MDFN_MASTERCLOCK_FIXED(32040.40); //MDFN_MASTERCLOCK_FIXED(21477272); //PAL ? PAL_CPU : NTSC_CPU);
{
MDFNGameInfo->nominal_width = MDFN_GetSettingB("snes.correct_aspect") ? 292 : 256;
MDFNGameInfo->nominal_height = PAL ? 239 : 224;
MDFNGameInfo->lcm_height = MDFNGameInfo->nominal_height * 2;
}
resampler.buffer_size(32040 / 10);
//resampler.time_ratio((double)32040.40 / 48000, 0.9965);
SoundLastRate = 0;
}
static bool LoadSNSF(MDFNFILE *fp)
{
return(false);
}
static void Cleanup(void)
{
SNES::memory::cartrom.map(NULL, 0); // So it delete[]s the pointer it took ownership of.
if(CustomColorMap)
{
MDFN_free(CustomColorMap);
CustomColorMap = NULL;
}
ColorMap.resize(0);
}
static int Load(const char *name, MDFNFILE *fp)
{
bool PAL = FALSE;
CycleCounter = 0;
try
{
// Allocate 8MiB of space regardless of actual ROM image size, to prevent malformed or corrupted ROM images
// from crashing the bsnes cart loading code.
const uint32 header_adjust = (((fp->size & 0x7FFF) == 512) ? 512 : 0);
uint8 *export_ptr;
if((fp->size - header_adjust) > (8192 * 1024))
{
throw MDFN_Error(0, _("SNES ROM image is too large."));
}
md5_context md5;
md5.starts();
md5.update(fp->data, fp->size);
md5.finish(MDFNGameInfo->MD5);
SNES::system.init(&meowface);
//const SNES::Cartridge::Type rom_type = SNES::cartridge.detect_image_type((uint8 *)fp->data, fp->size);
export_ptr = new uint8[8192 * 1024];
memset(export_ptr, 0x00, 8192 * 1024);
memcpy(export_ptr, fp->data + header_adjust, fp->size - header_adjust);
SNES::memory::cartrom.map(export_ptr, fp->size - header_adjust);
SNES::cartridge.load(SNES::Cartridge::ModeNormal);
SNES::system.power();
PAL = (SNES::system.region() == SNES::System::PAL);
SetupMisc(PAL);
MultitapEnabled[0] = MDFN_GetSettingB("snes.input.port1.multitap");
MultitapEnabled[1] = MDFN_GetSettingB("snes.input.port2.multitap");
if(!SaveLoadMemory(true))
{
Cleanup();
return(0);
}
//printf(" %d %d\n", FSettings.SndRate, resampler.max_write());
MDFNMP_Init(1024, (1 << 24) / 1024);
MDFNMP_AddRAM(131072, 0x7E << 16, SNES::memory::wram.data());
ColorMap.resize(32768);
if(!LoadCPalette(NULL, &CustomColorMap, 32768))
{
Cleanup();
return(0);
}
}
catch(std::exception &e)
{
MDFND_PrintError(e.what());
Cleanup();
return 0;
}
return(1);
}
static void CloseGame(void)
{
{
SaveLoadMemory(false);
}
Cleanup();
}
static void Emulate(EmulateSpecStruct *espec)
{
tsurf = espec->surface;
tlw = espec->LineWidths;
tdr = &espec->DisplayRect;
{
if(espec->VideoFormatChanged)
BuildColorMap(espec->surface->format);
}
if(SoundLastRate != espec->SoundRate)
{
double ratio = (double)32040.40 / (espec->SoundRate ? espec->SoundRate : 48000);
resampler.time_ratio(ratio, 0.9965);
printf("%f, %f\n", ratio, resampler.ratio());
SoundLastRate = espec->SoundRate;
}
MDFNMP_ApplyPeriodicCheats();
// Make sure to trash any leftover samples, generated from system.runtosave() in save state saving, if sound is now disabled.
if(SoundOn && !espec->SoundBuf)
{
resampler.clear();
}
SoundOn = espec->SoundBuf ? true : false;
HasPolledThisFrame = false;
InProperEmu = TRUE;
SNES::system.run_mednafen_custom();
tsurf = NULL;
tlw = NULL;
tdr = NULL;
InProperEmu = FALSE;
espec->MasterCycles = CycleCounter;
CycleCounter = 0;
//printf("%d\n", espec->MasterCycles);
if(espec->SoundBuf)
espec->SoundBufSize = resampler.read(espec->SoundBuf, resampler.avail()) >> 1;
MDFNGameInfo->mouse_sensitivity = MDFN_GetSettingF("snes.mouse_sensitivity");
}
static int StateAction(StateMem *sm, int load, int data_only)
{
//if(!SNES::Cartridge::saveStatesSupported())
//return(0);
if(load)
{
uint32 length;
uint8 *ptr;
SFORMAT StateLengthCat[] =
{
SFVARN(length, "length"),
SFEND
};
if(!MDFNSS_StateAction(sm, 1, data_only, StateLengthCat, "LEN"))
return(0);
ptr = (uint8 *)MDFN_calloc(1, length, _("SNES save state buffer"));
SFORMAT StateRegs[] =
{
SFARRAYN(ptr, length, "OmniCat"),
SFARRAY16(PadLatch, 8),
SFARRAY16(MouseXLatch, 2),
SFARRAY16(MouseYLatch, 2),
SFARRAY(MouseBLatch, 2),
SFEND
};
if(!MDFNSS_StateAction(sm, 1, data_only, StateRegs, "DATA"))
{
free(ptr);
return(0);
}
serializer state(ptr, length);
int result;
result = SNES::system.unserialize(state);
free(ptr);
return(result);
}
else // save:
{
uint32 length;
if(SNES::scheduler.sync != SNES::Scheduler::SyncAll)
SNES::system.runtosave();
serializer state = SNES::system.serialize();
length = state.size();
SFORMAT StateLengthCat[] =
{
SFVARN(length, "length"),
SFEND
};
if(!MDFNSS_StateAction(sm, 0, data_only, StateLengthCat, "LEN"))
return(0);
uint8 *ptr = const_cast<uint8 *>(state.data());
SFORMAT StateRegs[] =
{
SFARRAYN(ptr, length, "OmniCat"),
SFARRAY16(PadLatch, 8),
SFARRAY16(MouseXLatch, 2),
SFARRAY16(MouseYLatch, 2),
SFARRAY(MouseBLatch, 2),
SFEND
};
if(!MDFNSS_StateAction(sm, 0, data_only, StateRegs, "DATA"))
return(0);
return(1);
}
}
struct StrToBSIT_t
{
const char *str;
const int id;
};
static const StrToBSIT_t StrToBSIT[] =
{
{ "none", SNES::Input::DeviceNone },
{ "gamepad", SNES::Input::DeviceJoypad },
{ "multitap", SNES::Input::DeviceMultitap },
{ "mouse", SNES::Input::DeviceMouse },
{ "superscope", SNES::Input::DeviceSuperScope },
{ "justifier", SNES::Input::DeviceJustifier },
{ "justifiers", SNES::Input::DeviceJustifiers },
{ NULL, -1 },
};
static void SetInput(int port, const char *type, void *ptr)
{
assert(port >= 0 && port < 8);
if(port < 2)
{
const StrToBSIT_t *sb = StrToBSIT;
int id = -1;
if(MultitapEnabled[port] && !strcmp(type, "gamepad"))
type = "multitap";
while(sb->str && id == -1)
{
if(!strcmp(type, sb->str))
id = sb->id;
sb++;
}
assert(id != -1);
InputType[port] = id;
SNES::input.port_set_device(port, id);
#if 0
switch(config().input.port1) { default:
case ControllerPort1::None: mapper().port1 = 0; break;
case ControllerPort1::Gamepad: mapper().port1 = &Controllers::gamepad1; break;
case ControllerPort1::Asciipad: mapper().port1 = &Controllers::asciipad1; break;
case ControllerPort1::Multitap: mapper().port1 = &Controllers::multitap1; break;
case ControllerPort1::Mouse: mapper().port1 = &Controllers::mouse1; break;
}
switch(config().input.port2) { default:
case ControllerPort2::None: mapper().port2 = 0; break;
case ControllerPort2::Gamepad: mapper().port2 = &Controllers::gamepad2; break;
case ControllerPort2::Asciipad: mapper().port2 = &Controllers::asciipad2; break;
case ControllerPort2::Multitap: mapper().port2 = &Controllers::multitap2; break;
case ControllerPort2::Mouse: mapper().port2 = &Controllers::mouse2; break;
case ControllerPort2::SuperScope: mapper().port2 = &Controllers::superscope; break;
case ControllerPort2::Justifier: mapper().port2 = &Controllers::justifier1; break;
case ControllerPort2::Justifiers: mapper().port2 = &Controllers::justifiers; break;
}
#endif
}
InputPtr[port] = (uint8 *)ptr;
}
static void SetLayerEnableMask(uint64 mask)
{
}
static void DoSimpleCommand(int cmd)
{
switch(cmd)
{
case MDFN_MSC_RESET: SNES::system.reset(); break;
case MDFN_MSC_POWER: SNES::system.power(); break;
}
}
static const InputDeviceInputInfoStruct GamepadIDII[] =
{
{ "b", "B (center, lower)", 7, IDIT_BUTTON_CAN_RAPID, NULL },
{ "y", "Y (left)", 6, IDIT_BUTTON_CAN_RAPID, NULL },
{ "select", "SELECT", 4, IDIT_BUTTON, NULL },
{ "start", "START", 5, IDIT_BUTTON, NULL },
{ "up", "UP ↑", 0, IDIT_BUTTON, "down" },
{ "down", "DOWN ↓", 1, IDIT_BUTTON, "up" },
{ "left", "LEFT ←", 2, IDIT_BUTTON, "right" },
{ "right", "RIGHT →", 3, IDIT_BUTTON, "left" },
{ "a", "A (right)", 9, IDIT_BUTTON_CAN_RAPID, NULL },
{ "x", "X (center, upper)", 8, IDIT_BUTTON_CAN_RAPID, NULL },
{ "l", "Left Shoulder", 10, IDIT_BUTTON, NULL },
{ "r", "Right Shoulder", 11, IDIT_BUTTON, NULL },
};
static const InputDeviceInputInfoStruct MouseIDII[0x4] =
{
{ "x_axis", "X Axis", -1, IDIT_X_AXIS_REL },
{ "y_axis", "Y Axis", -1, IDIT_Y_AXIS_REL },
{ "left", "Left Button", 0, IDIT_BUTTON, NULL },
{ "right", "Right Button", 1, IDIT_BUTTON, NULL },
};
static InputDeviceInfoStruct InputDeviceInfoSNESPort[] =
{
// None
{
"none",
"none",
NULL,
NULL,
0,
NULL
},
// Gamepad
{
"gamepad",
"Gamepad",
NULL,
NULL,
sizeof(GamepadIDII) / sizeof(InputDeviceInputInfoStruct),
GamepadIDII,
},
// Mouse
{
"mouse",
"Mouse",
NULL,
NULL,
sizeof(MouseIDII) / sizeof(InputDeviceInputInfoStruct),
MouseIDII,
},
};
static InputDeviceInfoStruct InputDeviceInfoTapPort[] =
{
// Gamepad
{
"gamepad",
"Gamepad",
NULL,
NULL,
sizeof(GamepadIDII) / sizeof(InputDeviceInputInfoStruct),
GamepadIDII,
},
};
static const InputPortInfoStruct PortInfo[] =
{
{ "port1", "Port 1/1A", sizeof(InputDeviceInfoSNESPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoSNESPort, "gamepad" },
{ "port2", "Port 2/2A", sizeof(InputDeviceInfoSNESPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoSNESPort, "gamepad" },
{ "port3", "Port 2B", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
{ "port4", "Port 2C", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
{ "port5", "Port 2D", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
{ "port6", "Port 1B", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
{ "port7", "Port 1C", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
{ "port8", "Port 1D", sizeof(InputDeviceInfoTapPort) / sizeof(InputDeviceInfoStruct), InputDeviceInfoTapPort, "gamepad" },
};
static InputInfoStruct SNESInputInfo =
{
sizeof(PortInfo) / sizeof(InputPortInfoStruct),
PortInfo
};
static const MDFNSetting SNESSettings[] =
{
{ "snes.input.port1.multitap", MDFNSF_EMU_STATE | MDFNSF_UNTRUSTED_SAFE, gettext_noop("Enable multitap on SNES port 1."), NULL, MDFNST_BOOL, "0", NULL, NULL },
{ "snes.input.port2.multitap", MDFNSF_EMU_STATE | MDFNSF_UNTRUSTED_SAFE, gettext_noop("Enable multitap on SNES port 2."), NULL, MDFNST_BOOL, "0", NULL, NULL },
{ "snes.mouse_sensitivity", MDFNSF_NOFLAGS, gettext_noop("Emulated mouse sensitivity."), NULL, MDFNST_FLOAT, "0.50", NULL, NULL, NULL },
{ "snes.correct_aspect", MDFNSF_CAT_VIDEO, gettext_noop("Correct the aspect ratio."), gettext_noop("Note that regardless of this setting's value, \"512\" and \"256\" width modes will be scaled to the same dimensions for display."), MDFNST_BOOL, "0" },
{ NULL }
};
static const FileExtensionSpecStruct KnownExtensions[] =
{
{ ".smc", "Super Magicom ROM Image" },
{ ".swc", "Super Wildcard ROM Image" },
{ ".sfc", "Cartridge ROM Image" },
{ ".fig", "Cartridge ROM Image" },
{ ".bs", "BS-X EEPROM Image" },
{ ".st", "Sufami Turbo Cartridge ROM Image" },
{ NULL, NULL }
};
MDFNGI EmulatedSNES =
{
"snes",
"Super Nintendo Entertainment System/Super Famicom",
KnownExtensions,
MODPRIO_INTERNAL_HIGH,
NULL, // Debugger
&SNESInputInfo,
Load,
TestMagic,
NULL,
NULL,
CloseGame,
SetLayerEnableMask,
NULL, // Layer names, null-delimited
NULL,
NULL,
NULL, //InstallReadPatch,
NULL, //RemoveReadPatches,
NULL, //MemRead,
true,
StateAction,
Emulate,
SetInput,
DoSimpleCommand,
SNESSettings,
0,
0,
FALSE, // Multires
512, // lcm_width
480, // lcm_height (replaced in game load)
NULL, // Dummy
256, // Nominal width (replaced in game load)
240, // Nominal height (replaced in game load)
512, // Framebuffer width
512, // Framebuffer height
2, // Number of output sound channels
};

227
mednafen/snes/src/Makefile Executable file
View File

@ -0,0 +1,227 @@
include lib/nall/Makefile
include lib/nall/Makefile-qt
ui = ui_qt
################
### compiler ###
################
c := $(compiler)
cpp := $(subst cc,++,$(compiler))
flags := -O3 -fomit-frame-pointer -Ilib
link :=
# profile-guided instrumentation:
# flags += -fprofile-generate
# link += -lgcov
# profile-guided optimization:
# flags += -fprofile-use
################
### platform ###
################
ifeq ($(platform),x)
link += -s
ruby := video.glx video.xv video.qtraster video.sdl
ruby += audio.alsa audio.openal audio.oss audio.pulseaudio audio.pulseaudiosimple audio.ao
ruby += input.sdl input.x
link += $(if $(findstring audio.openal,$(ruby)),-lopenal)
else ifeq ($(platform),osx)
ruby := video.qtopengl video.qtraster
ruby += audio.openal
ruby += input.carbon
link += $(if $(findstring audio.openal,$(ruby)),-framework OpenAL)
else ifeq ($(platform),win)
link += -mwindows -mthreads
# link += -mconsole -mthreads
link += -s -luuid -lkernel32 -luser32 -lgdi32 -lshell32
# statically link Qt for Windows build
link += -enable-stdcall-fixup -Wl,-enable-auto-import -Wl,-enable-runtime-pseudo-reloc
ruby := video.direct3d video.wgl video.directdraw video.gdi video.qtraster
ruby += audio.directsound
ruby += input.rawinput input.directinput
link += $(if $(findstring audio.openal,$(ruby)),-lopenal32)
else
unknown_platform: help;
endif
############
### ruby ###
############
rubyflags := $(call ifhas,.sdl,$(ruby),`sdl-config --cflags`)
rubyflags += $(call ifhas,.qt,$(ruby),$(qtinc))
link += $(call ifhas,.sdl,$(ruby),`sdl-config --libs`)
link += $(call ifhas,video.direct3d,$(ruby),-ld3d9)
link += $(call ifhas,video.directdraw,$(ruby),-lddraw)
link += $(call ifhas,video.glx,$(ruby),-lGL)
link += $(call ifhas,video.wgl,$(ruby),-lopengl32)
link += $(call ifhas,video.xv,$(ruby),-lXv)
link += $(call ifhas,audio.alsa,$(ruby),-lasound)
link += $(call ifhas,audio.ao,$(ruby),-lao)
link += $(call ifhas,audio.directsound,$(ruby),-ldsound)
link += $(call ifhas,audio.pulseaudio,$(ruby),-lpulse-simple)
link += $(call ifhas,input.directinput,$(ruby),-ldinput8 -ldxguid)
link += $(call ifhas,input.rawinput,$(ruby),-ldinput8 -ldxguid)
###############
### objects ###
###############
objects := libco ruby
objects += system cartridge cheat
objects += memory smemory cpu cpucore scpu smp smpcore ssmp sdsp ppu bppu
objects += supergameboy superfx sa1
objects += bsx srtc sdd1 spc7110 cx4 dsp1 dsp2 dsp3 dsp4 obc1 st010 st011 st018
objects += 21fx
######################
### implicit rules ###
######################
compile = \
$(strip \
$(if $(filter %.c,$<), \
$(c) $(flags) $1 -c $< -o $@, \
$(if $(filter %.cpp,$<), \
$(cpp) $(flags) $1 -c $< -o $@ \
) \
) \
)
%.o: $<; $(call compile)
all: build;
include $(ui)/Makefile
objects := $(patsubst %,obj/%.o,$(objects))
rubydef := $(foreach c,$(subst .,_,$(call strupper,$(ruby))),-D$c)
#################
### libraries ###
#################
obj/ruby.o: lib/ruby/ruby.cpp $(call rwildcard,lib/ruby/*)
$(call compile,$(rubydef) $(rubyflags))
obj/libco.o: lib/libco/libco.c lib/libco/*
#################
### utilities ###
#################
obj/cartridge.o: cartridge/cartridge.cpp cartridge/*
obj/cheat.o : cheat/cheat.cpp cheat/*
##############
### memory ###
##############
obj/memory.o : memory/memory.cpp memory/*
obj/smemory.o: memory/smemory/smemory.cpp $(call rwildcard,memory/smemory/)
###########
### cpu ###
###########
obj/cpu.o : cpu/cpu.cpp cpu/*
obj/cpucore.o: cpu/core/core.cpp $(call rwildcard,cpu/core/)
obj/scpu.o : cpu/scpu/scpu.cpp $(call rwildcard,cpu/scpu/)
###########
### smp ###
###########
obj/smp.o : smp/smp.cpp smp/*
obj/smpcore.o: smp/core/core.cpp $(call rwildcard,smp/core/)
obj/ssmp.o : smp/ssmp/ssmp.cpp $(call rwildcard,smp/ssmp/)
###########
### dsp ###
###########
obj/adsp.o: dsp/adsp/adsp.cpp dsp/adsp/*
obj/sdsp.o: dsp/sdsp/sdsp.cpp dsp/sdsp/*
###########
### ppu ###
###########
obj/ppu.o : ppu/ppu.cpp ppu/*
obj/bppu.o: ppu/bppu/bppu.cpp $(call rwildcard,ppu/bppu/)
##############
### system ###
##############
obj/system.o: system/system.cpp $(call rwildcard,system/)
#####################
### special chips ###
#####################
obj/supergameboy.o: chip/supergameboy/supergameboy.cpp $(call rwildcard,chip/supergameboy/)
obj/superfx.o : chip/superfx/superfx.cpp $(call rwildcard,chip/superfx/)
obj/sa1.o : chip/sa1/sa1.cpp $(call rwildcard,chip/sa1/)
obj/bsx.o : chip/bsx/bsx.cpp chip/bsx/*
obj/srtc.o : chip/srtc/srtc.cpp chip/srtc/*
obj/sdd1.o : chip/sdd1/sdd1.cpp chip/sdd1/*
obj/spc7110.o : chip/spc7110/spc7110.cpp chip/spc7110/*
obj/cx4.o : chip/cx4/cx4.cpp chip/cx4/*
obj/dsp1.o : chip/dsp1/dsp1.cpp chip/dsp1/*
obj/dsp2.o : chip/dsp2/dsp2.cpp chip/dsp2/*
obj/dsp3.o : chip/dsp3/dsp3.cpp chip/dsp3/*
obj/dsp4.o : chip/dsp4/dsp4.cpp chip/dsp4/*
obj/obc1.o : chip/obc1/obc1.cpp chip/obc1/*
obj/st010.o : chip/st010/st010.cpp chip/st010/*
obj/st011.o : chip/st011/st011.cpp chip/st011/*
obj/st018.o : chip/st018/st018.cpp chip/st018/*
obj/21fx.o : chip/21fx/21fx.cpp chip/21fx/*
###############
### targets ###
###############
build: ui_build $(objects)
ifeq ($(platform),osx)
test -d ../bsnes.app || mkdir -p ../bsnes.app/Contents/MacOS
$(strip $(cpp) -o ../bsnes.app/Contents/MacOS/bsnes $(objects) $(link))
else
$(strip $(cpp) -o ../bsnes $(objects) $(link))
endif
install:
install -D -m 755 ../bsnes $(DESTDIR)$(prefix)/bin/bsnes
install -D -m 644 data/bsnes.png $(DESTDIR)$(prefix)/share/pixmaps/bsnes.png
install -D -m 644 data/bsnes.desktop $(DESTDIR)$(prefix)/share/applications/bsnes.desktop
clean: ui_clean
-@$(call delete,obj/*.o)
-@$(call delete,*.res)
-@$(call delete,*.pgd)
-@$(call delete,*.pgc)
-@$(call delete,*.ilk)
-@$(call delete,*.pdb)
-@$(call delete,*.manifest)
help:
@echo "Usage: $(MAKE) platform=(os) compiler=(cc) [options]"
@echo ""
@echo "Supported platforms:"
@echo " x - Linux / BSD (x86, x86-64)"
@echo " win - Windows (x86, x86-64)"
@echo ""
@echo "Supported compilers:"
@echo " gcc - GCC compiler"
@echo " mingw32-gcc - MinGW compiler"
@echo " i586-mingw32-gcc - MinGW cross compiler"
@echo ""
@echo "Example: $(MAKE) platform=x compiler=gcc"
@echo ""

46
mednafen/snes/src/base.hpp Executable file
View File

@ -0,0 +1,46 @@
static const char bsnesVersion[] = "0.059";
static const char bsnesTitle[] = "bsnes";
static const unsigned bsnesSerializerVersion = 4;
//S-DSP can be encapsulated into a state machine using #define magic
//this avoids ~2.048m co_switch() calls per second (~5% speedup)
#define DSP_STATE_MACHINE
//game genie + pro action replay code support (~2% speed hit)
#define CHEAT_SYSTEM
//enable debugging extensions (~15% speed hit)
//#define DEBUGGER
#include <libco/libco.h>
#include <nall/algorithm.hpp>
#include <nall/any.hpp>
#include <nall/array.hpp>
#include <nall/bit.hpp>
#include <nall/detect.hpp>
#include <nall/dl.hpp>
#include <nall/endian.hpp>
#include <nall/file.hpp>
#include <nall/function.hpp>
#include <nall/moduloarray.hpp>
#include <nall/platform.hpp>
#include <nall/priorityqueue.hpp>
#include <nall/property.hpp>
#include <nall/serializer.hpp>
#include <nall/stdint.hpp>
#include <nall/string.hpp>
#include <nall/utility.hpp>
#include <nall/vector.hpp>
using namespace nall;
typedef int8_t int8;
typedef int16_t int16;
typedef int32_t int32;
typedef int64_t int64;
typedef uint8_t uint8;
typedef uint16_t uint16;
typedef uint32_t uint32;
typedef uint64_t uint64;
#include "interface.hpp"

View File

@ -0,0 +1,133 @@
#include <../base.hpp>
#include <nall/crc32.hpp>
#include <nall/sha256.hpp>
#define CARTRIDGE_CPP
namespace SNES {
#include "header.cpp"
#include "gameboyheader.cpp"
#include "serialization.cpp"
namespace memory {
MappedRAM cartrom, cartram, cartrtc;
MappedRAM bsxflash, bsxram, bsxpram;
MappedRAM stArom, stAram;
MappedRAM stBrom, stBram;
MappedRAM gbrom, gbram, gbrtc;
};
Cartridge cartridge;
void Cartridge::load(Mode cartridge_mode) {
mode = cartridge_mode;
read_header(memory::cartrom.data(), memory::cartrom.size());
if(ram_size > 0) {
memory::cartram.map(allocate<uint8_t>(ram_size, 0xff), ram_size);
}
if(has_srtc || has_spc7110rtc) {
memory::cartrtc.map(allocate<uint8_t>(20, 0xff), 20);
}
if(mode == ModeBsx) {
memory::bsxram.map (allocate<uint8_t>( 32 * 1024, 0xff), 32 * 1024);
memory::bsxpram.map(allocate<uint8_t>(512 * 1024, 0xff), 512 * 1024);
}
if(mode == ModeSufamiTurbo) {
if(memory::stArom.data()) memory::stAram.map(allocate<uint8_t>(128 * 1024, 0xff), 128 * 1024);
if(memory::stBrom.data()) memory::stBram.map(allocate<uint8_t>(128 * 1024, 0xff), 128 * 1024);
}
if(mode == ModeSuperGameBoy) {
if(memory::gbrom.data()) {
unsigned ram_size = gameboy_ram_size();
unsigned rtc_size = gameboy_rtc_size();
if(ram_size) memory::gbram.map(allocate<uint8_t>(ram_size, 0xff), ram_size);
if(rtc_size) memory::gbrtc.map(allocate<uint8_t>(rtc_size, 0x00), rtc_size);
}
}
memory::cartrom.write_protect(true);
memory::cartram.write_protect(false);
memory::cartrtc.write_protect(false);
memory::bsxflash.write_protect(true);
memory::bsxram.write_protect(false);
memory::bsxpram.write_protect(false);
memory::stArom.write_protect(true);
memory::stAram.write_protect(false);
memory::stBrom.write_protect(true);
memory::stBram.write_protect(false);
memory::gbrom.write_protect(true);
memory::gbram.write_protect(false);
memory::gbrtc.write_protect(false);
unsigned checksum = ~0;
for(unsigned n = 0; n < memory::cartrom.size(); n++) checksum = crc32_adjust(checksum, memory::cartrom[n]);
if(memory::bsxflash.size() != 0 && memory::bsxflash.size() != ~0)
for(unsigned n = 0; n < memory::bsxflash.size(); n++) checksum = crc32_adjust(checksum, memory::bsxflash[n]);
if(memory::stArom.size() != 0 && memory::stArom.size() != ~0)
for(unsigned n = 0; n < memory::stArom.size(); n++) checksum = crc32_adjust(checksum, memory::stArom[n]);
if(memory::stBrom.size() != 0 && memory::stBrom.size() != ~0)
for(unsigned n = 0; n < memory::stBrom.size(); n++) checksum = crc32_adjust(checksum, memory::stBrom[n]);
if(memory::gbrom.size() != 0 && memory::gbrom.size() != ~0)
for(unsigned n = 0; n < memory::gbrom.size(); n++) checksum = crc32_adjust(checksum, memory::gbrom[n]);
crc32 = ~checksum;
#if 0
fprintf(stdout, "crc32 = %.8x\n", (unsigned)crc32);
sha256_ctx sha;
uint8_t shahash[32];
sha256_init(&sha);
sha256_chunk(&sha, memory::cartrom.data(), memory::cartrom.size());
sha256_final(&sha);
sha256_hash(&sha, shahash);
fprintf(stdout, "sha256 = ");
for(unsigned i = 0; i < 32; i++) fprintf(stdout, "%.2x", shahash[i]);
fprintf(stdout, "\n");
#endif
bus.load_cart();
system.serialize_init();
loaded = true;
}
void Cartridge::unload() {
memory::cartrom.reset();
memory::cartram.reset();
memory::cartrtc.reset();
memory::bsxflash.reset();
memory::bsxram.reset();
memory::bsxpram.reset();
memory::stArom.reset();
memory::stAram.reset();
memory::stBrom.reset();
memory::stBram.reset();
memory::gbrom.reset();
memory::gbram.reset();
memory::gbrtc.reset();
if(loaded == false) return;
bus.unload_cart();
loaded = false;
}
bool Cartridge::has_21fx() const {
return s21fx.exists();
}
Cartridge::Cartridge() {
loaded = false;
unload();
}
Cartridge::~Cartridge() {
unload();
}
}

View File

@ -0,0 +1,116 @@
class Cartridge : property<Cartridge> {
public:
enum Mode {
ModeNormal,
ModeBsxSlotted,
ModeBsx,
ModeSufamiTurbo,
ModeSuperGameBoy,
};
enum Type {
TypeNormal,
TypeBsxSlotted,
TypeBsxBios,
TypeBsx,
TypeSufamiTurboBios,
TypeSufamiTurbo,
TypeSuperGameBoy1Bios,
TypeSuperGameBoy2Bios,
TypeGameBoy,
TypeUnknown,
};
enum Region {
NTSC,
PAL,
};
enum MemoryMapper {
LoROM,
HiROM,
ExLoROM,
ExHiROM,
SuperFXROM,
SA1ROM,
SPC7110ROM,
BSCLoROM,
BSCHiROM,
BSXROM,
STROM,
};
enum DSP1MemoryMapper {
DSP1Unmapped,
DSP1LoROM1MB,
DSP1LoROM2MB,
DSP1HiROM,
};
readonly<bool> loaded; //is a base cartridge inserted?
readonly<unsigned> crc32; //crc32 of all cartridges (base+slot(s))
readonly<Mode> mode;
readonly<Type> type;
readonly<Region> region;
readonly<MemoryMapper> mapper;
readonly<DSP1MemoryMapper> dsp1_mapper;
readonly<bool> has_bsx_slot;
readonly<bool> has_superfx;
readonly<bool> has_sa1;
readonly<bool> has_srtc;
readonly<bool> has_sdd1;
readonly<bool> has_spc7110;
readonly<bool> has_spc7110rtc;
readonly<bool> has_cx4;
readonly<bool> has_dsp1;
readonly<bool> has_dsp2;
readonly<bool> has_dsp3;
readonly<bool> has_dsp4;
readonly<bool> has_obc1;
readonly<bool> has_st010;
readonly<bool> has_st011;
readonly<bool> has_st018;
bool has_21fx() const;
void load(Mode);
void unload();
void serialize(serializer&);
Cartridge();
~Cartridge();
private:
enum HeaderField {
CartName = 0x00,
Mapper = 0x15,
RomType = 0x16,
RomSize = 0x17,
RamSize = 0x18,
CartRegion = 0x19,
Company = 0x1a,
Version = 0x1b,
Complement = 0x1c, //inverse checksum
Checksum = 0x1e,
ResetVector = 0x3c,
};
unsigned ram_size;
void read_header(const uint8_t *data, unsigned size);
unsigned find_header(const uint8_t *data, unsigned size) const;
unsigned score_header(const uint8_t *data, unsigned size, unsigned addr) const;
unsigned gameboy_ram_size() const;
unsigned gameboy_rtc_size() const;
};
namespace memory {
extern MappedRAM cartrom, cartram, cartrtc;
extern MappedRAM bsxflash, bsxram, bsxpram;
extern MappedRAM stArom, stAram;
extern MappedRAM stBrom, stBram;
extern MappedRAM gbrom, gbram, gbrtc;
};
extern Cartridge cartridge;

View File

@ -0,0 +1,22 @@
#ifdef CARTRIDGE_CPP
unsigned Cartridge::gameboy_ram_size() const {
if(memory::gbrom.size() < 512) return 0;
switch(memory::gbrom[0x0149]) {
case 0x00: return 0 * 1024;
case 0x01: return 8 * 1024;
case 0x02: return 8 * 1024;
case 0x03: return 32 * 1024;
case 0x04: return 128 * 1024;
case 0x05: return 128 * 1024;
default: return 128 * 1024;
}
}
unsigned Cartridge::gameboy_rtc_size() const {
if(memory::gbrom.size() < 512) return 0;
if(memory::gbrom[0x0147] == 0x0f || memory::gbrom[0x0147] == 0x10) return 4;
return 0;
}
#endif

View File

@ -0,0 +1,321 @@
#ifdef CARTRIDGE_CPP
void Cartridge::read_header(const uint8_t *data, unsigned size) {
type = TypeUnknown;
mapper = LoROM;
dsp1_mapper = DSP1Unmapped;
region = NTSC;
ram_size = 0;
has_bsx_slot = false;
has_superfx = false;
has_sa1 = false;
has_srtc = false;
has_sdd1 = false;
has_spc7110 = false;
has_spc7110rtc = false;
has_cx4 = false;
has_dsp1 = false;
has_dsp2 = false;
has_dsp3 = false;
has_dsp4 = false;
has_obc1 = false;
has_st010 = false;
has_st011 = false;
has_st018 = false;
//=====================
//detect Game Boy carts
//=====================
if(size >= 0x0140) {
if(data[0x0104] == 0xce && data[0x0105] == 0xed && data[0x0106] == 0x66 && data[0x0107] == 0x66
&& data[0x0108] == 0xcc && data[0x0109] == 0x0d && data[0x010a] == 0x00 && data[0x010b] == 0x0b) {
type = TypeGameBoy;
return;
}
}
const unsigned index = find_header(data, size);
const uint8 mapperid = data[index + Mapper];
const uint8 rom_type = data[index + RomType];
const uint8 rom_size = data[index + RomSize];
const uint8 company = data[index + Company];
const uint8 regionid = data[index + CartRegion] & 0x7f;
ram_size = 1024 << (data[index + RamSize] & 7);
if(ram_size == 1024) ram_size = 0; //no RAM present
//0, 1, 13 = NTSC; 2 - 12 = PAL
region = (regionid <= 1 || regionid >= 13) ? NTSC : PAL;
//=======================
//detect BS-X flash carts
//=======================
if(data[index + 0x13] == 0x00 || data[index + 0x13] == 0xff) {
if(data[index + 0x14] == 0x00) {
const uint8_t n15 = data[index + 0x15];
if(n15 == 0x00 || n15 == 0x80 || n15 == 0x84 || n15 == 0x9c || n15 == 0xbc || n15 == 0xfc) {
if(data[index + 0x1a] == 0x33 || data[index + 0x1a] == 0xff) {
type = TypeBsx;
mapper = BSXROM;
region = NTSC; //BS-X only released in Japan
return;
}
}
}
}
//=========================
//detect Sufami Turbo carts
//=========================
if(!memcmp(data, "BANDAI SFC-ADX", 14)) {
if(!memcmp(data + 16, "SFC-ADX BACKUP", 14)) {
type = TypeSufamiTurboBios;
} else {
type = TypeSufamiTurbo;
}
mapper = STROM;
region = NTSC; //Sufami Turbo only released in Japan
return; //RAM size handled outside this routine
}
//==========================
//detect Super Game Boy BIOS
//==========================
if(!memcmp(data + index, "Super GAMEBOY2", 14)) {
type = TypeSuperGameBoy2Bios;
return;
}
if(!memcmp(data + index, "Super GAMEBOY", 13)) {
type = TypeSuperGameBoy1Bios;
return;
}
//=====================
//detect standard carts
//=====================
//detect presence of BS-X flash cartridge connector (reads extended header information)
if(data[index - 14] == 'Z') {
if(data[index - 11] == 'J') {
uint8 n13 = data[index - 13];
if((n13 >= 'A' && n13 <= 'Z') || (n13 >= '0' && n13 <= '9')) {
if(company == 0x33 || (data[index - 10] == 0x00 && data[index - 4] == 0x00)) {
has_bsx_slot = true;
}
}
}
}
if(has_bsx_slot) {
if(!memcmp(data + index, "Satellaview BS-X ", 21)) {
//BS-X base cart
type = TypeBsxBios;
mapper = BSXROM;
region = NTSC; //BS-X only released in Japan
return; //RAM size handled internally by load_cart_bsx() -> BSXCart class
} else {
type = TypeBsxSlotted;
mapper = (index == 0x7fc0 ? BSCLoROM : BSCHiROM);
region = NTSC; //BS-X slotted cartridges only released in Japan
}
} else {
//standard cart
type = TypeNormal;
if(index == 0x7fc0 && size >= 0x401000) {
mapper = ExLoROM;
} else if(index == 0x7fc0 && mapperid == 0x32) {
mapper = ExLoROM;
} else if(index == 0x7fc0) {
mapper = LoROM;
} else if(index == 0xffc0) {
mapper = HiROM;
} else { //index == 0x40ffc0
mapper = ExHiROM;
}
}
if(mapperid == 0x20 && (rom_type == 0x13 || rom_type == 0x14 || rom_type == 0x15 || rom_type == 0x1a)) {
has_superfx = true;
mapper = SuperFXROM;
ram_size = 1024 << (data[index - 3] & 7);
if(ram_size == 1024) ram_size = 0;
}
if(mapperid == 0x23 && (rom_type == 0x32 || rom_type == 0x34 || rom_type == 0x35)) {
has_sa1 = true;
mapper = SA1ROM;
}
if(mapperid == 0x35 && rom_type == 0x55) {
has_srtc = true;
}
if(mapperid == 0x32 && (rom_type == 0x43 || rom_type == 0x45)) {
has_sdd1 = true;
}
if(mapperid == 0x3a && (rom_type == 0xf5 || rom_type == 0xf9)) {
has_spc7110 = true;
has_spc7110rtc = (rom_type == 0xf9);
mapper = SPC7110ROM;
}
if(mapperid == 0x20 && rom_type == 0xf3) {
has_cx4 = true;
}
if((mapperid == 0x20 || mapperid == 0x21) && rom_type == 0x03) {
has_dsp1 = true;
}
if(mapperid == 0x30 && rom_type == 0x05 && company != 0xb2) {
has_dsp1 = true;
}
if(mapperid == 0x31 && (rom_type == 0x03 || rom_type == 0x05)) {
has_dsp1 = true;
}
if(has_dsp1 == true) {
if((mapperid & 0x2f) == 0x20 && size <= 0x100000) {
dsp1_mapper = DSP1LoROM1MB;
} else if((mapperid & 0x2f) == 0x20) {
dsp1_mapper = DSP1LoROM2MB;
} else if((mapperid & 0x2f) == 0x21) {
dsp1_mapper = DSP1HiROM;
}
}
if(mapperid == 0x20 && rom_type == 0x05) {
has_dsp2 = true;
}
if(mapperid == 0x30 && rom_type == 0x05 && company == 0xb2) {
has_dsp3 = true;
}
if(mapperid == 0x30 && rom_type == 0x03) {
has_dsp4 = true;
}
if(mapperid == 0x30 && rom_type == 0x25) {
has_obc1 = true;
}
if(mapperid == 0x30 && rom_type == 0xf6 && rom_size >= 10) {
has_st010 = true;
}
if(mapperid == 0x30 && rom_type == 0xf6 && rom_size < 10) {
has_st011 = true;
}
if(mapperid == 0x30 && rom_type == 0xf5) {
has_st018 = true;
}
}
unsigned Cartridge::find_header(const uint8_t *data, unsigned size) const {
unsigned score_lo = score_header(data, size, 0x007fc0);
unsigned score_hi = score_header(data, size, 0x00ffc0);
unsigned score_ex = score_header(data, size, 0x40ffc0);
if(score_ex) score_ex += 4; //favor ExHiROM on images > 32mbits
if(score_lo >= score_hi && score_lo >= score_ex) {
return 0x007fc0;
} else if(score_hi >= score_ex) {
return 0x00ffc0;
} else {
return 0x40ffc0;
}
}
unsigned Cartridge::score_header(const uint8_t *data, unsigned size, unsigned addr) const {
if(size < addr + 64) return 0; //image too small to contain header at this location?
int score = 0;
uint16 resetvector = data[addr + ResetVector] | (data[addr + ResetVector + 1] << 8);
uint16 checksum = data[addr + Checksum ] | (data[addr + Checksum + 1] << 8);
uint16 complement = data[addr + Complement ] | (data[addr + Complement + 1] << 8);
uint8 resetop = data[(addr & ~0x7fff) | (resetvector & 0x7fff)]; //first opcode executed upon reset
uint8 mapper = data[addr + Mapper] & ~0x10; //mask off irrelevent FastROM-capable bit
//$00:[000-7fff] contains uninitialized RAM and MMIO.
//reset vector must point to ROM at $00:[8000-ffff] to be considered valid.
if(resetvector < 0x8000) return 0;
//some images duplicate the header in multiple locations, and others have completely
//invalid header information that cannot be relied upon.
//below code will analyze the first opcode executed at the specified reset vector to
//determine the probability that this is the correct header.
//most likely opcodes
if(resetop == 0x78 //sei
|| resetop == 0x18 //clc (clc; xce)
|| resetop == 0x38 //sec (sec; xce)
|| resetop == 0x9c //stz $nnnn (stz $4200)
|| resetop == 0x4c //jmp $nnnn
|| resetop == 0x5c //jml $nnnnnn
) score += 8;
//plausible opcodes
if(resetop == 0xc2 //rep #$nn
|| resetop == 0xe2 //sep #$nn
|| resetop == 0xad //lda $nnnn
|| resetop == 0xae //ldx $nnnn
|| resetop == 0xac //ldy $nnnn
|| resetop == 0xaf //lda $nnnnnn
|| resetop == 0xa9 //lda #$nn
|| resetop == 0xa2 //ldx #$nn
|| resetop == 0xa0 //ldy #$nn
|| resetop == 0x20 //jsr $nnnn
|| resetop == 0x22 //jsl $nnnnnn
) score += 4;
//implausible opcodes
if(resetop == 0x40 //rti
|| resetop == 0x60 //rts
|| resetop == 0x6b //rtl
|| resetop == 0xcd //cmp $nnnn
|| resetop == 0xec //cpx $nnnn
|| resetop == 0xcc //cpy $nnnn
) score -= 4;
//least likely opcodes
if(resetop == 0x00 //brk #$nn
|| resetop == 0x02 //cop #$nn
|| resetop == 0xdb //stp
|| resetop == 0x42 //wdm
|| resetop == 0xff //sbc $nnnnnn,x
) score -= 8;
//at times, both the header and reset vector's first opcode will match ...
//fallback and rely on info validity in these cases to determine more likely header.
//a valid checksum is the biggest indicator of a valid header.
if((checksum + complement) == 0xffff && (checksum != 0) && (complement != 0)) score += 4;
if(addr == 0x007fc0 && mapper == 0x20) score += 2; //0x20 is usually LoROM
if(addr == 0x00ffc0 && mapper == 0x21) score += 2; //0x21 is usually HiROM
if(addr == 0x007fc0 && mapper == 0x22) score += 2; //0x22 is usually ExLoROM
if(addr == 0x40ffc0 && mapper == 0x25) score += 2; //0x25 is usually ExHiROM
if(data[addr + Company] == 0x33) score += 2; //0x33 indicates extended header
if(data[addr + RomType] < 0x08) score++;
if(data[addr + RomSize] < 0x10) score++;
if(data[addr + RamSize] < 0x08) score++;
if(data[addr + CartRegion] < 14) score++;
if(score < 0) score = 0;
return score;
}
#endif

View File

@ -0,0 +1,37 @@
#ifdef CARTRIDGE_CPP
void Cartridge::serialize(serializer &s) {
if(memory::cartram.size() != 0 && memory::cartram.size() != ~0) {
s.array(memory::cartram.data(), memory::cartram.size());
}
if(memory::cartrtc.size() != 0 && memory::cartrtc.size() != ~0) {
s.array(memory::cartrtc.data(), memory::cartrtc.size());
}
if(memory::bsxram.size() != 0 && memory::bsxram.size() != ~0) {
s.array(memory::bsxram.data(), memory::bsxram.size());
}
if(memory::bsxpram.size() != 0 && memory::bsxpram.size() != ~0) {
s.array(memory::bsxpram.data(), memory::bsxpram.size());
}
if(memory::stAram.size() != 0 && memory::stAram.size() != ~0) {
s.array(memory::stAram.data(), memory::stAram.size());
}
if(memory::stBram.size() != 0 && memory::stBram.size() != ~0) {
s.array(memory::stBram.data(), memory::stBram.size());
}
if(memory::gbram.size() != 0 && memory::gbram.size() != ~0) {
s.array(memory::gbram.data(), memory::gbram.size());
}
if(memory::gbrtc.size() != 0 && memory::gbrtc.size() != ~0) {
s.array(memory::gbrtc.data(), memory::gbrtc.size());
}
}
#endif

3
mednafen/snes/src/cc.bat Executable file
View File

@ -0,0 +1,3 @@
@mingw32-make
@pause

View File

@ -0,0 +1,2 @@
bool Cheat::active() const { return cheat_enabled; }
bool Cheat::exists(unsigned addr) const { return bitmask[addr >> 3] & 1 << (addr & 7); }

196
mednafen/snes/src/cheat/cheat.cpp Executable file
View File

@ -0,0 +1,196 @@
#include <../base.hpp>
#define CHEAT_CPP
namespace SNES {
Cheat cheat;
bool Cheat::enabled() const {
return system_enabled;
}
void Cheat::enable(bool state) {
system_enabled = state;
cheat_enabled = system_enabled && code_enabled;
}
void Cheat::synchronize() {
memset(bitmask, 0x00, sizeof bitmask);
code_enabled = false;
for(unsigned i = 0; i < size(); i++) {
const CheatCode &code = operator[](i);
if(code.enabled == false) continue;
for(unsigned n = 0; n < code.addr.size(); n++) {
code_enabled = true;
unsigned addr = mirror(code.addr[n]);
bitmask[addr >> 3] |= 1 << (addr & 7);
if((addr & 0xffe000) == 0x7e0000) {
//mirror $7e:0000-1fff to $00-3f|80-bf:0000-1fff
unsigned mirroraddr;
for(unsigned x = 0; x <= 0x3f; x++) {
mirroraddr = ((0x00 + x) << 16) + (addr & 0x1fff);
bitmask[mirroraddr >> 3] |= 1 << (mirroraddr & 7);
mirroraddr = ((0x80 + x) << 16) + (addr & 0x1fff);
bitmask[mirroraddr >> 3] |= 1 << (mirroraddr & 7);
}
}
}
}
cheat_enabled = system_enabled && code_enabled;
}
bool Cheat::read(unsigned addr, uint8 &data) const {
addr = mirror(addr);
for(unsigned i = 0; i < size(); i++) {
const CheatCode &code = operator[](i);
if(code.enabled == false) continue;
for(unsigned n = 0; n < code.addr.size(); n++) {
if(addr == mirror(code.addr[n])) {
data = code.data[n];
return true;
}
}
}
return false;
}
Cheat::Cheat() {
system_enabled = true;
synchronize();
}
//===============
//encode / decode
//===============
bool Cheat::decode(const char *s, unsigned &addr, uint8 &data, Type &type) {
string t = s;
strlower(t);
#define ischr(n) ((n >= '0' && n <= '9') || (n >= 'a' && n <= 'f'))
if(strlen(t) == 8 || (strlen(t) == 9 && t[6] == ':')) {
//strip ':'
if(strlen(t) == 9 && t[6] == ':') t = string() << substr(t, 0, 6) << substr(t, 7);
//validate input
for(unsigned i = 0; i < 8; i++) if(!ischr(t[i])) return false;
type = ProActionReplay;
unsigned r = strhex((const char*)t);
addr = r >> 8;
data = r & 0xff;
return true;
} else if(strlen(t) == 9 && t[4] == '-') {
//strip '-'
t = string() << substr(t, 0, 4) << substr(t, 5);
//validate input
for(unsigned i = 0; i < 8; i++) if(!ischr(t[i])) return false;
type = GameGenie;
strtr(t, "df4709156bc8a23e", "0123456789abcdef");
unsigned r = strhex((const char*)t);
//8421 8421 8421 8421 8421 8421
//abcd efgh ijkl mnop qrst uvwx
//ijkl qrst opab cduv wxef ghmn
addr = (!!(r & 0x002000) << 23) | (!!(r & 0x001000) << 22)
| (!!(r & 0x000800) << 21) | (!!(r & 0x000400) << 20)
| (!!(r & 0x000020) << 19) | (!!(r & 0x000010) << 18)
| (!!(r & 0x000008) << 17) | (!!(r & 0x000004) << 16)
| (!!(r & 0x800000) << 15) | (!!(r & 0x400000) << 14)
| (!!(r & 0x200000) << 13) | (!!(r & 0x100000) << 12)
| (!!(r & 0x000002) << 11) | (!!(r & 0x000001) << 10)
| (!!(r & 0x008000) << 9) | (!!(r & 0x004000) << 8)
| (!!(r & 0x080000) << 7) | (!!(r & 0x040000) << 6)
| (!!(r & 0x020000) << 5) | (!!(r & 0x010000) << 4)
| (!!(r & 0x000200) << 3) | (!!(r & 0x000100) << 2)
| (!!(r & 0x000080) << 1) | (!!(r & 0x000040) << 0);
data = r >> 24;
return true;
} else {
return false;
}
#undef ischr
}
bool Cheat::encode(string &s, unsigned addr, uint8 data, Type type) {
char t[16];
if(type == ProActionReplay) {
sprintf(t, "%.6x%.2x", addr, data);
s = t;
return true;
} else if(type == GameGenie) {
unsigned r = addr;
addr = (!!(r & 0x008000) << 23) | (!!(r & 0x004000) << 22)
| (!!(r & 0x002000) << 21) | (!!(r & 0x001000) << 20)
| (!!(r & 0x000080) << 19) | (!!(r & 0x000040) << 18)
| (!!(r & 0x000020) << 17) | (!!(r & 0x000010) << 16)
| (!!(r & 0x000200) << 15) | (!!(r & 0x000100) << 14)
| (!!(r & 0x800000) << 13) | (!!(r & 0x400000) << 12)
| (!!(r & 0x200000) << 11) | (!!(r & 0x100000) << 10)
| (!!(r & 0x000008) << 9) | (!!(r & 0x000004) << 8)
| (!!(r & 0x000002) << 7) | (!!(r & 0x000001) << 6)
| (!!(r & 0x080000) << 5) | (!!(r & 0x040000) << 4)
| (!!(r & 0x020000) << 3) | (!!(r & 0x010000) << 2)
| (!!(r & 0x000800) << 1) | (!!(r & 0x000400) << 0);
sprintf(t, "%.2x%.2x-%.4x", data, addr >> 16, addr & 0xffff);
strtr(t, "0123456789abcdef", "df4709156bc8a23e");
s = t;
return true;
} else {
return false;
}
}
//========
//internal
//========
unsigned Cheat::mirror(unsigned addr) const {
//$00-3f|80-bf:0000-1fff -> $7e:0000-1fff
if((addr & 0x40e000) == 0x000000) return (0x7e0000 + (addr & 0x1fff));
return addr;
}
//=========
//CheatCode
//=========
bool CheatCode::operator=(string s) {
addr.reset();
data.reset();
lstring list;
list.split("+", s.replace(" ", ""));
for(unsigned i = 0; i < list.size(); i++) {
unsigned addr_;
uint8 data_;
Cheat::Type type_;
if(Cheat::decode(list[i], addr_, data_, type_) == false) {
addr.reset();
data.reset();
return false;
}
addr.add(addr_);
data.add(data_);
}
return true;
}
CheatCode::CheatCode() {
enabled = false;
}
}

View File

@ -0,0 +1,35 @@
struct CheatCode {
bool enabled;
array<unsigned> addr;
array<uint8> data;
bool operator=(string);
CheatCode();
};
class Cheat : public vector<CheatCode> {
public:
enum Type { ProActionReplay, GameGenie };
bool enabled() const;
void enable(bool);
void synchronize();
bool read(unsigned, uint8&) const;
inline bool active() const;
inline bool exists(unsigned addr) const;
Cheat();
static bool decode(const char*, unsigned&, uint8&, Type&);
static bool encode(string&, unsigned, uint8, Type);
private:
uint8 bitmask[0x200000];
bool system_enabled;
bool code_enabled;
bool cheat_enabled;
unsigned mirror(unsigned) const;
};
extern Cheat cheat;

View File

@ -0,0 +1,195 @@
#include <../base.hpp>
//B-bus interface
//$21f0 command port (r/w)
//-------------------------
//$00 set data port address (sr[3-0] = address)
//$01 set audio track number (sr[1-0] = track number)
//$02 set volume (sr[1] = left, sr[0] = right)
//$03 set audio state (sr[0].d1 = pause, sr[0].d0 = repeat)
//
//d7 = data port busy
//d6 = audio port busy
//d5 = audio playing
//d4 = reserved (0)
//d3-d0 = version (0)
//
//
//$21f1 parameter port (w)
//-------------------------
//(shift register)
//
//
//$21f2 data port (r)
//--------------------
//(auto-increment read port)
//A-bus interface
//$2200 command port (r/w)
//-------------------------
//$00 set data port address (sr[3-0] = address)
//$01 set audio track number (sr[1-0] = track number)
//$02 set volume (sr[1] = left, sr[0] = right)
//$03 set audio state (sr[0].d1 = pause, sr[0].d0 = repeat)
//
//d7 = data port busy
//d6 = audio port busy
//d5 = audio playing
//d4 = reserved (0)
//d3-d0 = version (0)
//
//$2201 data port (r/w)
//----------------------
//(shift register)
//
//(auto-increment read port)
#define S21FX_CPP
namespace SNES {
S21fx s21fx;
#include "serialization.cpp"
void S21fx::enter() {
scheduler.clock.cop_freq = 44100;
while(true) {
while(scheduler.sync == Scheduler::SyncAll) {
scheduler.exit(Scheduler::SynchronizeEvent);
}
int16 left = 0, right = 0;
if((mmio.status & AudioPlaying) && !mmio.audio_pause) {
if(audiofile.open()) {
if(audiofile.end()) {
if(!mmio.audio_repeat) mmio.status &= ~AudioPlaying;
audiofile.seek(mmio.audio_offset = 58);
} else {
mmio.audio_offset += 4;
left = audiofile.readl(2);
right = audiofile.readl(2);
}
} else {
mmio.status &= ~AudioPlaying;
}
}
left = sclamp<16>((double)left * (double)mmio.audio_volume_left / 255.0);
right = sclamp<16>((double)right * (double)mmio.audio_volume_right / 255.0);
audio.coprocessor_sample(left, right);
scheduler.addclocks_cop(1);
scheduler.sync_copcpu();
}
}
void S21fx::init() {
}
void S21fx::enable() {
audio.coprocessor_enable(true);
audio.coprocessor_frequency(44100.0);
for(unsigned i = 0x21f0; i <= 0x21f7; i++) {
memory::mmio.map(i, *this);
}
memory::mmio.map(0x2200, *this);
memory::mmio.map(0x2201, *this);
if(datafile.open()) datafile.close();
datafile.open(string() << basepath << "21fx.bin", file::mode_read);
}
void S21fx::power() {
reset();
}
void S21fx::reset() {
mmio.status = DataPortBusy | AudioBusy;
mmio.shift_register = 0;
mmio.data_offset = 0;
mmio.audio_offset = 0;
mmio.audio_track = 0;
mmio.audio_volume_left = 255;
mmio.audio_volume_right = 255;
mmio.audio_repeat = false;
mmio.audio_pause = false;
}
uint8 S21fx::mmio_read(unsigned addr) {
addr &= 0xffff;
if((addr == 0x21f0) || (addr == 0x2200)) {
return mmio.status | 0x00;
}
if((addr == 0x21f2) || (addr == 0x2201)) {
if(mmio.status & DataPortBusy) return 0x00;
mmio.data_offset++;
if(datafile.open()) return datafile.read();
return 0x00;
}
return 0x00;
}
void S21fx::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if((addr == 0x21f0) || (addr == 0x2200)) {
if(data == 0x00) {
mmio.data_offset = mmio.shift_register & 0xffffffff;
if(datafile.open()) {
datafile.seek(mmio.data_offset);
}
mmio.status &= ~DataPortBusy;
}
if(data == 0x01) {
mmio.audio_track = mmio.shift_register & 0xffff;
if(audiofile.open()) audiofile.close();
char track[16];
sprintf(track, "%.5u", mmio.audio_track);
if(audiofile.open(string() << basepath << "audio" << track << ".wav", file::mode_read)) {
audiofile.seek(mmio.audio_offset = 58); //skip WAV header
}
mmio.status &= ~(AudioBusy | AudioPlaying);
}
if(data == 0x02) {
mmio.audio_volume_left = mmio.shift_register >> 8;
mmio.audio_volume_right = mmio.shift_register >> 0;
}
if(data == 0x03) {
mmio.status |= AudioPlaying;
mmio.audio_repeat = mmio.shift_register & 1;
mmio.audio_pause = mmio.shift_register & 2;
}
mmio.shift_register = 0;
}
if((addr == 0x21f1) || (addr == 0x2201)) {
mmio.shift_register = (mmio.shift_register << 8) | data;
}
}
void S21fx::base(const string& path) {
basepath = path;
}
bool S21fx::exists() {
return file::exists(string() << basepath << "21fx.bin");
}
S21fx::S21fx() {
}
}

View File

@ -0,0 +1,44 @@
class S21fx : public MMIO {
public:
void enter();
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
void base(const string &path);
bool exists();
void serialize(serializer&);
S21fx();
private:
string basepath;
file datafile;
file audiofile;
enum Flag {
DataPortBusy = 0x80,
AudioBusy = 0x40,
AudioPlaying = 0x20,
};
struct MMIO {
uint8 status;
uint64 shift_register;
uint32 data_offset;
uint32 audio_offset;
uint16 audio_track;
uint8 audio_volume_left;
uint8 audio_volume_right;
bool audio_repeat;
bool audio_pause;
} mmio;
};
extern S21fx s21fx;

View File

@ -0,0 +1,31 @@
#ifdef S21FX_CPP
void S21fx::serialize(serializer &s) {
s.integer(mmio.status);
s.integer(mmio.shift_register);
s.integer(mmio.data_offset);
s.integer(mmio.audio_offset);
s.integer(mmio.audio_track);
s.integer(mmio.audio_volume_left);
s.integer(mmio.audio_volume_right);
s.integer(mmio.audio_repeat);
s.integer(mmio.audio_pause);
//flush file handles and indices, as a different track may be playing,
//or the file offsets may be at the wrong location ...
if(datafile.open()) datafile.close();
if(datafile.open(string() << basepath << "21fx.bin", file::mode_read)) {
datafile.seek(mmio.data_offset);
}
if(audiofile.open()) audiofile.close();
char track[16];
sprintf(track, "%.5u", mmio.audio_track);
if(audiofile.open(string() << basepath << "audio" << track << ".wav", file::mode_read)) {
audiofile.seek(mmio.audio_offset);
}
}
#endif

View File

@ -0,0 +1,10 @@
#include <../base.hpp>
#define BSX_CPP
namespace SNES {
#include "bsx_base.cpp"
#include "bsx_cart.cpp"
#include "bsx_flash.cpp"
};

View File

@ -0,0 +1,71 @@
class BSXBase : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
private:
struct {
uint8 r2188, r2189, r218a, r218b;
uint8 r218c, r218d, r218e, r218f;
uint8 r2190, r2191, r2192, r2193;
uint8 r2194, r2195, r2196, r2197;
uint8 r2198, r2199, r219a, r219b;
uint8 r219c, r219d, r219e, r219f;
uint8 r2192_counter;
uint8 r2192_hour, r2192_minute, r2192_second;
} regs;
};
class BSXCart : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
BSXCart();
~BSXCart();
private:
struct {
uint8 r[16];
} regs;
void update_memory_map();
};
class BSXFlash : public Memory {
public:
void init();
void enable();
void power();
void reset();
unsigned size() const;
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
private:
struct {
unsigned command;
uint8 write_old;
uint8 write_new;
bool flash_enable;
bool read_enable;
bool write_enable;
} regs;
};
extern BSXBase bsxbase;
extern BSXCart bsxcart;
extern BSXFlash bsxflash;

View File

@ -0,0 +1,140 @@
#ifdef BSX_CPP
BSXBase bsxbase;
void BSXBase::init() {
}
void BSXBase::enable() {
for(uint16 i = 0x2188; i <= 0x219f; i++) memory::mmio.map(i, *this);
}
void BSXBase::power() {
reset();
}
void BSXBase::reset() {
memset(&regs, 0x00, sizeof regs);
}
uint8 BSXBase::mmio_read(unsigned addr) {
addr &= 0xffff;
switch(addr) {
case 0x2188: return regs.r2188;
case 0x2189: return regs.r2189;
case 0x218a: return regs.r218a;
case 0x218c: return regs.r218c;
case 0x218e: return regs.r218e;
case 0x218f: return regs.r218f;
case 0x2190: return regs.r2190;
case 0x2192: {
unsigned counter = regs.r2192_counter++;
if(regs.r2192_counter >= 18) regs.r2192_counter = 0;
if(counter == 0) {
time_t rawtime;
time(&rawtime);
tm *t = localtime(&rawtime);
regs.r2192_hour = t->tm_hour;
regs.r2192_minute = t->tm_min;
regs.r2192_second = t->tm_sec;
}
switch(counter) {
case 0: return 0x00; //???
case 1: return 0x00; //???
case 2: return 0x00; //???
case 3: return 0x00; //???
case 4: return 0x00; //???
case 5: return 0x01;
case 6: return 0x01;
case 7: return 0x00;
case 8: return 0x00;
case 9: return 0x00;
case 10: return regs.r2192_second;
case 11: return regs.r2192_minute;
case 12: return regs.r2192_hour;
case 13: return 0x00; //???
case 14: return 0x00; //???
case 15: return 0x00; //???
case 16: return 0x00; //???
case 17: return 0x00; //???
}
} break;
case 0x2193: return regs.r2193 & ~0x0c;
case 0x2194: return regs.r2194;
case 0x2196: return regs.r2196;
case 0x2197: return regs.r2197;
case 0x2199: return regs.r2199;
}
return cpu.regs.mdr;
}
void BSXBase::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
switch(addr) {
case 0x2188: {
regs.r2188 = data;
} break;
case 0x2189: {
regs.r2189 = data;
} break;
case 0x218a: {
regs.r218a = data;
} break;
case 0x218b: {
regs.r218b = data;
} break;
case 0x218c: {
regs.r218c = data;
} break;
case 0x218e: {
regs.r218e = data;
} break;
case 0x218f: {
regs.r218e >>= 1;
regs.r218e = regs.r218f - regs.r218e;
regs.r218f >>= 1;
} break;
case 0x2191: {
regs.r2191 = data;
regs.r2192_counter = 0;
} break;
case 0x2192: {
regs.r2190 = 0x80;
} break;
case 0x2193: {
regs.r2193 = data;
} break;
case 0x2194: {
regs.r2194 = data;
} break;
case 0x2197: {
regs.r2197 = data;
} break;
case 0x2199: {
regs.r2199 = data;
} break;
}
}
#endif

View File

@ -0,0 +1,97 @@
#ifdef BSX_CPP
BSXCart bsxcart;
void BSXCart::init() {
}
void BSXCart::enable() {
for(uint16 i = 0x5000; i <= 0x5fff; i++) memory::mmio.map(i, *this);
}
void BSXCart::power() {
reset();
}
void BSXCart::reset() {
for(unsigned i = 0; i < 16; i++) regs.r[i] = 0x00;
regs.r[0x07] = 0x80;
regs.r[0x08] = 0x80;
update_memory_map();
}
void BSXCart::update_memory_map() {
Memory &cart = (regs.r[0x01] & 0x80) == 0x00 ? (Memory&)bsxflash : (Memory&)memory::bsxpram;
if((regs.r[0x02] & 0x80) == 0x00) {
//LoROM mapping
bus.map(Bus::MapLinear, 0x00, 0x7d, 0x8000, 0xffff, cart);
bus.map(Bus::MapLinear, 0x80, 0xff, 0x8000, 0xffff, cart);
} else {
//HiROM mapping
bus.map(Bus::MapShadow, 0x00, 0x3f, 0x8000, 0xffff, cart);
bus.map(Bus::MapLinear, 0x40, 0x7d, 0x0000, 0xffff, cart);
bus.map(Bus::MapShadow, 0x80, 0xbf, 0x8000, 0xffff, cart);
bus.map(Bus::MapLinear, 0xc0, 0xff, 0x0000, 0xffff, cart);
}
if(regs.r[0x03] & 0x80) {
bus.map(Bus::MapLinear, 0x60, 0x6f, 0x0000, 0xffff, memory::bsxpram);
//bus.map(Bus::MapLinear, 0x70, 0x77, 0x0000, 0xffff, memory::bsxpram);
}
if((regs.r[0x05] & 0x80) == 0x00) {
bus.map(Bus::MapLinear, 0x40, 0x4f, 0x0000, 0xffff, memory::bsxpram);
}
if((regs.r[0x06] & 0x80) == 0x00) {
bus.map(Bus::MapLinear, 0x50, 0x5f, 0x0000, 0xffff, memory::bsxpram);
}
if(regs.r[0x07] & 0x80) {
bus.map(Bus::MapLinear, 0x00, 0x1f, 0x8000, 0xffff, memory::cartrom);
}
if(regs.r[0x08] & 0x80) {
bus.map(Bus::MapLinear, 0x80, 0x9f, 0x8000, 0xffff, memory::cartrom);
}
bus.map(Bus::MapShadow, 0x20, 0x3f, 0x6000, 0x7fff, memory::bsxpram);
bus.map(Bus::MapLinear, 0x70, 0x77, 0x0000, 0xffff, memory::bsxpram);
}
uint8 BSXCart::mmio_read(unsigned addr) {
if((addr & 0xf0ffff) == 0x005000) { //$[00-0f]:5000 MMIO
uint8 n = (addr >> 16) & 15;
return regs.r[n];
}
if((addr & 0xf8f000) == 0x105000) { //$[10-17]:[5000-5fff] SRAM
return memory::bsxram.read(((addr >> 16) & 7) * 0x1000 + (addr & 0xfff));
}
return 0x00;
}
void BSXCart::mmio_write(unsigned addr, uint8 data) {
if((addr & 0xf0ffff) == 0x005000) { //$[00-0f]:5000 MMIO
uint8 n = (addr >> 16) & 15;
regs.r[n] = data;
if(n == 0x0e && data & 0x80) update_memory_map();
return;
}
if((addr & 0xf8f000) == 0x105000) { //$[10-17]:[5000-5fff] SRAM
return memory::bsxram.write(((addr >> 16) & 7) * 0x1000 + (addr & 0xfff), data);
}
}
BSXCart::BSXCart() {
}
BSXCart::~BSXCart() {
}
#endif

View File

@ -0,0 +1,119 @@
#ifdef BSX_CPP
BSXFlash bsxflash;
void BSXFlash::init() {}
void BSXFlash::enable() {}
void BSXFlash::power() {
reset();
}
void BSXFlash::reset() {
regs.command = 0;
regs.write_old = 0x00;
regs.write_new = 0x00;
regs.flash_enable = false;
regs.read_enable = false;
regs.write_enable = false;
memory::bsxflash.write_protect(!regs.write_enable);
}
unsigned BSXFlash::size() const {
return memory::bsxflash.size();
}
uint8 BSXFlash::read(unsigned addr) {
if(addr == 0x0002) {
if(regs.flash_enable) return 0x80;
}
if(addr == 0x5555) {
if(regs.flash_enable) return 0x80;
}
if(regs.read_enable && addr >= 0xff00 && addr <= 0xff13) {
//read flash cartridge vendor information
switch(addr - 0xff00) {
case 0x00: return 0x4d;
case 0x01: return 0x00;
case 0x02: return 0x50;
case 0x03: return 0x00;
case 0x04: return 0x00;
case 0x05: return 0x00;
case 0x06: return 0x2a; //0x2a = 8mbit, 0x2b = 16mbit (not known to exist, though BIOS recognizes ID)
case 0x07: return 0x00;
default: return 0x00;
}
}
return memory::bsxflash.read(addr);
}
void BSXFlash::write(unsigned addr, uint8 data) {
//there exist both read-only and read-write BS-X flash cartridges ...
//unfortunately, the vendor info is not stored inside memory dumps
//of BS-X flashcarts, so it is impossible to determine whether a
//given flashcart is writeable.
//however, it has been observed that LoROM-mapped BS-X carts always
//use read-write flashcarts, and HiROM-mapped BS-X carts always use
//read-only flashcarts.
//below is an unfortunately necessary workaround to this problem.
if(cartridge.mapper() == Cartridge::BSCHiROM) return;
if((addr & 0xff0000) == 0) {
regs.write_old = regs.write_new;
regs.write_new = data;
if(regs.write_enable && regs.write_old == regs.write_new) {
return memory::bsxflash.write(addr, data);
}
} else {
if(regs.write_enable) {
return memory::bsxflash.write(addr, data);
}
}
if(addr == 0x0000) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffff) == 0x38d0) {
regs.flash_enable = true;
regs.read_enable = true;
}
}
if(addr == 0x2aaa) {
regs.command <<= 8;
regs.command |= data;
}
if(addr == 0x5555) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffffff) == 0xaa5570) {
regs.write_enable = false;
}
if((regs.command & 0xffffff) == 0xaa55a0) {
regs.write_old = 0x00;
regs.write_new = 0x00;
regs.flash_enable = true;
regs.write_enable = true;
}
if((regs.command & 0xffffff) == 0xaa55f0) {
regs.flash_enable = false;
regs.read_enable = false;
regs.write_enable = false;
}
memory::bsxflash.write_protect(!regs.write_enable);
}
}
#endif

17
mednafen/snes/src/chip/chip.hpp Executable file
View File

@ -0,0 +1,17 @@
#include "supergameboy/supergameboy.hpp"
#include "superfx/superfx.hpp"
#include "sa1/sa1.hpp"
#include "bsx/bsx.hpp"
#include "srtc/srtc.hpp"
#include "sdd1/sdd1.hpp"
#include "spc7110/spc7110.hpp"
#include "cx4/cx4.hpp"
#include "dsp1/dsp1.hpp"
#include "dsp2/dsp2.hpp"
#include "dsp3/dsp3.hpp"
#include "dsp4/dsp4.hpp"
#include "obc1/obc1.hpp"
#include "st010/st010.hpp"
#include "st011/st011.hpp"
#include "st018/st018.hpp"
#include "21fx/21fx.hpp"

View File

@ -0,0 +1,210 @@
//=============
//Cx4 emulation
//=============
//Used in Rockman X2/X3 (Megaman X2/X3)
//Portions (c) anomie, Overload, zsKnight, Nach, byuu
#include <../base.hpp>
#define CX4_CPP
namespace SNES {
Cx4 cx4;
#include "serialization.cpp"
#include "data.cpp"
#include "functions.cpp"
#include "oam.cpp"
#include "opcodes.cpp"
void Cx4::init() {
}
void Cx4::enable() {
bus.map(Bus::MapDirect, 0x00, 0x3f, 0x6000, 0x7fff, *this);
bus.map(Bus::MapDirect, 0x80, 0xbf, 0x6000, 0x7fff, *this);
}
uint32 Cx4::ldr(uint8 r) {
uint16 addr = 0x0080 + (r * 3);
return (reg[addr + 0] << 0)
| (reg[addr + 1] << 8)
| (reg[addr + 2] << 16);
}
void Cx4::str(uint8 r, uint32 data) {
uint16 addr = 0x0080 + (r * 3);
reg[addr + 0] = (data >> 0);
reg[addr + 1] = (data >> 8);
reg[addr + 2] = (data >> 16);
}
void Cx4::mul(uint32 x, uint32 y, uint32 &rl, uint32 &rh) {
int64 rx = x & 0xffffff;
int64 ry = y & 0xffffff;
if(rx & 0x800000)rx |= ~0x7fffff;
if(ry & 0x800000)ry |= ~0x7fffff;
rx *= ry;
rl = (rx) & 0xffffff;
rh = (rx >> 24) & 0xffffff;
}
uint32 Cx4::sin(uint32 rx) {
r0 = rx & 0x1ff;
if(r0 & 0x100)r0 ^= 0x1ff;
if(r0 & 0x080)r0 ^= 0x0ff;
if(rx & 0x100) {
return sin_table[r0 + 0x80];
} else {
return sin_table[r0];
}
}
uint32 Cx4::cos(uint32 rx) {
return sin(rx + 0x080);
}
void Cx4::immediate_reg(uint32 start) {
r0 = ldr(0);
for(uint32 i = start; i < 48; i++) {
if((r0 & 0x0fff) < 0x0c00) {
ram[r0 & 0x0fff] = immediate_data[i];
}
r0++;
}
str(0, r0);
}
void Cx4::transfer_data() {
uint32 src;
uint16 dest, count;
src = (reg[0x40]) | (reg[0x41] << 8) | (reg[0x42] << 16);
count = (reg[0x43]) | (reg[0x44] << 8);
dest = (reg[0x45]) | (reg[0x46] << 8);
for(uint32 i=0;i<count;i++) {
write(dest++, bus.read(src++));
}
}
void Cx4::write(unsigned addr, uint8 data) {
addr &= 0x1fff;
if(addr < 0x0c00) {
//ram
ram[addr] = data;
return;
}
if(addr < 0x1f00) {
//unmapped
return;
}
//command register
reg[addr & 0xff] = data;
if(addr == 0x1f47) {
//memory transfer
transfer_data();
return;
}
if(addr == 0x1f4f) {
//c4 command
if(reg[0x4d] == 0x0e && !(data & 0xc3)) {
//c4 test command
reg[0x80] = data >> 2;
return;
}
switch(data) {
case 0x00: op00(); break;
case 0x01: op01(); break;
case 0x05: op05(); break;
case 0x0d: op0d(); break;
case 0x10: op10(); break;
case 0x13: op13(); break;
case 0x15: op15(); break;
case 0x1f: op1f(); break;
case 0x22: op22(); break;
case 0x25: op25(); break;
case 0x2d: op2d(); break;
case 0x40: op40(); break;
case 0x54: op54(); break;
case 0x5c: op5c(); break;
case 0x5e: op5e(); break;
case 0x60: op60(); break;
case 0x62: op62(); break;
case 0x64: op64(); break;
case 0x66: op66(); break;
case 0x68: op68(); break;
case 0x6a: op6a(); break;
case 0x6c: op6c(); break;
case 0x6e: op6e(); break;
case 0x70: op70(); break;
case 0x72: op72(); break;
case 0x74: op74(); break;
case 0x76: op76(); break;
case 0x78: op78(); break;
case 0x7a: op7a(); break;
case 0x7c: op7c(); break;
case 0x89: op89(); break;
}
}
}
void Cx4::writeb(uint16 addr, uint8 data) {
write(addr, data);
}
void Cx4::writew(uint16 addr, uint16 data) {
write(addr + 0, data >> 0);
write(addr + 1, data >> 8);
}
void Cx4::writel(uint16 addr, uint32 data) {
write(addr + 0, data >> 0);
write(addr + 1, data >> 8);
write(addr + 2, data >> 16);
}
uint8 Cx4::read(unsigned addr) {
addr &= 0x1fff;
if(addr < 0x0c00) {
return ram[addr];
}
if(addr >= 0x1f00) {
return reg[addr & 0xff];
}
return cpu.regs.mdr;
}
uint8 Cx4::readb(uint16 addr) {
return read(addr);
}
uint16 Cx4::readw(uint16 addr) {
return read(addr) | (read(addr + 1) << 8);
}
uint32 Cx4::readl(uint16 addr) {
return read(addr) | (read(addr + 1) << 8) + (read(addr + 2) << 16);
}
void Cx4::power() {
reset();
}
void Cx4::reset() {
memset(ram, 0, 0x0c00);
memset(reg, 0, 0x0100);
}
};

View File

@ -0,0 +1,95 @@
class Cx4 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
uint8 ram[0x0c00];
uint8 reg[0x0100];
uint32 r0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, r15;
static const uint8 immediate_data[48];
static const uint16 wave_data[40];
static const uint32 sin_table[256];
static const int16 SinTable[512];
static const int16 CosTable[512];
int16 C4WFXVal, C4WFYVal, C4WFZVal, C4WFX2Val, C4WFY2Val, C4WFDist, C4WFScale;
int16 C41FXVal, C41FYVal, C41FAngleRes, C41FDist, C41FDistVal;
void C4TransfWireFrame();
void C4TransfWireFrame2();
void C4CalcWireFrame();
void C4DrawLine(int32 X1, int32 Y1, int16 Z1, int32 X2, int32 Y2, int16 Z2, uint8 Color);
void C4DrawWireFrame();
void C4DoScaleRotate(int row_padding);
public:
uint32 ldr(uint8 r);
void str(uint8 r, uint32 data);
void mul(uint32 x, uint32 y, uint32 &rl, uint32 &rh);
uint32 sin(uint32 rx);
uint32 cos(uint32 rx);
void transfer_data();
void immediate_reg(uint32 num);
void op00_00();
void op00_03();
void op00_05();
void op00_07();
void op00_08();
void op00_0b();
void op00_0c();
void op00();
void op01();
void op05();
void op0d();
void op10();
void op13();
void op15();
void op1f();
void op22();
void op25();
void op2d();
void op40();
void op54();
void op5c();
void op5e();
void op60();
void op62();
void op64();
void op66();
void op68();
void op6a();
void op6c();
void op6e();
void op70();
void op72();
void op74();
void op76();
void op78();
void op7a();
void op7c();
void op89();
uint8 readb(uint16 addr);
uint16 readw(uint16 addr);
uint32 readl(uint16 addr);
void writeb(uint16 addr, uint8 data);
void writew(uint16 addr, uint16 data);
void writel(uint16 addr, uint32 data);
};
extern Cx4 cx4;

View File

@ -0,0 +1,187 @@
#ifdef CX4_CPP
const uint8 Cx4::immediate_data[48] = {
0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0xff, 0x7f,
0x00, 0x80, 0x00, 0xff, 0x7f, 0x00, 0xff, 0x7f, 0xff, 0x7f, 0xff, 0xff,
0x00, 0x00, 0x01, 0xff, 0xff, 0xfe, 0x00, 0x01, 0x00, 0xff, 0xfe, 0x00
};
const uint16 Cx4::wave_data[40] = {
0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e,
0x0200, 0x0202, 0x0204, 0x0206, 0x0208, 0x020a, 0x020c, 0x020e,
0x0400, 0x0402, 0x0404, 0x0406, 0x0408, 0x040a, 0x040c, 0x040e,
0x0600, 0x0602, 0x0604, 0x0606, 0x0608, 0x060a, 0x060c, 0x060e,
0x0800, 0x0802, 0x0804, 0x0806, 0x0808, 0x080a, 0x080c, 0x080e
};
const uint32 Cx4::sin_table[256] = {
0x000000, 0x000324, 0x000648, 0x00096c, 0x000c8f, 0x000fb2, 0x0012d5, 0x0015f6,
0x001917, 0x001c37, 0x001f56, 0x002273, 0x002590, 0x0028aa, 0x002bc4, 0x002edb,
0x0031f1, 0x003505, 0x003817, 0x003b26, 0x003e33, 0x00413e, 0x004447, 0x00474d,
0x004a50, 0x004d50, 0x00504d, 0x005347, 0x00563e, 0x005931, 0x005c22, 0x005f0e,
0x0061f7, 0x0064dc, 0x0067bd, 0x006a9b, 0x006d74, 0x007049, 0x007319, 0x0075e5,
0x0078ad, 0x007b70, 0x007e2e, 0x0080e7, 0x00839c, 0x00864b, 0x0088f5, 0x008b9a,
0x008e39, 0x0090d3, 0x009368, 0x0095f6, 0x00987f, 0x009b02, 0x009d7f, 0x009ff6,
0x00a267, 0x00a4d2, 0x00a736, 0x00a994, 0x00abeb, 0x00ae3b, 0x00b085, 0x00b2c8,
0x00b504, 0x00b73a, 0x00b968, 0x00bb8f, 0x00bdae, 0x00bfc7, 0x00c1d8, 0x00c3e2,
0x00c5e4, 0x00c7de, 0x00c9d1, 0x00cbbb, 0x00cd9f, 0x00cf7a, 0x00d14d, 0x00d318,
0x00d4db, 0x00d695, 0x00d848, 0x00d9f2, 0x00db94, 0x00dd2d, 0x00debe, 0x00e046,
0x00e1c5, 0x00e33c, 0x00e4aa, 0x00e60f, 0x00e76b, 0x00e8bf, 0x00ea09, 0x00eb4b,
0x00ec83, 0x00edb2, 0x00eed8, 0x00eff5, 0x00f109, 0x00f213, 0x00f314, 0x00f40b,
0x00f4fa, 0x00f5de, 0x00f6ba, 0x00f78b, 0x00f853, 0x00f912, 0x00f9c7, 0x00fa73,
0x00fb14, 0x00fbac, 0x00fc3b, 0x00fcbf, 0x00fd3a, 0x00fdab, 0x00fe13, 0x00fe70,
0x00fec4, 0x00ff0e, 0x00ff4e, 0x00ff84, 0x00ffb1, 0x00ffd3, 0x00ffec, 0x00fffb,
0x000000, 0xfffcdb, 0xfff9b7, 0xfff693, 0xfff370, 0xfff04d, 0xffed2a, 0xffea09,
0xffe6e8, 0xffe3c8, 0xffe0a9, 0xffdd8c, 0xffda6f, 0xffd755, 0xffd43b, 0xffd124,
0xffce0e, 0xffcafa, 0xffc7e8, 0xffc4d9, 0xffc1cc, 0xffbec1, 0xffbbb8, 0xffb8b2,
0xffb5af, 0xffb2af, 0xffafb2, 0xffacb8, 0xffa9c1, 0xffa6ce, 0xffa3dd, 0xffa0f1,
0xff9e08, 0xff9b23, 0xff9842, 0xff9564, 0xff928b, 0xff8fb6, 0xff8ce6, 0xff8a1a,
0xff8752, 0xff848f, 0xff81d1, 0xff7f18, 0xff7c63, 0xff79b4, 0xff770a, 0xff7465,
0xff71c6, 0xff6f2c, 0xff6c97, 0xff6a09, 0xff6780, 0xff64fd, 0xff6280, 0xff6009,
0xff5d98, 0xff5b2d, 0xff58c9, 0xff566b, 0xff5414, 0xff51c4, 0xff4f7a, 0xff4d37,
0xff4afb, 0xff48c5, 0xff4697, 0xff4470, 0xff4251, 0xff4038, 0xff3e27, 0xff3c1e,
0xff3a1b, 0xff3821, 0xff362e, 0xff3444, 0xff3260, 0xff3085, 0xff2eb2, 0xff2ce7,
0xff2b24, 0xff296a, 0xff27b7, 0xff260d, 0xff246b, 0xff22d2, 0xff2141, 0xff1fb9,
0xff1e3a, 0xff1cc3, 0xff1b55, 0xff19f0, 0xff1894, 0xff1740, 0xff15f6, 0xff14b4,
0xff137c, 0xff124d, 0xff1127, 0xff100a, 0xff0ef6, 0xff0dec, 0xff0ceb, 0xff0bf4,
0xff0b05, 0xff0a21, 0xff0945, 0xff0874, 0xff07ac, 0xff06ed, 0xff0638, 0xff058d,
0xff04eb, 0xff0453, 0xff03c4, 0xff0340, 0xff02c5, 0xff0254, 0xff01ec, 0xff018f,
0xff013b, 0xff00f1, 0xff00b1, 0xff007b, 0xff004e, 0xff002c, 0xff0013, 0xff0004
};
const int16 Cx4::SinTable[512] = {
0, 402, 804, 1206, 1607, 2009, 2410, 2811,
3211, 3611, 4011, 4409, 4808, 5205, 5602, 5997,
6392, 6786, 7179, 7571, 7961, 8351, 8739, 9126,
9512, 9896, 10278, 10659, 11039, 11416, 11793, 12167,
12539, 12910, 13278, 13645, 14010, 14372, 14732, 15090,
15446, 15800, 16151, 16499, 16846, 17189, 17530, 17869,
18204, 18537, 18868, 19195, 19519, 19841, 20159, 20475,
20787, 21097, 21403, 21706, 22005, 22301, 22594, 22884,
23170, 23453, 23732, 24007, 24279, 24547, 24812, 25073,
25330, 25583, 25832, 26077, 26319, 26557, 26790, 27020,
27245, 27466, 27684, 27897, 28106, 28310, 28511, 28707,
28898, 29086, 29269, 29447, 29621, 29791, 29956, 30117,
30273, 30425, 30572, 30714, 30852, 30985, 31114, 31237,
31357, 31471, 31581, 31685, 31785, 31881, 31971, 32057,
32138, 32214, 32285, 32351, 32413, 32469, 32521, 32568,
32610, 32647, 32679, 32706, 32728, 32745, 32758, 32765,
32767, 32765, 32758, 32745, 32728, 32706, 32679, 32647,
32610, 32568, 32521, 32469, 32413, 32351, 32285, 32214,
32138, 32057, 31971, 31881, 31785, 31685, 31581, 31471,
31357, 31237, 31114, 30985, 30852, 30714, 30572, 30425,
30273, 30117, 29956, 29791, 29621, 29447, 29269, 29086,
28898, 28707, 28511, 28310, 28106, 27897, 27684, 27466,
27245, 27020, 26790, 26557, 26319, 26077, 25832, 25583,
25330, 25073, 24812, 24547, 24279, 24007, 23732, 23453,
23170, 22884, 22594, 22301, 22005, 21706, 21403, 21097,
20787, 20475, 20159, 19841, 19519, 19195, 18868, 18537,
18204, 17869, 17530, 17189, 16846, 16499, 16151, 15800,
15446, 15090, 14732, 14372, 14010, 13645, 13278, 12910,
12539, 12167, 11793, 11416, 11039, 10659, 10278, 9896,
9512, 9126, 8739, 8351, 7961, 7571, 7179, 6786,
6392, 5997, 5602, 5205, 4808, 4409, 4011, 3611,
3211, 2811, 2410, 2009, 1607, 1206, 804, 402,
0, -402, -804, -1206, -1607, -2009, -2410, -2811,
-3211, -3611, -4011, -4409, -4808, -5205, -5602, -5997,
-6392, -6786, -7179, -7571, -7961, -8351, -8739, -9126,
-9512, -9896, -10278, -10659, -11039, -11416, -11793, -12167,
-12539, -12910, -13278, -13645, -14010, -14372, -14732, -15090,
-15446, -15800, -16151, -16499, -16846, -17189, -17530, -17869,
-18204, -18537, -18868, -19195, -19519, -19841, -20159, -20475,
-20787, -21097, -21403, -21706, -22005, -22301, -22594, -22884,
-23170, -23453, -23732, -24007, -24279, -24547, -24812, -25073,
-25330, -25583, -25832, -26077, -26319, -26557, -26790, -27020,
-27245, -27466, -27684, -27897, -28106, -28310, -28511, -28707,
-28898, -29086, -29269, -29447, -29621, -29791, -29956, -30117,
-30273, -30425, -30572, -30714, -30852, -30985, -31114, -31237,
-31357, -31471, -31581, -31685, -31785, -31881, -31971, -32057,
-32138, -32214, -32285, -32351, -32413, -32469, -32521, -32568,
-32610, -32647, -32679, -32706, -32728, -32745, -32758, -32765,
-32767, -32765, -32758, -32745, -32728, -32706, -32679, -32647,
-32610, -32568, -32521, -32469, -32413, -32351, -32285, -32214,
-32138, -32057, -31971, -31881, -31785, -31685, -31581, -31471,
-31357, -31237, -31114, -30985, -30852, -30714, -30572, -30425,
-30273, -30117, -29956, -29791, -29621, -29447, -29269, -29086,
-28898, -28707, -28511, -28310, -28106, -27897, -27684, -27466,
-27245, -27020, -26790, -26557, -26319, -26077, -25832, -25583,
-25330, -25073, -24812, -24547, -24279, -24007, -23732, -23453,
-23170, -22884, -22594, -22301, -22005, -21706, -21403, -21097,
-20787, -20475, -20159, -19841, -19519, -19195, -18868, -18537,
-18204, -17869, -17530, -17189, -16846, -16499, -16151, -15800,
-15446, -15090, -14732, -14372, -14010, -13645, -13278, -12910,
-12539, -12167, -11793, -11416, -11039, -10659, -10278, -9896,
-9512, -9126, -8739, -8351, -7961, -7571, -7179, -6786,
-6392, -5997, -5602, -5205, -4808, -4409, -4011, -3611,
-3211, -2811, -2410, -2009, -1607, -1206, -804, -402
};
const int16 Cx4::CosTable[512] = {
32767, 32765, 32758, 32745, 32728, 32706, 32679, 32647,
32610, 32568, 32521, 32469, 32413, 32351, 32285, 32214,
32138, 32057, 31971, 31881, 31785, 31685, 31581, 31471,
31357, 31237, 31114, 30985, 30852, 30714, 30572, 30425,
30273, 30117, 29956, 29791, 29621, 29447, 29269, 29086,
28898, 28707, 28511, 28310, 28106, 27897, 27684, 27466,
27245, 27020, 26790, 26557, 26319, 26077, 25832, 25583,
25330, 25073, 24812, 24547, 24279, 24007, 23732, 23453,
23170, 22884, 22594, 22301, 22005, 21706, 21403, 21097,
20787, 20475, 20159, 19841, 19519, 19195, 18868, 18537,
18204, 17869, 17530, 17189, 16846, 16499, 16151, 15800,
15446, 15090, 14732, 14372, 14010, 13645, 13278, 12910,
12539, 12167, 11793, 11416, 11039, 10659, 10278, 9896,
9512, 9126, 8739, 8351, 7961, 7571, 7179, 6786,
6392, 5997, 5602, 5205, 4808, 4409, 4011, 3611,
3211, 2811, 2410, 2009, 1607, 1206, 804, 402,
0, -402, -804, -1206, -1607, -2009, -2410, -2811,
-3211, -3611, -4011, -4409, -4808, -5205, -5602, -5997,
-6392, -6786, -7179, -7571, -7961, -8351, -8739, -9126,
-9512, -9896, -10278, -10659, -11039, -11416, -11793, -12167,
-12539, -12910, -13278, -13645, -14010, -14372, -14732, -15090,
-15446, -15800, -16151, -16499, -16846, -17189, -17530, -17869,
-18204, -18537, -18868, -19195, -19519, -19841, -20159, -20475,
-20787, -21097, -21403, -21706, -22005, -22301, -22594, -22884,
-23170, -23453, -23732, -24007, -24279, -24547, -24812, -25073,
-25330, -25583, -25832, -26077, -26319, -26557, -26790, -27020,
-27245, -27466, -27684, -27897, -28106, -28310, -28511, -28707,
-28898, -29086, -29269, -29447, -29621, -29791, -29956, -30117,
-30273, -30425, -30572, -30714, -30852, -30985, -31114, -31237,
-31357, -31471, -31581, -31685, -31785, -31881, -31971, -32057,
-32138, -32214, -32285, -32351, -32413, -32469, -32521, -32568,
-32610, -32647, -32679, -32706, -32728, -32745, -32758, -32765,
-32767, -32765, -32758, -32745, -32728, -32706, -32679, -32647,
-32610, -32568, -32521, -32469, -32413, -32351, -32285, -32214,
-32138, -32057, -31971, -31881, -31785, -31685, -31581, -31471,
-31357, -31237, -31114, -30985, -30852, -30714, -30572, -30425,
-30273, -30117, -29956, -29791, -29621, -29447, -29269, -29086,
-28898, -28707, -28511, -28310, -28106, -27897, -27684, -27466,
-27245, -27020, -26790, -26557, -26319, -26077, -25832, -25583,
-25330, -25073, -24812, -24547, -24279, -24007, -23732, -23453,
-23170, -22884, -22594, -22301, -22005, -21706, -21403, -21097,
-20787, -20475, -20159, -19841, -19519, -19195, -18868, -18537,
-18204, -17869, -17530, -17189, -16846, -16499, -16151, -15800,
-15446, -15090, -14732, -14372, -14010, -13645, -13278, -12910,
-12539, -12167, -11793, -11416, -11039, -10659, -10278, -9896,
-9512, -9126, -8739, -8351, -7961, -7571, -7179, -6786,
-6392, -5997, -5602, -5205, -4808, -4409, -4011, -3611,
-3211, -2811, -2410, -2009, -1607, -1206, -804, -402,
0, 402, 804, 1206, 1607, 2009, 2410, 2811,
3211, 3611, 4011, 4409, 4808, 5205, 5602, 5997,
6392, 6786, 7179, 7571, 7961, 8351, 8739, 9126,
9512, 9896, 10278, 10659, 11039, 11416, 11793, 12167,
12539, 12910, 13278, 13645, 14010, 14372, 14732, 15090,
15446, 15800, 16151, 16499, 16846, 17189, 17530, 17869,
18204, 18537, 18868, 19195, 19519, 19841, 20159, 20475,
20787, 21097, 21403, 21706, 22005, 22301, 22594, 22884,
23170, 23453, 23732, 24007, 24279, 24547, 24812, 25073,
25330, 25583, 25832, 26077, 26319, 26557, 26790, 27020,
27245, 27466, 27684, 27897, 28106, 28310, 28511, 28707,
28898, 29086, 29269, 29447, 29621, 29791, 29956, 30117,
30273, 30425, 30572, 30714, 30852, 30985, 31114, 31237,
31357, 31471, 31581, 31685, 31785, 31881, 31971, 32057,
32138, 32214, 32285, 32351, 32413, 32469, 32521, 32568,
32610, 32647, 32679, 32706, 32728, 32745, 32758, 32765
};
#endif

View File

@ -0,0 +1,251 @@
#ifdef CX4_CPP
#include <math.h>
#define Tan(a) (CosTable[a] ? ((((int32)SinTable[a]) << 16) / CosTable[a]) : 0x80000000)
#define sar(b, n) ((b) >> (n))
#ifdef PI
#undef PI
#endif
#define PI 3.1415926535897932384626433832795
//Wireframe Helpers
void Cx4::C4TransfWireFrame() {
double c4x = (double)C4WFXVal;
double c4y = (double)C4WFYVal;
double c4z = (double)C4WFZVal - 0x95;
double tanval, c4x2, c4y2, c4z2;
//Rotate X
tanval = -(double)C4WFX2Val * PI * 2 / 128;
c4y2 = c4y * ::cos(tanval) - c4z * ::sin(tanval);
c4z2 = c4y * ::sin(tanval) + c4z * ::cos(tanval);
//Rotate Y
tanval = -(double)C4WFY2Val * PI * 2 / 128;
c4x2 = c4x * ::cos(tanval) + c4z2 * ::sin(tanval);
c4z = c4x * -::sin(tanval) + c4z2 * ::cos(tanval);
//Rotate Z
tanval = -(double)C4WFDist * PI * 2 / 128;
c4x = c4x2 * ::cos(tanval) - c4y2 * ::sin(tanval);
c4y = c4x2 * ::sin(tanval) + c4y2 * ::cos(tanval);
//Scale
C4WFXVal = (int16)(c4x * C4WFScale / (0x90 * (c4z + 0x95)) * 0x95);
C4WFYVal = (int16)(c4y * C4WFScale / (0x90 * (c4z + 0x95)) * 0x95);
}
void Cx4::C4CalcWireFrame() {
C4WFXVal = C4WFX2Val - C4WFXVal;
C4WFYVal = C4WFY2Val - C4WFYVal;
if(abs(C4WFXVal) > abs(C4WFYVal)) {
C4WFDist = abs(C4WFXVal) + 1;
C4WFYVal = (256 * (long)C4WFYVal) / abs(C4WFXVal);
C4WFXVal = (C4WFXVal < 0) ? -256 : 256;
} else if(C4WFYVal != 0) {
C4WFDist = abs(C4WFYVal) + 1;
C4WFXVal = (256 * (long)C4WFXVal) / abs(C4WFYVal);
C4WFYVal = (C4WFYVal < 0) ? -256 : 256;
} else {
C4WFDist = 0;
}
}
void Cx4::C4TransfWireFrame2() {
double c4x = (double)C4WFXVal;
double c4y = (double)C4WFYVal;
double c4z = (double)C4WFZVal;
double tanval, c4x2, c4y2, c4z2;
//Rotate X
tanval = -(double)C4WFX2Val * PI * 2 / 128;
c4y2 = c4y * ::cos(tanval) - c4z * ::sin(tanval);
c4z2 = c4y * ::sin(tanval) + c4z * ::cos(tanval);
//Rotate Y
tanval = -(double)C4WFY2Val * PI * 2 / 128;
c4x2 = c4x * ::cos(tanval) + c4z2 * ::sin(tanval);
c4z = c4x * -::sin(tanval) + c4z2 * ::cos(tanval);
//Rotate Z
tanval = -(double)C4WFDist * PI * 2 / 128;
c4x = c4x2 * ::cos(tanval) - c4y2 * ::sin(tanval);
c4y = c4x2 * ::sin(tanval) + c4y2 * ::cos(tanval);
//Scale
C4WFXVal = (int16)(c4x * C4WFScale / 0x100);
C4WFYVal = (int16)(c4y * C4WFScale / 0x100);
}
void Cx4::C4DrawWireFrame() {
uint32 line = readl(0x1f80);
uint32 point1, point2;
int16 X1, Y1, Z1;
int16 X2, Y2, Z2;
uint8 Color;
for(int32 i = ram[0x0295]; i > 0; i--, line += 5) {
if(bus.read(line) == 0xff && bus.read(line + 1) == 0xff) {
int32 tmp = line - 5;
while(bus.read(tmp + 2) == 0xff && bus.read(tmp + 3) == 0xff && (tmp + 2) >= 0) { tmp -= 5; }
point1 = (read(0x1f82) << 16) | (bus.read(tmp + 2) << 8) | bus.read(tmp + 3);
} else {
point1 = (read(0x1f82) << 16) | (bus.read(line) << 8) | bus.read(line + 1);
}
point2 = (read(0x1f82) << 16) | (bus.read(line + 2) << 8) | bus.read(line + 3);
X1=(bus.read(point1 + 0) << 8) | bus.read(point1 + 1);
Y1=(bus.read(point1 + 2) << 8) | bus.read(point1 + 3);
Z1=(bus.read(point1 + 4) << 8) | bus.read(point1 + 5);
X2=(bus.read(point2 + 0) << 8) | bus.read(point2 + 1);
Y2=(bus.read(point2 + 2) << 8) | bus.read(point2 + 3);
Z2=(bus.read(point2 + 4) << 8) | bus.read(point2 + 5);
Color = bus.read(line + 4);
C4DrawLine(X1, Y1, Z1, X2, Y2, Z2, Color);
}
}
void Cx4::C4DrawLine(int32 X1, int32 Y1, int16 Z1, int32 X2, int32 Y2, int16 Z2, uint8 Color) {
//Transform coordinates
C4WFXVal = (int16)X1;
C4WFYVal = (int16)Y1;
C4WFZVal = Z1;
C4WFScale = read(0x1f90);
C4WFX2Val = read(0x1f86);
C4WFY2Val = read(0x1f87);
C4WFDist = read(0x1f88);
C4TransfWireFrame2();
X1 = (C4WFXVal + 48) << 8;
Y1 = (C4WFYVal + 48) << 8;
C4WFXVal = (int16)X2;
C4WFYVal = (int16)Y2;
C4WFZVal = Z2;
C4TransfWireFrame2();
X2 = (C4WFXVal + 48) << 8;
Y2 = (C4WFYVal + 48) << 8;
//Get line info
C4WFXVal = (int16)(X1 >> 8);
C4WFYVal = (int16)(Y1 >> 8);
C4WFX2Val = (int16)(X2 >> 8);
C4WFY2Val = (int16)(Y2 >> 8);
C4CalcWireFrame();
X2 = (int16)C4WFXVal;
Y2 = (int16)C4WFYVal;
//Render line
for(int32 i = C4WFDist ? C4WFDist : 1; i > 0; i--) {
if(X1 > 0xff && Y1 > 0xff && X1 < 0x6000 && Y1 < 0x6000) {
uint16 addr = (((Y1 >> 8) >> 3) << 8) - (((Y1 >> 8) >> 3) << 6) + (((X1 >> 8) >> 3) << 4) + ((Y1 >> 8) & 7) * 2;
uint8 bit = 0x80 >> ((X1 >> 8) & 7);
ram[addr + 0x300] &= ~bit;
ram[addr + 0x301] &= ~bit;
if(Color & 1) ram[addr + 0x300] |= bit;
if(Color & 2) ram[addr + 0x301] |= bit;
}
X1 += X2;
Y1 += Y2;
}
}
void Cx4::C4DoScaleRotate(int row_padding) {
int16 A, B, C, D;
//Calculate matrix
int32 XScale = readw(0x1f8f);
int32 YScale = readw(0x1f92);
if(XScale & 0x8000)XScale = 0x7fff;
if(YScale & 0x8000)YScale = 0x7fff;
if(readw(0x1f80) == 0) { //no rotation
A = (int16)XScale;
B = 0;
C = 0;
D = (int16)YScale;
} else if(readw(0x1f80) == 128) { //90 degree rotation
A = 0;
B = (int16)(-YScale);
C = (int16)XScale;
D = 0;
} else if(readw(0x1f80) == 256) { //180 degree rotation
A = (int16)(-XScale);
B = 0;
C = 0;
D = (int16)(-YScale);
} else if(readw(0x1f80) == 384) { //270 degree rotation
A = 0;
B = (int16)YScale;
C = (int16)(-XScale);
D = 0;
} else {
A = (int16) sar(CosTable[readw(0x1f80) & 0x1ff] * XScale, 15);
B = (int16)(-sar(SinTable[readw(0x1f80) & 0x1ff] * YScale, 15));
C = (int16) sar(SinTable[readw(0x1f80) & 0x1ff] * XScale, 15);
D = (int16) sar(CosTable[readw(0x1f80) & 0x1ff] * YScale, 15);
}
//Calculate Pixel Resolution
uint8 w = read(0x1f89) & ~7;
uint8 h = read(0x1f8c) & ~7;
//Clear the output RAM
memset(ram, 0, (w + row_padding / 4) * h / 2);
int32 Cx = (int16)readw(0x1f83);
int32 Cy = (int16)readw(0x1f86);
//Calculate start position (i.e. (Ox, Oy) = (0, 0))
//The low 12 bits are fractional, so (Cx<<12) gives us the Cx we want in
//the function. We do Cx*A etc normally because the matrix parameters
//already have the fractional parts.
int32 LineX = (Cx << 12) - Cx * A - Cx * B;
int32 LineY = (Cy << 12) - Cy * C - Cy * D;
//Start loop
uint32 X, Y;
uint8 byte;
int32 outidx = 0;
uint8 bit = 0x80;
for(int32 y = 0; y < h; y++) {
X = LineX;
Y = LineY;
for(int32 x = 0; x < w; x++) {
if((X >> 12) >= w || (Y >> 12) >= h) {
byte = 0;
} else {
uint32 addr = (Y >> 12) * w + (X >> 12);
byte = read(0x600 + (addr >> 1));
if(addr & 1) { byte >>= 4; }
}
//De-bitplanify
if(byte & 1) ram[outidx ] |= bit;
if(byte & 2) ram[outidx + 1] |= bit;
if(byte & 4) ram[outidx + 16] |= bit;
if(byte & 8) ram[outidx + 17] |= bit;
bit >>= 1;
if(!bit) {
bit = 0x80;
outidx += 32;
}
X += A; //Add 1 to output x => add an A and a C
Y += C;
}
outidx += 2 + row_padding;
if(outidx & 0x10) {
outidx &= ~0x10;
} else {
outidx -= w * 4 + row_padding;
}
LineX += B; //Add 1 to output y => add a B and a D
LineY += D;
}
}
#endif

View File

@ -0,0 +1,228 @@
#ifdef CX4_CPP
//Build OAM
void Cx4::op00_00() {
uint32 oamptr = ram[0x626] << 2;
for(int32 i = 0x1fd; i > oamptr && i >= 0; i -= 4) {
//clear oam-to-be
if(i >= 0) ram[i] = 0xe0;
}
uint16 globalx, globaly;
uint32 oamptr2;
int16 sprx, spry;
uint8 sprname, sprattr;
uint8 sprcount;
globalx = readw(0x621);
globaly = readw(0x623);
oamptr2 = 0x200 + (ram[0x626] >> 2);
if(!ram[0x620]) return;
sprcount = 128 - ram[0x626];
uint8 offset = (ram[0x626] & 3) * 2;
uint32 srcptr = 0x220;
for(int i = ram[0x620]; i > 0 && sprcount > 0; i--, srcptr += 16) {
sprx = readw(srcptr) - globalx;
spry = readw(srcptr + 2) - globaly;
sprname = ram[srcptr + 5];
sprattr = ram[srcptr + 4] | ram[srcptr + 6];
uint32 spraddr = readl(srcptr + 7);
if(bus.read(spraddr)) {
int16 x, y;
for(int sprcnt = bus.read(spraddr++); sprcnt > 0 && sprcount > 0; sprcnt--, spraddr += 4) {
x = (int8)bus.read(spraddr + 1);
if(sprattr & 0x40) {
x = -x - ((bus.read(spraddr) & 0x20) ? 16 : 8);
}
x += sprx;
if(x >= -16 && x <= 272) {
y = (int8)bus.read(spraddr + 2);
if(sprattr & 0x80) {
y = -y - ((bus.read(spraddr) & 0x20) ? 16 : 8);
}
y += spry;
if(y >= -16 && y <= 224) {
ram[oamptr ] = (uint8)x;
ram[oamptr + 1] = (uint8)y;
ram[oamptr + 2] = sprname + bus.read(spraddr + 3);
ram[oamptr + 3] = sprattr ^ (bus.read(spraddr) & 0xc0);
ram[oamptr2] &= ~(3 << offset);
if(x & 0x100) ram[oamptr2] |= 1 << offset;
if(bus.read(spraddr) & 0x20) ram[oamptr2] |= 2 << offset;
oamptr += 4;
sprcount--;
offset = (offset + 2) & 6;
if(!offset)oamptr2++;
}
}
}
} else if(sprcount > 0) {
ram[oamptr ] = (uint8)sprx;
ram[oamptr + 1] = (uint8)spry;
ram[oamptr + 2] = sprname;
ram[oamptr + 3] = sprattr;
ram[oamptr2] &= ~(3 << offset);
if(sprx & 0x100) ram[oamptr2] |= 3 << offset;
else ram[oamptr2] |= 2 << offset;
oamptr += 4;
sprcount--;
offset = (offset + 2) & 6;
if(!offset) oamptr2++;
}
}
}
//Scale and Rotate
void Cx4::op00_03() {
C4DoScaleRotate(0);
}
//Transform Lines
void Cx4::op00_05() {
C4WFX2Val = read(0x1f83);
C4WFY2Val = read(0x1f86);
C4WFDist = read(0x1f89);
C4WFScale = read(0x1f8c);
//Transform Vertices
uint32 ptr = 0;
for(int32 i = readw(0x1f80); i > 0; i--, ptr += 0x10) {
C4WFXVal = readw(ptr + 1);
C4WFYVal = readw(ptr + 5);
C4WFZVal = readw(ptr + 9);
C4TransfWireFrame();
//Displace
writew(ptr + 1, C4WFXVal + 0x80);
writew(ptr + 5, C4WFYVal + 0x50);
}
writew(0x600, 23);
writew(0x602, 0x60);
writew(0x605, 0x40);
writew(0x600 + 8, 23);
writew(0x602 + 8, 0x60);
writew(0x605 + 8, 0x40);
ptr = 0xb02;
uint32 ptr2 = 0;
for(int32 i = readw(0xb00); i > 0; i--, ptr += 2, ptr2 += 8) {
C4WFXVal = readw((read(ptr + 0) << 4) + 1);
C4WFYVal = readw((read(ptr + 0) << 4) + 5);
C4WFX2Val = readw((read(ptr + 1) << 4) + 1);
C4WFY2Val = readw((read(ptr + 1) << 4) + 5);
C4CalcWireFrame();
writew(ptr2 + 0x600, C4WFDist ? C4WFDist : 1);
writew(ptr2 + 0x602, C4WFXVal);
writew(ptr2 + 0x605, C4WFYVal);
}
}
//Scale and Rotate
void Cx4::op00_07() {
C4DoScaleRotate(64);
}
//Draw Wireframe
void Cx4::op00_08() {
C4DrawWireFrame();
}
//Disintegrate
void Cx4::op00_0b() {
uint8 width, height;
uint32 startx, starty;
uint32 srcptr;
uint32 x, y;
int32 scalex, scaley;
int32 cx, cy;
int32 i, j;
width = read(0x1f89);
height = read(0x1f8c);
cx = readw(0x1f80);
cy = readw(0x1f83);
scalex = (int16)readw(0x1f86);
scaley = (int16)readw(0x1f8f);
startx = -cx * scalex + (cx << 8);
starty = -cy * scaley + (cy << 8);
srcptr = 0x600;
for(i = 0; i < (width * height) >> 1; i++) {
write(i, 0);
}
for(y = starty, i = 0;i < height; i++, y += scaley) {
for(x = startx, j = 0;j < width; j++, x += scalex) {
if((x >> 8) < width && (y >> 8) < height && (y >> 8) * width + (x >> 8) < 0x2000) {
uint8 pixel = (j & 1) ? (ram[srcptr] >> 4) : (ram[srcptr]);
int32 index = (y >> 11) * width * 4 + (x >> 11) * 32 + ((y >> 8) & 7) * 2;
uint8 mask = 0x80 >> ((x >> 8) & 7);
if(pixel & 1) ram[index ] |= mask;
if(pixel & 2) ram[index + 1] |= mask;
if(pixel & 4) ram[index + 16] |= mask;
if(pixel & 8) ram[index + 17] |= mask;
}
if(j & 1) srcptr++;
}
}
}
//Bitplane Wave
void Cx4::op00_0c() {
uint32 destptr = 0;
uint32 waveptr = read(0x1f83);
uint16 mask1 = 0xc0c0;
uint16 mask2 = 0x3f3f;
for(int j = 0; j < 0x10; j++) {
do {
int16 height = -((int8)read(waveptr + 0xb00)) - 16;
for(int i = 0; i < 40; i++) {
uint16 temp = readw(destptr + wave_data[i]) & mask2;
if(height >= 0) {
if(height < 8) {
temp |= mask1 & readw(0xa00 + height * 2);
} else {
temp |= mask1 & 0xff00;
}
}
writew(destptr + wave_data[i], temp);
height++;
}
waveptr = (waveptr + 1) & 0x7f;
mask1 = (mask1 >> 2) | (mask1 << 6);
mask2 = (mask2 >> 2) | (mask2 << 6);
} while(mask1 != 0xc0c0);
destptr += 16;
do {
int16 height = -((int8)read(waveptr + 0xb00)) - 16;
for(int i = 0; i < 40; i++) {
uint16 temp = readw(destptr + wave_data[i]) & mask2;
if(height >= 0) {
if(height < 8) {
temp |= mask1 & readw(0xa10 + height * 2);
} else {
temp |= mask1 & 0xff00;
}
}
writew(destptr + wave_data[i], temp);
height++;
}
waveptr = (waveptr + 1) & 0x7f;
mask1 = (mask1 >> 2) | (mask1 << 6);
mask2 = (mask2 >> 2) | (mask2 << 6);
} while(mask1 != 0xc0c0);
destptr += 16;
}
}
#endif

View File

@ -0,0 +1,229 @@
#ifdef CX4_CPP
//Sprite Functions
void Cx4::op00() {
switch(reg[0x4d]) {
case 0x00: op00_00(); break;
case 0x03: op00_03(); break;
case 0x05: op00_05(); break;
case 0x07: op00_07(); break;
case 0x08: op00_08(); break;
case 0x0b: op00_0b(); break;
case 0x0c: op00_0c(); break;
}
}
//Draw Wireframe
void Cx4::op01() {
memset(ram + 0x300, 0, 2304);
C4DrawWireFrame();
}
//Propulsion
void Cx4::op05() {
int32 temp = 0x10000;
if(readw(0x1f83)) {
temp = sar((temp / readw(0x1f83)) * readw(0x1f81), 8);
}
writew(0x1f80, temp);
}
//Set Vector length
void Cx4::op0d() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
C41FDistVal = readw(0x1f86);
double tanval = sqrt(((double)C41FYVal) * ((double)C41FYVal) + ((double)C41FXVal) * ((double)C41FXVal));
tanval = (double)C41FDistVal / tanval;
C41FYVal = (int16)(((double)C41FYVal * tanval) * 0.99);
C41FXVal = (int16)(((double)C41FXVal * tanval) * 0.98);
writew(0x1f89, C41FXVal);
writew(0x1f8c, C41FYVal);
}
//Triangle
void Cx4::op10() {
r0 = ldr(0);
r1 = ldr(1);
r4 = r0 & 0x1ff;
if(r1 & 0x8000)r1 |= ~0x7fff;
else r1 &= 0x7fff;
mul(cos(r4), r1, r5, r2);
r5 = (r5 >> 16) & 0xff;
r2 = (r2 << 8) + r5;
mul(sin(r4), r1, r5, r3);
r5 = (r5 >> 16) & 0xff;
r3 = (r3 << 8) + r5;
str(0, r0);
str(1, r1);
str(2, r2);
str(3, r3);
str(4, r4);
str(5, r5);
}
//Triangle
void Cx4::op13() {
r0 = ldr(0);
r1 = ldr(1);
r4 = r0 & 0x1ff;
mul(cos(r4), r1, r5, r2);
r5 = (r5 >> 8) & 0xffff;
r2 = (r2 << 16) + r5;
mul(sin(r4), r1, r5, r3);
r5 = (r5 >> 8) & 0xffff;
r3 = (r3 << 16) + r5;
str(0, r0);
str(1, r1);
str(2, r2);
str(3, r3);
str(4, r4);
str(5, r5);
}
//Pythagorean
void Cx4::op15() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
C41FDist = (int16)sqrt((double)C41FXVal * (double)C41FXVal + (double)C41FYVal * (double)C41FYVal);
writew(0x1f80, C41FDist);
}
//Calculate distance
void Cx4::op1f() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
if(!C41FXVal) {
C41FAngleRes = (C41FYVal > 0) ? 0x080 : 0x180;
} else {
double tanval = ((double)C41FYVal) / ((double)C41FXVal);
C41FAngleRes = (short)(atan(tanval) / (PI * 2) * 512);
C41FAngleRes = C41FAngleRes;
if(C41FXVal < 0) {
C41FAngleRes += 0x100;
}
C41FAngleRes &= 0x1ff;
}
writew(0x1f86, C41FAngleRes);
}
//Trapezoid
void Cx4::op22() {
int16 angle1 = readw(0x1f8c) & 0x1ff;
int16 angle2 = readw(0x1f8f) & 0x1ff;
int32 tan1 = Tan(angle1);
int32 tan2 = Tan(angle2);
int16 y = readw(0x1f83) - readw(0x1f89);
int16 left, right;
for(int32 j = 0; j < 225; j++, y++) {
if(y >= 0) {
left = sar((int32)tan1 * y, 16) - readw(0x1f80) + readw(0x1f86);
right = sar((int32)tan2 * y, 16) - readw(0x1f80) + readw(0x1f86) + readw(0x1f93);
if(left < 0 && right < 0) {
left = 1;
right = 0;
} else if(left < 0) {
left = 0;
} else if(right < 0) {
right = 0;
}
if(left > 255 && right > 255) {
left = 255;
right = 254;
} else if(left > 255) {
left = 255;
} else if(right > 255) {
right = 255;
}
} else {
left = 1;
right = 0;
}
ram[j + 0x800] = (uint8)left;
ram[j + 0x900] = (uint8)right;
}
}
//Multiply
void Cx4::op25() {
r0 = ldr(0);
r1 = ldr(1);
mul(r0, r1, r0, r1);
str(0, r0);
str(1, r1);
}
//Transform Coords
void Cx4::op2d() {
C4WFXVal = readw(0x1f81);
C4WFYVal = readw(0x1f84);
C4WFZVal = readw(0x1f87);
C4WFX2Val = read (0x1f89);
C4WFY2Val = read (0x1f8a);
C4WFDist = read (0x1f8b);
C4WFScale = readw(0x1f90);
C4TransfWireFrame2();
writew(0x1f80, C4WFXVal);
writew(0x1f83, C4WFYVal);
}
//Sum
void Cx4::op40() {
r0 = 0;
for(uint32 i=0;i<0x800;i++) {
r0 += ram[i];
}
str(0, r0);
}
//Square
void Cx4::op54() {
r0 = ldr(0);
mul(r0, r0, r1, r2);
str(1, r1);
str(2, r2);
}
//Immediate Register
void Cx4::op5c() {
str(0, 0x000000);
immediate_reg(0);
}
//Immediate Register (Multiple)
void Cx4::op5e() { immediate_reg( 0); }
void Cx4::op60() { immediate_reg( 3); }
void Cx4::op62() { immediate_reg( 6); }
void Cx4::op64() { immediate_reg( 9); }
void Cx4::op66() { immediate_reg(12); }
void Cx4::op68() { immediate_reg(15); }
void Cx4::op6a() { immediate_reg(18); }
void Cx4::op6c() { immediate_reg(21); }
void Cx4::op6e() { immediate_reg(24); }
void Cx4::op70() { immediate_reg(27); }
void Cx4::op72() { immediate_reg(30); }
void Cx4::op74() { immediate_reg(33); }
void Cx4::op76() { immediate_reg(36); }
void Cx4::op78() { immediate_reg(39); }
void Cx4::op7a() { immediate_reg(42); }
void Cx4::op7c() { immediate_reg(45); }
//Immediate ROM
void Cx4::op89() {
str(0, 0x054336);
str(1, 0xffffff);
}
#endif

View File

@ -0,0 +1,39 @@
#ifdef CX4_CPP
void Cx4::serialize(serializer &s) {
s.array(ram);
s.array(reg);
s.integer(r0);
s.integer(r1);
s.integer(r2);
s.integer(r3);
s.integer(r4);
s.integer(r5);
s.integer(r6);
s.integer(r7);
s.integer(r8);
s.integer(r9);
s.integer(r10);
s.integer(r11);
s.integer(r12);
s.integer(r13);
s.integer(r14);
s.integer(r15);
s.integer(C4WFXVal);
s.integer(C4WFYVal);
s.integer(C4WFZVal);
s.integer(C4WFX2Val);
s.integer(C4WFY2Val);
s.integer(C4WFDist);
s.integer(C4WFScale);
s.integer(C41FXVal);
s.integer(C41FYVal);
s.integer(C41FAngleRes);
s.integer(C41FDist);
s.integer(C41FDistVal);
}
#endif

View File

@ -0,0 +1,83 @@
#include <../base.hpp>
#define DSP1_CPP
namespace SNES {
DSP1 dsp1;
#include "serialization.cpp"
#include "dsp1emu.cpp"
void DSP1::init() {
}
void DSP1::enable() {
switch(cartridge.dsp1_mapper()) {
case Cartridge::DSP1LoROM1MB: {
bus.map(Bus::MapDirect, 0x20, 0x3f, 0x8000, 0xffff, *this);
bus.map(Bus::MapDirect, 0xa0, 0xbf, 0x8000, 0xffff, *this);
} break;
case Cartridge::DSP1LoROM2MB: {
bus.map(Bus::MapDirect, 0x60, 0x6f, 0x0000, 0x7fff, *this);
bus.map(Bus::MapDirect, 0xe0, 0xef, 0x0000, 0x7fff, *this);
} break;
case Cartridge::DSP1HiROM: {
bus.map(Bus::MapDirect, 0x00, 0x1f, 0x6000, 0x7fff, *this);
bus.map(Bus::MapDirect, 0x80, 0x9f, 0x6000, 0x7fff, *this);
} break;
}
}
void DSP1::power() {
reset();
}
void DSP1::reset() {
dsp1.reset();
}
/*****
* addr_decode()
* determine whether address is accessing
* data register (DR) or status register (SR)
* -- 0 (false) = DR
* -- 1 (true ) = SR
*
* note: there is no need to bounds check addresses,
* as memory mapper will not allow DSP1 accesses outside
* of expected ranges
*****/
bool DSP1::addr_decode(uint16 addr) {
switch(cartridge.dsp1_mapper()) {
case Cartridge::DSP1LoROM1MB: {
//$[20-3f]:[8000-bfff] = DR, $[20-3f]:[c000-ffff] = SR
return (addr >= 0xc000);
}
case Cartridge::DSP1LoROM2MB: {
//$[60-6f]:[0000-3fff] = DR, $[60-6f]:[4000-7fff] = SR
return (addr >= 0x4000);
}
case Cartridge::DSP1HiROM: {
//$[00-1f]:[6000-6fff] = DR, $[00-1f]:[7000-7fff] = SR
return (addr >= 0x7000);
}
}
return 0;
}
uint8 DSP1::read(unsigned addr) {
return (addr_decode(addr) == 0) ? dsp1.getDr() : dsp1.getSr();
}
void DSP1::write(unsigned addr, uint8 data) {
if(addr_decode(addr) == 0) {
dsp1.setDr(data);
}
}
};

View File

@ -0,0 +1,20 @@
#include "dsp1emu.hpp"
class DSP1 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
Dsp1 dsp1;
bool addr_decode(uint16 addr);
};
extern DSP1 dsp1;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,129 @@
// DSP-1's emulation code
//
// Based on research by Overload, The Dumper, Neviksti and Andreas Naive
// Date: June 2006
#ifndef __DSP1EMUL_H
#define __DSP1EMUL_H
#define DSP1_VERSION 0x0102
class Dsp1
{
public:
// The DSP-1 status register has 16 bits, but only
// the upper 8 bits can be accessed from an external device, so all these
// positions are referred to the upper byte (bits D8 to D15)
enum SrFlags {DRC=0x04, DRS=0x10, RQM=0x80};
// According to Overload's docs, these are the meanings of the flags:
// DRC: The Data Register Control (DRC) bit specifies the data transfer length to and from the host CPU.
// 0: Data transfer to and from the DSP-1 is 16 bits.
// 1: Data transfer to and from the DSP-1 is 8 bits.
// DRS: The Data Register Status (DRS) bit indicates the data transfer status in the case of transfering 16-bit data.
// 0: Data transfer has terminated.
// 1: Data transfer in progress.
// RQM: The Request for Master (RQM) indicates that the DSP1 is requesting host CPU for data read/write.
// 0: Internal Data Register Transfer.
// 1: External Data Register Transfer.
Dsp1();
uint8 getSr(); // return the status register's high byte
uint8 getDr();
void setDr(uint8 iDr);
void reset();
void serialize(serializer&);
private:
enum FsmMajorState {WAIT_COMMAND, READ_DATA, WRITE_DATA};
enum MaxDataAccesses {MAX_READS=7, MAX_WRITES=1024};
struct Command {
void (Dsp1::*callback)(int16 *, int16 *);
unsigned int reads;
unsigned int writes;
};
static const Command mCommandTable[];
static const int16 MaxAZS_Exp[16];
static const int16 SinTable[];
static const int16 MulTable[];
static const uint16 DataRom[];
struct SharedData { // some RAM variables shared between commands
int16 MatrixA[3][3]; // attitude matrix A
int16 MatrixB[3][3];
int16 MatrixC[3][3];
int16 CentreX, CentreY, CentreZ; // center of projection
int16 CentreZ_C, CentreZ_E;
int16 VOffset; // vertical offset of the screen with regard to the centre of projection
int16 Les, C_Les, E_Les;
int16 SinAas, CosAas;
int16 SinAzs, CosAzs;
int16 SinAZS, CosAZS;
int16 SecAZS_C1, SecAZS_E1;
int16 SecAZS_C2, SecAZS_E2;
int16 Nx, Ny, Nz; // normal vector to the screen (norm 1, points toward the center of projection)
int16 Gx, Gy, Gz; // center of the screen (global coordinates)
int16 Hx, Hy; // horizontal vector of the screen (Hz=0, norm 1, points toward the right of the screen)
int16 Vx, Vy, Vz; // vertical vector of the screen (norm 1, points toward the top of the screen)
} shared;
uint8 mSr; // status register
int mSrLowByteAccess;
uint16 mDr; // "internal" representation of the data register
unsigned mFsmMajorState; // current major state of the FSM
uint8 mCommand; // current command processed by the FSM
uint8 mDataCounter; // #uint16 read/writes counter used by the FSM
int16 mReadBuffer[MAX_READS];
int16 mWriteBuffer[MAX_WRITES];
bool mFreeze; // need explanation? ;)
void fsmStep(bool read, uint8 &data); // FSM logic
// commands
void memoryTest(int16 *input, int16 *output);
void memoryDump(int16 *input, int16 *output);
void memorySize(int16 *input, int16 *output);
void multiply(int16* input, int16* output);
void multiply2(int16* input, int16* output);
void inverse(int16 *input, int16 *output);
void triangle(int16 *input, int16 *output);
void radius(int16 *input, int16 *output);
void range(int16 *input, int16 *output);
void range2(int16 *input, int16 *output);
void distance(int16 *input, int16 *output);
void rotate(int16 *input, int16 *output);
void polar(int16 *input, int16 *output);
void attitudeA(int16 *input, int16 *output);
void attitudeB(int16 *input, int16 *output);
void attitudeC(int16 *input, int16 *output);
void objectiveA(int16 *input, int16 *output);
void objectiveB(int16 *input, int16 *output);
void objectiveC(int16 *input, int16 *output);
void subjectiveA(int16 *input, int16 *output);
void subjectiveB(int16 *input, int16 *output);
void subjectiveC(int16 *input, int16 *output);
void scalarA(int16 *input, int16 *output);
void scalarB(int16 *input, int16 *output);
void scalarC(int16 *input, int16 *output);
void gyrate(int16 *input, int16 *output);
void parameter(int16 *input, int16 *output);
void raster(int16 *input, int16 *output);
void target(int16 *input, int16 *output);
void project(int16 *input, int16 *output);
// auxiliar functions
int16 sin(int16 Angle);
int16 cos(int16 Angle);
void inverse(int16 Coefficient, int16 Exponent, int16 &iCoefficient, int16 &iExponent);
int16 denormalizeAndClip(int16 C, int16 E);
void normalize(int16 m, int16 &Coefficient, int16 &Exponent);
void normalizeDouble(int32 Product, int16 &Coefficient, int16 &Exponent);
int16 shiftR(int16 C, int16 E);
};
#endif

View File

@ -0,0 +1,56 @@
#ifdef DSP1_CPP
void DSP1::serialize(serializer &s) {
dsp1.serialize(s);
}
void Dsp1::serialize(serializer &s) {
for(unsigned i = 0; i < 3; i++) {
s.array(shared.MatrixA[i]);
s.array(shared.MatrixB[i]);
s.array(shared.MatrixC[i]);
}
s.integer(shared.CentreX);
s.integer(shared.CentreY);
s.integer(shared.CentreZ);
s.integer(shared.CentreZ_C);
s.integer(shared.CentreZ_E);
s.integer(shared.VOffset);
s.integer(shared.Les);
s.integer(shared.C_Les);
s.integer(shared.E_Les);
s.integer(shared.SinAas);
s.integer(shared.CosAas);
s.integer(shared.SinAzs);
s.integer(shared.CosAzs);
s.integer(shared.SinAZS);
s.integer(shared.CosAZS);
s.integer(shared.SecAZS_C1);
s.integer(shared.SecAZS_E1);
s.integer(shared.SecAZS_C2);
s.integer(shared.SecAZS_E2);
s.integer(shared.Nx);
s.integer(shared.Ny);
s.integer(shared.Nz);
s.integer(shared.Gx);
s.integer(shared.Gy);
s.integer(shared.Gz);
s.integer(shared.Hx);
s.integer(shared.Hy);
s.integer(shared.Vx);
s.integer(shared.Vy);
s.integer(shared.Vz);
s.integer(mSr);
s.integer(mSrLowByteAccess);
s.integer(mDr);
s.integer(mFsmMajorState);
s.integer(mCommand);
s.integer(mDataCounter);
s.array(mReadBuffer);
s.array(mWriteBuffer);
s.integer(mFreeze);
}
#endif

View File

@ -0,0 +1,149 @@
#include <../base.hpp>
#define DSP2_CPP
namespace SNES {
DSP2 dsp2;
#include "serialization.cpp"
#include "opcodes.cpp"
void DSP2::init() {
}
void DSP2::enable() {
bus.map(Bus::MapDirect, 0x20, 0x3f, 0x6000, 0x6fff, *this);
bus.map(Bus::MapDirect, 0x20, 0x3f, 0x8000, 0xbfff, *this);
bus.map(Bus::MapDirect, 0xa0, 0xbf, 0x6000, 0x6fff, *this);
bus.map(Bus::MapDirect, 0xa0, 0xbf, 0x8000, 0xbfff, *this);
}
void DSP2::power() {
reset();
}
void DSP2::reset() {
status.waiting_for_command = true;
status.in_count = 0;
status.in_index = 0;
status.out_count = 0;
status.out_index = 0;
status.op05transparent = 0;
status.op05haslen = false;
status.op05len = 0;
status.op06haslen = false;
status.op06len = 0;
status.op09word1 = 0;
status.op09word2 = 0;
status.op0dhaslen = false;
status.op0doutlen = 0;
status.op0dinlen = 0;
}
uint8 DSP2::read(unsigned addr) {
uint8 r = 0xff;
if(status.out_count) {
r = status.output[status.out_index++];
status.out_index &= 511;
if(status.out_count == status.out_index) {
status.out_count = 0;
}
}
return r;
}
void DSP2::write(unsigned addr, uint8 data) {
if(status.waiting_for_command) {
status.command = data;
status.in_index = 0;
status.waiting_for_command = false;
switch(data) {
case 0x01: status.in_count = 32; break;
case 0x03: status.in_count = 1; break;
case 0x05: status.in_count = 1; break;
case 0x06: status.in_count = 1; break;
case 0x07: break;
case 0x08: break;
case 0x09: status.in_count = 4; break;
case 0x0d: status.in_count = 2; break;
case 0x0f: status.in_count = 0; break;
}
} else {
status.parameters[status.in_index++] = data;
status.in_index &= 511;
}
if(status.in_count == status.in_index) {
status.waiting_for_command = true;
status.out_index = 0;
switch(status.command) {
case 0x01: {
status.out_count = 32;
op01();
} break;
case 0x03: {
op03();
} break;
case 0x05: {
if(status.op05haslen) {
status.op05haslen = false;
status.out_count = status.op05len;
op05();
} else {
status.op05len = status.parameters[0];
status.in_index = 0;
status.in_count = status.op05len * 2;
status.op05haslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x06: {
if(status.op06haslen) {
status.op06haslen = false;
status.out_count = status.op06len;
op06();
} else {
status.op06len = status.parameters[0];
status.in_index = 0;
status.in_count = status.op06len;
status.op06haslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x07: break;
case 0x08: break;
case 0x09: {
op09();
} break;
case 0x0d: {
if(status.op0dhaslen) {
status.op0dhaslen = false;
status.out_count = status.op0doutlen;
op0d();
} else {
status.op0dinlen = status.parameters[0];
status.op0doutlen = status.parameters[1];
status.in_index = 0;
status.in_count = (status.op0dinlen + 1) >> 1;
status.op0dhaslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x0f: break;
}
}
}
DSP2::DSP2() {}
DSP2::~DSP2() {}
};

View File

@ -0,0 +1,45 @@
class DSP2 : public Memory {
public:
struct {
bool waiting_for_command;
unsigned command;
unsigned in_count, in_index;
unsigned out_count, out_index;
uint8 parameters[512];
uint8 output[512];
uint8 op05transparent;
bool op05haslen;
int op05len;
bool op06haslen;
int op06len;
uint16 op09word1;
uint16 op09word2;
bool op0dhaslen;
int op0doutlen;
int op0dinlen;
} status;
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
DSP2();
~DSP2();
protected:
void op01();
void op03();
void op05();
void op06();
void op09();
void op0d();
};
extern DSP2 dsp2;

View File

@ -0,0 +1,177 @@
#ifdef DSP2_CPP
//convert bitmap to bitplane tile
void DSP2::op01() {
//op01 size is always 32 bytes input and output
//the hardware does strange things if you vary the size
unsigned char c0, c1, c2, c3;
unsigned char *p1 = status.parameters;
unsigned char *p2a = status.output;
unsigned char *p2b = status.output + 16; //halfway
//process 8 blocks of 4 bytes each
for(int j = 0; j < 8; j++) {
c0 = *p1++;
c1 = *p1++;
c2 = *p1++;
c3 = *p1++;
*p2a++ = (c0 & 0x10) << 3 |
(c0 & 0x01) << 6 |
(c1 & 0x10) << 1 |
(c1 & 0x01) << 4 |
(c2 & 0x10) >> 1 |
(c2 & 0x01) << 2 |
(c3 & 0x10) >> 3 |
(c3 & 0x01);
*p2a++ = (c0 & 0x20) << 2 |
(c0 & 0x02) << 5 |
(c1 & 0x20) |
(c1 & 0x02) << 3 |
(c2 & 0x20) >> 2 |
(c2 & 0x02) << 1 |
(c3 & 0x20) >> 4 |
(c3 & 0x02) >> 1;
*p2b++ = (c0 & 0x40) << 1 |
(c0 & 0x04) << 4 |
(c1 & 0x40) >> 1 |
(c1 & 0x04) << 2 |
(c2 & 0x40) >> 3 |
(c2 & 0x04) |
(c3 & 0x40) >> 5 |
(c3 & 0x04) >> 2;
*p2b++ = (c0 & 0x80) |
(c0 & 0x08) << 3 |
(c1 & 0x80) >> 2 |
(c1 & 0x08) << 1 |
(c2 & 0x80) >> 4 |
(c2 & 0x08) >> 1 |
(c3 & 0x80) >> 6 |
(c3 & 0x08) >> 3;
}
}
//set transparent color
void DSP2::op03() {
status.op05transparent = status.parameters[0];
}
//replace bitmap using transparent color
void DSP2::op05() {
uint8 color;
// Overlay bitmap with transparency.
// Input:
//
// Bitmap 1: i[0] <=> i[size-1]
// Bitmap 2: i[size] <=> i[2*size-1]
//
// Output:
//
// Bitmap 3: o[0] <=> o[size-1]
//
// Processing:
//
// Process all 4-bit pixels (nibbles) in the bitmap
//
// if ( BM2_pixel == transparent_color )
// pixelout = BM1_pixel
// else
// pixelout = BM2_pixel
// The max size bitmap is limited to 255 because the size parameter is a byte
// I think size=0 is an error. The behavior of the chip on size=0 is to
// return the last value written to DR if you read DR on Op05 with
// size = 0. I don't think it's worth implementing this quirk unless it's
// proven necessary.
unsigned char c1, c2;
unsigned char *p1 = status.parameters;
unsigned char *p2 = status.parameters + status.op05len;
unsigned char *p3 = status.output;
color = status.op05transparent & 0x0f;
for(int n = 0; n < status.op05len; n++) {
c1 = *p1++;
c2 = *p2++;
*p3++ = ( ((c2 >> 4) == color ) ? c1 & 0xf0 : c2 & 0xf0 ) |
( ((c2 & 0x0f) == color ) ? c1 & 0x0f : c2 & 0x0f );
}
}
//reverse bitmap
void DSP2::op06() {
// Input:
// size
// bitmap
int i, j;
for(i = 0, j = status.op06len - 1; i < status.op06len; i++, j--) {
status.output[j] = (status.parameters[i] << 4) | (status.parameters[i] >> 4);
}
}
//multiply
void DSP2::op09() {
status.out_count = 4;
status.op09word1 = status.parameters[0] | (status.parameters[1] << 8);
status.op09word2 = status.parameters[2] | (status.parameters[3] << 8);
uint32 r;
r = status.op09word1 * status.op09word2;
status.output[0] = r;
status.output[1] = r >> 8;
status.output[2] = r >> 16;
status.output[3] = r >> 24;
}
//scale bitmap
void DSP2::op0d() {
// Bit accurate hardware algorithm - uses fixed point math
// This should match the DSP2 Op0D output exactly
// I wouldn't recommend using this unless you're doing hardware debug.
// In some situations it has small visual artifacts that
// are not readily apparent on a TV screen but show up clearly
// on a monitor. Use Overload's scaling instead.
// This is for hardware verification testing.
//
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
uint32 multiplier; // Any size int >= 32-bits
uint32 pixloc; // match size of multiplier
int i, j;
uint8 pixelarray[512];
if(status.op0dinlen <= status.op0doutlen) {
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
} else {
multiplier = (status.op0dinlen << 17) / ((status.op0doutlen << 1) + 1);
}
pixloc = 0;
for(i = 0; i < status.op0doutlen * 2; i++) {
j = pixloc >> 16;
if(j & 1) {
pixelarray[i] = (status.parameters[j >> 1] & 0x0f);
} else {
pixelarray[i] = (status.parameters[j >> 1] & 0xf0) >> 4;
}
pixloc += multiplier;
}
for(i = 0; i < status.op0doutlen; i++) {
status.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
}
#endif

View File

@ -0,0 +1,26 @@
#ifdef DSP2_CPP
void DSP2::serialize(serializer &s) {
s.integer(status.waiting_for_command);
s.integer(status.command);
s.integer(status.in_count);
s.integer(status.in_index);
s.integer(status.out_count);
s.integer(status.out_index);
s.array(status.parameters);
s.array(status.output);
s.integer(status.op05transparent);
s.integer(status.op05haslen);
s.integer(status.op05len);
s.integer(status.op06haslen);
s.integer(status.op06len);
s.integer(status.op09word1);
s.integer(status.op09word2);
s.integer(status.op0dhaslen);
s.integer(status.op0doutlen);
s.integer(status.op0dinlen);
}
#endif

View File

@ -0,0 +1,42 @@
#include <../base.hpp>
#define DSP3_CPP
namespace SNES {
DSP3 dsp3;
namespace DSP3i {
#define bool8 uint8
#include "dsp3emu.c"
#undef bool8
};
void DSP3::init() {
}
void DSP3::enable() {
bus.map(Bus::MapDirect, 0x20, 0x3f, 0x8000, 0xffff, *this);
bus.map(Bus::MapDirect, 0xa0, 0xbf, 0x8000, 0xffff, *this);
}
void DSP3::power() {
reset();
}
void DSP3::reset() {
DSP3i::DSP3_Reset();
}
uint8 DSP3::read(unsigned addr) {
DSP3i::dsp3_address = addr & 0xffff;
DSP3i::DSP3GetByte();
return DSP3i::dsp3_byte;
}
void DSP3::write(unsigned addr, uint8 data) {
DSP3i::dsp3_address = addr & 0xffff;
DSP3i::dsp3_byte = data;
DSP3i::DSP3SetByte();
}
};

View File

@ -0,0 +1,12 @@
class DSP3 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read (unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP3 dsp3;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,62 @@
#include <../base.hpp>
#define DSP4_CPP
namespace SNES {
DSP4 dsp4;
void DSP4::init() {
}
void DSP4::enable() {
bus.map(Bus::MapDirect, 0x30, 0x3f, 0x8000, 0xffff, *this);
bus.map(Bus::MapDirect, 0xb0, 0xbf, 0x8000, 0xffff, *this);
}
namespace DSP4i {
inline uint16 READ_WORD(uint8 *addr) {
return (addr[0]) + (addr[1] << 8);
}
inline uint32 READ_DWORD(uint8 *addr) {
return (addr[0]) + (addr[1] << 8) + (addr[2] << 16) + (addr[3] << 24);
}
inline void WRITE_WORD(uint8 *addr, uint16 data) {
addr[0] = data;
addr[1] = data >> 8;
}
#define bool8 uint8
#include "dsp4emu.c"
#undef bool8
};
void DSP4::power() {
reset();
}
void DSP4::reset() {
DSP4i::InitDSP4();
}
uint8 DSP4::read(unsigned addr) {
addr &= 0xffff;
if(addr < 0xc000) {
DSP4i::dsp4_address = addr;
DSP4i::DSP4GetByte();
return DSP4i::dsp4_byte;
}
return 0x80;
}
void DSP4::write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr < 0xc000) {
DSP4i::dsp4_address = addr;
DSP4i::dsp4_byte = data;
DSP4i::DSP4SetByte();
}
}
};

View File

@ -0,0 +1,12 @@
class DSP4 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read (unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP4 dsp4;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,108 @@
//DSP-4 emulator code
//Copyright (c) 2004-2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden
#ifndef DSP4EMU_H
#define DSP4EMU_H
#undef TRUE
#undef FALSE
#define TRUE true
#define FALSE false
struct DSP4_t
{
bool8 waiting4command;
bool8 half_command;
uint16 command;
uint32 in_count;
uint32 in_index;
uint32 out_count;
uint32 out_index;
uint8 parameters[512];
uint8 output[512];
};
extern struct DSP4_t DSP4;
struct DSP4_vars_t
{
// op control
int8 DSP4_Logic; // controls op flow
// projection format
int16 lcv; // loop-control variable
int16 distance; // z-position into virtual world
int16 raster; // current raster line
int16 segments; // number of raster lines drawn
// 1.15.16 or 1.15.0 [sign, integer, fraction]
int32 world_x; // line of x-projection in world
int32 world_y; // line of y-projection in world
int32 world_dx; // projection line x-delta
int32 world_dy; // projection line y-delta
int16 world_ddx; // x-delta increment
int16 world_ddy; // y-delta increment
int32 world_xenv; // world x-shaping factor
int16 world_yofs; // world y-vertical scroll
int16 view_x1; // current viewer-x
int16 view_y1; // current viewer-y
int16 view_x2; // future viewer-x
int16 view_y2; // future viewer-y
int16 view_dx; // view x-delta factor
int16 view_dy; // view y-delta factor
int16 view_xofs1; // current viewer x-vertical scroll
int16 view_yofs1; // current viewer y-vertical scroll
int16 view_xofs2; // future viewer x-vertical scroll
int16 view_yofs2; // future viewer y-vertical scroll
int16 view_yofsenv; // y-scroll shaping factor
int16 view_turnoff_x; // road turnoff data
int16 view_turnoff_dx; // road turnoff delta factor
// drawing area
int16 viewport_cx; // x-center of viewport window
int16 viewport_cy; // y-center of render window
int16 viewport_left; // x-left of viewport
int16 viewport_right; // x-right of viewport
int16 viewport_top; // y-top of viewport
int16 viewport_bottom; // y-bottom of viewport
// sprite structure
int16 sprite_x; // projected x-pos of sprite
int16 sprite_y; // projected y-pos of sprite
int16 sprite_attr; // obj attributes
bool8 sprite_size; // sprite size: 8x8 or 16x16
int16 sprite_clipy; // visible line to clip pixels off
int16 sprite_count;
// generic projection variables designed for
// two solid polygons + two polygon sides
int16 poly_clipLf[2][2]; // left clip boundary
int16 poly_clipRt[2][2]; // right clip boundary
int16 poly_ptr[2][2]; // HDMA structure pointers
int16 poly_raster[2][2]; // current raster line below horizon
int16 poly_top[2][2]; // top clip boundary
int16 poly_bottom[2][2]; // bottom clip boundary
int16 poly_cx[2][2]; // center for left/right points
int16 poly_start[2]; // current projection points
int16 poly_plane[2]; // previous z-plane distance
// OAM
int16 OAM_attr[16]; // OAM (size,MSB) data
int16 OAM_index; // index into OAM table
int16 OAM_bits; // offset into OAM table
int16 OAM_RowMax; // maximum number of tiles per 8 aligned pixels (row)
int16 OAM_Row[32]; // current number of tiles per row
};
extern struct DSP4_vars_t DSP4_vars;
#endif

View File

@ -0,0 +1,84 @@
#include <../base.hpp>
#define OBC1_CPP
namespace SNES {
OBC1 obc1;
#include "serialization.cpp"
void OBC1::init() {
}
void OBC1::enable() {
bus.map(Bus::MapDirect, 0x00, 0x3f, 0x6000, 0x7fff, *this);
bus.map(Bus::MapDirect, 0x80, 0xbf, 0x6000, 0x7fff, *this);
}
void OBC1::power() {
reset();
}
void OBC1::reset() {
for(unsigned i = 0x0000; i <= 0x1fff; i++) ram_write(i, 0xff);
status.baseptr = (ram_read(0x1ff5) & 1) ? 0x1800 : 0x1c00;
status.address = (ram_read(0x1ff6) & 0x7f);
status.shift = (ram_read(0x1ff6) & 3) << 1;
}
uint8 OBC1::read(unsigned addr) {
addr &= 0x1fff;
if((addr & 0x1ff8) != 0x1ff0) return ram_read(addr);
switch(addr) { default: //never used, avoids compiler warning
case 0x1ff0: return ram_read(status.baseptr + (status.address << 2) + 0);
case 0x1ff1: return ram_read(status.baseptr + (status.address << 2) + 1);
case 0x1ff2: return ram_read(status.baseptr + (status.address << 2) + 2);
case 0x1ff3: return ram_read(status.baseptr + (status.address << 2) + 3);
case 0x1ff4: return ram_read(status.baseptr + (status.address >> 2) + 0x200);
case 0x1ff5: case 0x1ff6: case 0x1ff7: return ram_read(addr);
}
}
void OBC1::write(unsigned addr, uint8 data) {
addr &= 0x1fff;
if((addr & 0x1ff8) != 0x1ff0) return ram_write(addr, data);
switch(addr) {
case 0x1ff0: ram_write(status.baseptr + (status.address << 2) + 0, data); break;
case 0x1ff1: ram_write(status.baseptr + (status.address << 2) + 1, data); break;
case 0x1ff2: ram_write(status.baseptr + (status.address << 2) + 2, data); break;
case 0x1ff3: ram_write(status.baseptr + (status.address << 2) + 3, data); break;
case 0x1ff4: {
uint8 temp = ram_read(status.baseptr + (status.address >> 2) + 0x200);
temp = (temp & ~(3 << status.shift)) | ((data & 3) << status.shift);
ram_write(status.baseptr + (status.address >> 2) + 0x200, temp);
} break;
case 0x1ff5: {
status.baseptr = (data & 1) ? 0x1800 : 0x1c00;
ram_write(addr, data);
} break;
case 0x1ff6: {
status.address = (data & 0x7f);
status.shift = (data & 3) << 1;
ram_write(addr, data);
} break;
case 0x1ff7: {
ram_write(addr, data);
} break;
}
}
uint8 OBC1::ram_read(unsigned addr) {
return memory::cartram.read(addr & 0x1fff);
}
void OBC1::ram_write(unsigned addr, uint8 data) {
memory::cartram.write(addr & 0x1fff, data);
}
OBC1::OBC1() {}
OBC1::~OBC1() {}
};

View File

@ -0,0 +1,26 @@
class OBC1 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
OBC1();
~OBC1();
private:
uint8 ram_read(unsigned addr);
void ram_write(unsigned addr, uint8 data);
struct {
uint16 address;
uint16 baseptr;
uint16 shift;
} status;
};
extern OBC1 obc1;

View File

@ -0,0 +1,9 @@
#ifdef OBC1_CPP
void OBC1::serialize(serializer &s) {
s.integer(status.address);
s.integer(status.baseptr);
s.integer(status.shift);
}
#endif

View File

@ -0,0 +1,243 @@
#ifdef SA1_CPP
VBRBus vbrbus;
SA1Bus sa1bus;
namespace memory {
StaticRAM iram(2048);
//accessed by:
VectorSelectionPage vectorsp; //S-CPU + SA-1
CPUIRAM cpuiram; //S-CPU
SA1IRAM sa1iram; //SA-1
SA1BWRAM sa1bwram; //SA-1
CC1BWRAM cc1bwram; //S-CPU
BitmapRAM bitmapram; //SA-1
}
//$230c (VDPL), $230d (VDPH) use this bus to read variable-length data.
//this is used both to avoid VBR-reads from accessing MMIO registers, and
//to avoid syncing the S-CPU and SA-1*; as both chips are able to access
//these ports.
//(* eg, memory::cartram is used directly, as memory::sa1bwram syncs to the S-CPU)
void VBRBus::init() {
map(MapDirect, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
map(MapLinear, 0x00, 0x3f, 0x0000, 0x07ff, memory::iram);
map(MapLinear, 0x00, 0x3f, 0x3000, 0x37ff, memory::iram);
map(MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::cartram);
map(MapLinear, 0x00, 0x3f, 0x8000, 0xffff, memory::cartrom);
map(MapLinear, 0x40, 0x4f, 0x0000, 0xffff, memory::cartram);
map(MapLinear, 0x80, 0xbf, 0x0000, 0x07ff, memory::iram);
map(MapLinear, 0x80, 0xbf, 0x3000, 0x37ff, memory::iram);
map(MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::cartram);
map(MapLinear, 0x80, 0xbf, 0x8000, 0xffff, memory::cartrom);
map(MapLinear, 0xc0, 0xff, 0x0000, 0xffff, memory::cartrom);
}
void SA1Bus::init() {
map(MapDirect, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
for(unsigned i = 0x2200; i <= 0x23ff; i++) memory::mmio.map(i, sa1);
map(MapLinear, 0x00, 0x3f, 0x0000, 0x07ff, memory::sa1iram);
map(MapDirect, 0x00, 0x3f, 0x2200, 0x23ff, memory::mmio);
map(MapLinear, 0x00, 0x3f, 0x3000, 0x37ff, memory::sa1iram);
map(MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::sa1bwram);
map(MapLinear, 0x00, 0x3f, 0x8000, 0xffff, memory::cartrom);
map(MapLinear, 0x40, 0x4f, 0x0000, 0xffff, memory::sa1bwram);
map(MapLinear, 0x60, 0x6f, 0x0000, 0xffff, memory::bitmapram);
map(MapLinear, 0x80, 0xbf, 0x0000, 0x07ff, memory::sa1iram);
map(MapDirect, 0x80, 0xbf, 0x2200, 0x23ff, memory::mmio);
map(MapLinear, 0x80, 0xbf, 0x3000, 0x37ff, memory::sa1iram);
map(MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::sa1bwram);
map(MapLinear, 0x80, 0xbf, 0x8000, 0xffff, memory::cartrom);
map(MapLinear, 0xc0, 0xff, 0x0000, 0xffff, memory::cartrom);
bus.map(MapLinear, 0x00, 0x3f, 0x3000, 0x37ff, memory::cpuiram);
bus.map(MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::cc1bwram);
bus.map(MapLinear, 0x00, 0x3f, 0x8000, 0xffff, memory::cartrom);
bus.map(MapLinear, 0x40, 0x4f, 0x0000, 0xffff, memory::cc1bwram);
bus.map(MapLinear, 0x80, 0xbf, 0x3000, 0x37ff, memory::cpuiram);
bus.map(MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::cc1bwram);
bus.map(MapLinear, 0x80, 0xbf, 0x8000, 0xffff, memory::cartrom);
bus.map(MapLinear, 0xc0, 0xff, 0x0000, 0xffff, memory::cartrom);
memory::vectorsp.sync();
}
//===================
//VectorSelectionPage
//===================
//this class maps $00:[ff00-ffff] for the purpose of supporting:
//$2209.d6 IVSW (S-CPU IRQ vector selection) (0 = cart, 1 = SA-1)
//$2209.d4 NVSW (S-CPU NMI vector selection) (0 = cart, 1 = SA-1)
//when set, vector addresses are over-ridden with SA-1 register settings:
//SIV = S-CPU IRQ vector address override
//SNV = S-CPU NMI vector address override
//
//$00:[ffea-ffeb|ffee-ffef] are special cased on read;
//all other addresses return original mapped data.
uint8 VectorSelectionPage::read(unsigned addr) {
switch(0xff00 | (addr & 0xff)) {
case 0xffea: case 0xffeb: {
if(sa1.mmio.cpu_nvsw == true) return (sa1.mmio.snv >> ((addr & 1) << 3));
} break;
case 0xffee: case 0xffef: {
if(sa1.mmio.cpu_ivsw == true) return (sa1.mmio.siv >> ((addr & 1) << 3));
} break;
}
return access->read(addr);
}
void VectorSelectionPage::write(unsigned addr, uint8 data) {
return access->write(addr, data);
}
//call this whenever bus is remapped.
//note: S-CPU and SA-1 bus always share $00:[ff00-ffff] as cartridge ROM data;
//the SA-1 MMC does not allow mapping these independently between processors.
//this allows this class to be shared for both, caching only ones' access class.
void VectorSelectionPage::sync() {
if(bus.page[0x00ff00 >> 8].access != this) {
//bus was re-mapped, hook access routine
access = bus.page[0x00ff00 >> 8].access;
bus.page[0x00ff00 >> 8].access = this;
sa1bus.page[0x00ff00 >> 8].access = this;
}
}
//=======
//SA1IRAM
//=======
unsigned SA1IRAM::size() const {
return memory::iram.size();
}
uint8 SA1IRAM::read(unsigned addr) {
scheduler.sync_copcpu();
return memory::iram.read(addr);
}
void SA1IRAM::write(unsigned addr, uint8 data) {
scheduler.sync_copcpu();
memory::iram.write(addr, data);
}
//=======
//CPUIRAM
//=======
unsigned CPUIRAM::size() const {
return memory::iram.size();
}
uint8 CPUIRAM::read(unsigned addr) {
scheduler.sync_cpucop();
return memory::iram.read(addr);
}
void CPUIRAM::write(unsigned addr, uint8 data) {
scheduler.sync_cpucop();
memory::iram.write(addr, data);
}
//========
//SA1BWRAM
//========
unsigned SA1BWRAM::size() const {
return memory::cartram.size();
}
uint8 SA1BWRAM::read(unsigned addr) {
scheduler.sync_copcpu();
return memory::cartram.read(addr);
}
void SA1BWRAM::write(unsigned addr, uint8 data) {
scheduler.sync_copcpu();
memory::cartram.write(addr, data);
}
//========
//CC1BWRAM
//========
unsigned CC1BWRAM::size() const {
return memory::cartram.size();
}
uint8 CC1BWRAM::read(unsigned addr) {
scheduler.sync_cpucop();
if(dma) return sa1.dma_cc1_read(addr);
return memory::cartram.read(addr);
}
void CC1BWRAM::write(unsigned addr, uint8 data) {
scheduler.sync_cpucop();
memory::cartram.write(addr, data);
}
//=========
//BitmapRAM
//=========
unsigned BitmapRAM::size() const {
return 0x100000;
}
uint8 BitmapRAM::read(unsigned addr) {
scheduler.sync_copcpu();
if(sa1.mmio.bbf == 0) {
//4bpp
unsigned shift = addr & 1;
addr = (addr >> 1) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: return (memory::cartram.read(addr) >> 0) & 15;
case 1: return (memory::cartram.read(addr) >> 4) & 15;
}
} else {
//2bpp
unsigned shift = addr & 3;
addr = (addr >> 2) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: return (memory::cartram.read(addr) >> 0) & 3;
case 1: return (memory::cartram.read(addr) >> 2) & 3;
case 2: return (memory::cartram.read(addr) >> 4) & 3;
case 3: return (memory::cartram.read(addr) >> 6) & 3;
}
}
}
void BitmapRAM::write(unsigned addr, uint8 data) {
scheduler.sync_copcpu();
if(sa1.mmio.bbf == 0) {
//4bpp
unsigned shift = addr & 1;
addr = (addr >> 1) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: data = (memory::cartram.read(addr) & 0xf0) | ((data & 15) << 0); break;
case 1: data = (memory::cartram.read(addr) & 0x0f) | ((data & 15) << 4); break;
}
} else {
//2bpp
unsigned shift = addr & 3;
addr = (addr >> 2) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: data = (memory::cartram.read(addr) & 0xfc) | ((data & 3) << 0); break;
case 1: data = (memory::cartram.read(addr) & 0xf3) | ((data & 3) << 2); break;
case 2: data = (memory::cartram.read(addr) & 0xcf) | ((data & 3) << 4); break;
case 3: data = (memory::cartram.read(addr) & 0x3f) | ((data & 3) << 6); break;
}
}
memory::cartram.write(addr, data);
}
#endif

View File

@ -0,0 +1,56 @@
struct VBRBus : Bus {
void init();
};
struct SA1Bus : Bus {
void init();
};
struct VectorSelectionPage : Memory {
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
void sync();
Memory *access;
};
struct CPUIRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct SA1IRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct SA1BWRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct CC1BWRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
bool dma;
};
struct BitmapRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
namespace memory {
extern StaticRAM iram;
extern VectorSelectionPage vectorsp;
extern CPUIRAM cpuiram;
extern SA1IRAM sa1iram;
extern SA1BWRAM sa1bwram;
extern CC1BWRAM cc1bwram;
extern BitmapRAM bitmapram;
};

View File

@ -0,0 +1,139 @@
#ifdef SA1_CPP
//====================
//direct data transfer
//====================
void SA1::dma_normal() {
while(mmio.dtc--) {
uint8 data = regs.mdr;
uint32 dsa = mmio.dsa++;
uint32 dda = mmio.dda++;
//source and destination cannot be the same
if(mmio.sd == DMA::SourceBWRAM && mmio.dd == DMA::DestBWRAM) continue;
if(mmio.sd == DMA::SourceIRAM && mmio.dd == DMA::DestIRAM ) continue;
switch(mmio.sd) {
case DMA::SourceROM: {
if((dsa & 0x408000) == 0x008000 || (dsa & 0xc00000) == 0xc00000) {
data = sa1bus.read(dsa);
}
} break;
case DMA::SourceBWRAM: {
if((dsa & 0x40e000) == 0x006000 || (dsa & 0xf00000) == 0x400000) {
data = sa1bus.read(dsa);
}
} break;
case DMA::SourceIRAM: {
data = memory::iram.read(dsa & 0x07ff);
} break;
}
switch(mmio.dd) {
case DMA::DestBWRAM: {
if((dda & 0x40e000) == 0x006000 || (dda & 0xf00000) == 0x400000) {
sa1bus.write(dda, data);
}
} break;
case DMA::DestIRAM: {
memory::iram.write(dda & 0x07ff, data);
} break;
}
}
mmio.dma_irqfl = true;
if(mmio.dma_irqen) mmio.dma_irqcl = 0;
}
//((byte & 6) << 3) + (byte & 1) explanation:
//transforms a byte index (0-7) into a planar index:
//result[] = { 0, 1, 16, 17, 32, 33, 48, 49 };
//works for 2bpp, 4bpp and 8bpp modes
//===========================
//type-1 character conversion
//===========================
void SA1::dma_cc1() {
memory::cc1bwram.dma = true;
mmio.chdma_irqfl = true;
if(mmio.chdma_irqen) {
mmio.chdma_irqcl = 0;
cpu.regs.irq = 1;
}
}
uint8 SA1::dma_cc1_read(unsigned addr) {
//16 bytes/char (2bpp); 32 bytes/char (4bpp); 64 bytes/char (8bpp)
unsigned charmask = (1 << (6 - mmio.dmacb)) - 1;
if((addr & charmask) == 0) {
//buffer next character to I-RAM
unsigned bpp = 2 << (2 - mmio.dmacb);
unsigned bpl = (8 << mmio.dmasize) >> mmio.dmacb;
unsigned bwmask = memory::cartram.size() - 1;
unsigned tile = ((addr - mmio.dsa) & bwmask) >> (6 - mmio.dmacb);
unsigned ty = (tile >> mmio.dmasize);
unsigned tx = tile & ((1 << mmio.dmasize) - 1);
unsigned bwaddr = mmio.dsa + ty * 8 * bpl + tx * bpp;
for(unsigned y = 0; y < 8; y++) {
uint64 data = 0;
for(unsigned byte = 0; byte < bpp; byte++) {
data |= (uint64)memory::cartram.read((bwaddr + byte) & bwmask) << (byte << 3);
}
bwaddr += bpl;
uint8 out[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
for(unsigned x = 0; x < 8; x++) {
out[0] |= (data & 1) << (7 - x); data >>= 1;
out[1] |= (data & 1) << (7 - x); data >>= 1;
if(mmio.dmacb == 2) continue;
out[2] |= (data & 1) << (7 - x); data >>= 1;
out[3] |= (data & 1) << (7 - x); data >>= 1;
if(mmio.dmacb == 1) continue;
out[4] |= (data & 1) << (7 - x); data >>= 1;
out[5] |= (data & 1) << (7 - x); data >>= 1;
out[6] |= (data & 1) << (7 - x); data >>= 1;
out[7] |= (data & 1) << (7 - x); data >>= 1;
}
for(unsigned byte = 0; byte < bpp; byte++) {
unsigned p = mmio.dda + (y << 1) + ((byte & 6) << 3) + (byte & 1);
memory::iram.write(p & 0x07ff, out[byte]);
}
}
}
return memory::iram.read((mmio.dda + (addr & charmask)) & 0x07ff);
}
//===========================
//type-2 character conversion
//===========================
void SA1::dma_cc2() {
//select register file index (0-7 or 8-15)
const uint8 *brf = &mmio.brf[(dma.line & 1) << 3];
unsigned bpp = 2 << (2 - mmio.dmacb);
unsigned addr = mmio.dda & 0x07ff;
addr &= ~((1 << (7 - mmio.dmacb)) - 1);
addr += (dma.line & 8) * bpp;
addr += (dma.line & 7) * 2;
for(unsigned byte = 0; byte < bpp; byte++) {
uint8 output = 0;
for(unsigned bit = 0; bit < 8; bit++) {
output |= ((brf[bit] >> byte) & 1) << (7 - bit);
}
memory::iram.write(addr + ((byte & 6) << 3) + (byte & 1), output);
}
dma.line = (dma.line + 1) & 15;
}
#endif

View File

@ -0,0 +1,11 @@
struct DMA {
enum CDEN { DmaNormal = 0, DmaCharConversion = 1 };
enum SD { SourceROM = 0, SourceBWRAM = 1, SourceIRAM = 2 };
enum DD { DestIRAM = 0, DestBWRAM = 1 };
unsigned line;
} dma;
void dma_normal();
void dma_cc1();
uint8 dma_cc1_read(unsigned addr);
void dma_cc2();

View File

@ -0,0 +1,24 @@
#ifdef SA1_CPP
//ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks)
//BW-RAM is accessed at ~5.37MHz (4 clock ticks)
//tick() == 2 clock ticks
//note: bus conflict delays are not emulated at this time
void SA1::op_io() {
tick();
}
uint8 SA1::op_read(unsigned addr) {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
return sa1bus.read(addr);
}
void SA1::op_write(unsigned addr, uint8 data) {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
sa1bus.write(addr, data);
}
#endif

View File

@ -0,0 +1,5 @@
alwaysinline void op_io();
alwaysinline uint8 op_read(unsigned addr);
alwaysinline void op_write(unsigned addr, uint8 data);
uint8_t vbr_read(unsigned addr);

View File

@ -0,0 +1,633 @@
#ifdef SA1_CPP
//BS-X flash carts, when present, are mapped to 0x400000+
Memory& SA1::mmio_access(unsigned &addr) {
if(!memory::bsxflash.data()) return memory::cartrom;
if(addr < 0x400000) return memory::cartrom;
addr &= 0x3fffff;
return bsxflash;
}
//(CCNT) SA-1 control
void SA1::mmio_w2200(uint8 data) {
if(mmio.sa1_resb && !(data & 0x80)) {
//reset SA-1 CPU
regs.pc.w = mmio.crv;
regs.pc.b = 0x00;
}
mmio.sa1_irq = (data & 0x80);
mmio.sa1_rdyb = (data & 0x40);
mmio.sa1_resb = (data & 0x20);
mmio.sa1_nmi = (data & 0x10);
mmio.smeg = (data & 0x0f);
if(mmio.sa1_irq) {
mmio.sa1_irqfl = true;
if(mmio.sa1_irqen) mmio.sa1_irqcl = 0;
}
if(mmio.sa1_nmi) {
mmio.sa1_nmifl = true;
if(mmio.sa1_nmien) mmio.sa1_nmicl = 0;
}
}
//(SIE) S-CPU interrupt enable
void SA1::mmio_w2201(uint8 data) {
if(!mmio.cpu_irqen && (data & 0x80)) {
if(mmio.cpu_irqfl) {
mmio.cpu_irqcl = 0;
cpu.regs.irq = 1;
}
}
if(!mmio.chdma_irqen && (data & 0x20)) {
if(mmio.chdma_irqfl) {
mmio.chdma_irqcl = 0;
cpu.regs.irq = 1;
}
}
mmio.cpu_irqen = (data & 0x80);
mmio.chdma_irqen = (data & 0x20);
}
//(SIC) S-CPU interrupt clear
void SA1::mmio_w2202(uint8 data) {
mmio.cpu_irqcl = (data & 0x80);
mmio.chdma_irqcl = (data & 0x20);
if(mmio.cpu_irqcl ) mmio.cpu_irqfl = false;
if(mmio.chdma_irqcl) mmio.chdma_irqfl = false;
if(!mmio.cpu_irqfl && !mmio.chdma_irqfl) cpu.regs.irq = 0;
}
//(CRV) SA-1 reset vector
void SA1::mmio_w2203(uint8 data) { mmio.crv = (mmio.crv & 0xff00) | data; }
void SA1::mmio_w2204(uint8 data) { mmio.crv = (data << 8) | (mmio.crv & 0xff); }
//(CNV) SA-1 NMI vector
void SA1::mmio_w2205(uint8 data) { mmio.cnv = (mmio.cnv & 0xff00) | data; }
void SA1::mmio_w2206(uint8 data) { mmio.cnv = (data << 8) | (mmio.cnv & 0xff); }
//(CIV) SA-1 IRQ vector
void SA1::mmio_w2207(uint8 data) { mmio.civ = (mmio.civ & 0xff00) | data; }
void SA1::mmio_w2208(uint8 data) { mmio.civ = (data << 8) | (mmio.civ & 0xff); }
//(SCNT) S-CPU control
void SA1::mmio_w2209(uint8 data) {
mmio.cpu_irq = (data & 0x80);
mmio.cpu_ivsw = (data & 0x40);
mmio.cpu_nvsw = (data & 0x10);
mmio.cmeg = (data & 0x0f);
if(mmio.cpu_irq) {
mmio.cpu_irqfl = true;
if(mmio.cpu_irqen) {
mmio.cpu_irqcl = 0;
cpu.regs.irq = 1;
}
}
}
//(CIE) SA-1 interrupt enable
void SA1::mmio_w220a(uint8 data) {
if(!mmio.sa1_irqen && (data & 0x80) && mmio.sa1_irqfl ) mmio.sa1_irqcl = 0;
if(!mmio.timer_irqen && (data & 0x40) && mmio.timer_irqfl) mmio.timer_irqcl = 0;
if(!mmio.dma_irqen && (data & 0x20) && mmio.dma_irqfl ) mmio.dma_irqcl = 0;
if(!mmio.sa1_nmien && (data & 0x10) && mmio.sa1_nmifl ) mmio.sa1_nmicl = 0;
mmio.sa1_irqen = (data & 0x80);
mmio.timer_irqen = (data & 0x40);
mmio.dma_irqen = (data & 0x20);
mmio.sa1_nmien = (data & 0x10);
}
//(CIC) SA-1 interrupt clear
void SA1::mmio_w220b(uint8 data) {
mmio.sa1_irqcl = (data & 0x80);
mmio.timer_irqcl = (data & 0x40);
mmio.dma_irqcl = (data & 0x20);
mmio.sa1_nmicl = (data & 0x10);
if(mmio.sa1_irqcl) mmio.sa1_irqfl = false;
if(mmio.timer_irqcl) mmio.timer_irqfl = false;
if(mmio.dma_irqcl) mmio.dma_irqfl = false;
if(mmio.sa1_nmicl) mmio.sa1_nmifl = false;
}
//(SNV) S-CPU NMI vector
void SA1::mmio_w220c(uint8 data) { mmio.snv = (mmio.snv & 0xff00) | data; }
void SA1::mmio_w220d(uint8 data) { mmio.snv = (data << 8) | (mmio.snv & 0xff); }
//(SIV) S-CPU IRQ vector
void SA1::mmio_w220e(uint8 data) { mmio.siv = (mmio.siv & 0xff00) | data; }
void SA1::mmio_w220f(uint8 data) { mmio.siv = (data << 8) | (mmio.siv & 0xff); }
//(TMC) H/V timer control
void SA1::mmio_w2210(uint8 data) {
mmio.hvselb = (data & 0x80);
mmio.ven = (data & 0x02);
mmio.hen = (data & 0x01);
}
//(CTR) SA-1 timer restart
void SA1::mmio_w2211(uint8 data) {
status.vcounter = 0;
status.hcounter = 0;
}
//(HCNT) H-count
void SA1::mmio_w2212(uint8 data) { mmio.hcnt = (mmio.hcnt & 0xff00) | (data << 0); }
void SA1::mmio_w2213(uint8 data) { mmio.hcnt = (mmio.hcnt & 0x00ff) | (data << 8); }
//(VCNT) V-count
void SA1::mmio_w2214(uint8 data) { mmio.vcnt = (mmio.vcnt & 0xff00) | (data << 0); }
void SA1::mmio_w2215(uint8 data) { mmio.vcnt = (mmio.vcnt & 0x00ff) | (data << 8); }
//(CXB) Super MMC bank C
void SA1::mmio_w2220(uint8 data) {
mmio.cbmode = (data & 0x80);
mmio.cb = (data & 0x07);
unsigned addr = mmio.cb << 20;
Memory &access = mmio_access(addr);
if(mmio.cbmode == 0) {
bus.map(Bus::MapLinear, 0x00, 0x1f, 0x8000, 0xffff, memory::cartrom, 0x000000);
sa1bus.map(Bus::MapLinear, 0x00, 0x1f, 0x8000, 0xffff, memory::cartrom, 0x000000);
} else {
bus.map(Bus::MapLinear, 0x00, 0x1f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0x00, 0x1f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapLinear, 0xc0, 0xcf, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0xc0, 0xcf, 0x0000, 0xffff, access, addr);
memory::vectorsp.sync();
}
//(DXB) Super MMC bank D
void SA1::mmio_w2221(uint8 data) {
mmio.dbmode = (data & 0x80);
mmio.db = (data & 0x07);
unsigned addr = mmio.db << 20;
Memory &access = mmio_access(addr);
if(mmio.dbmode == 0) {
bus.map(Bus::MapLinear, 0x20, 0x3f, 0x8000, 0xffff, memory::cartrom, 0x100000);
sa1bus.map(Bus::MapLinear, 0x20, 0x3f, 0x8000, 0xffff, memory::cartrom, 0x100000);
} else {
bus.map(Bus::MapLinear, 0x20, 0x3f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0x20, 0x3f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapLinear, 0xd0, 0xdf, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0xd0, 0xdf, 0x0000, 0xffff, access, addr);
}
//(EXB) Super MMC bank E
void SA1::mmio_w2222(uint8 data) {
mmio.ebmode = (data & 0x80);
mmio.eb = (data & 0x07);
unsigned addr = mmio.eb << 20;
Memory &access = mmio_access(addr);
if(mmio.ebmode == 0) {
bus.map(Bus::MapLinear, 0x80, 0x9f, 0x8000, 0xffff, memory::cartrom, 0x200000);
sa1bus.map(Bus::MapLinear, 0x80, 0x9f, 0x8000, 0xffff, memory::cartrom, 0x200000);
} else {
bus.map(Bus::MapLinear, 0x80, 0x9f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0x80, 0x9f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapLinear, 0xe0, 0xef, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0xe0, 0xef, 0x0000, 0xffff, access, addr);
}
//(FXB) Super MMC bank F
void SA1::mmio_w2223(uint8 data) {
mmio.fbmode = (data & 0x80);
mmio.fb = (data & 0x07);
unsigned addr = mmio.fb << 20;
Memory &access = mmio_access(addr);
if(mmio.fbmode == 0) {
bus.map(Bus::MapLinear, 0xa0, 0xbf, 0x8000, 0xffff, memory::cartrom, 0x300000);
sa1bus.map(Bus::MapLinear, 0xa0, 0xbf, 0x8000, 0xffff, memory::cartrom, 0x300000);
} else {
bus.map(Bus::MapLinear, 0xa0, 0xbf, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0xa0, 0xbf, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapLinear, 0xf0, 0xff, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapLinear, 0xf0, 0xff, 0x0000, 0xffff, access, addr);
}
//(BMAPS) S-CPU BW-RAM address mapping
void SA1::mmio_w2224(uint8 data) {
mmio.sbm = (data & 0x1f);
bus.map(Bus::MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::cc1bwram, mmio.sbm * 0x2000, 0x2000);
bus.map(Bus::MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::cc1bwram, mmio.sbm * 0x2000, 0x2000);
}
//(BMAP) SA-1 BW-RAM address mapping
void SA1::mmio_w2225(uint8 data) {
mmio.sw46 = (data & 0x80);
mmio.cbm = (data & 0x7f);
if(mmio.sw46 == 0) {
//$[40-43]:[0000-ffff] x 32 projection
sa1bus.map(Bus::MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::sa1bwram, (mmio.cbm & 0x1f) * 0x2000, 0x2000);
sa1bus.map(Bus::MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::sa1bwram, (mmio.cbm & 0x1f) * 0x2000, 0x2000);
} else {
//$[60-6f]:[0000-ffff] x 128 projection
sa1bus.map(Bus::MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::bitmapram, mmio.cbm * 0x2000, 0x2000);
sa1bus.map(Bus::MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::bitmapram, mmio.cbm * 0x2000, 0x2000);
}
}
//(SWBE) S-CPU BW-RAM write enable
void SA1::mmio_w2226(uint8 data) {
mmio.swen = (data & 0x80);
}
//(CWBE) SA-1 BW-RAM write enable
void SA1::mmio_w2227(uint8 data) {
mmio.cwen = (data & 0x80);
}
//(BWPA) BW-RAM write-protected area
void SA1::mmio_w2228(uint8 data) {
mmio.bwp = (data & 0x0f);
}
//(SIWP) S-CPU I-RAM write protection
void SA1::mmio_w2229(uint8 data) {
mmio.siwp = data;
}
//(CIWP) SA-1 I-RAM write protection
void SA1::mmio_w222a(uint8 data) {
mmio.ciwp = data;
}
//(DCNT) DMA control
void SA1::mmio_w2230(uint8 data) {
mmio.dmaen = (data & 0x80);
mmio.dprio = (data & 0x40);
mmio.cden = (data & 0x20);
mmio.cdsel = (data & 0x10);
mmio.dd = (data & 0x04);
mmio.sd = (data & 0x03);
if(mmio.dmaen == 0) dma.line = 0;
}
//(CDMA) character conversion DMA parameters
void SA1::mmio_w2231(uint8 data) {
mmio.chdend = (data & 0x80);
mmio.dmasize = (data >> 2) & 7;
mmio.dmacb = (data & 0x03);
if(mmio.chdend) memory::cc1bwram.dma = false;
if(mmio.dmasize > 5) mmio.dmasize = 5;
if(mmio.dmacb > 2) mmio.dmacb = 2;
}
//(SDA) DMA source device start address
void SA1::mmio_w2232(uint8 data) { mmio.dsa = (mmio.dsa & 0xffff00) | (data << 0); }
void SA1::mmio_w2233(uint8 data) { mmio.dsa = (mmio.dsa & 0xff00ff) | (data << 8); }
void SA1::mmio_w2234(uint8 data) { mmio.dsa = (mmio.dsa & 0x00ffff) | (data << 16); }
//(DDA) DMA destination start address
void SA1::mmio_w2235(uint8 data) {
mmio.dda = (mmio.dda & 0xffff00) | (data << 0);
}
void SA1::mmio_w2236(uint8 data) {
mmio.dda = (mmio.dda & 0xff00ff) | (data << 8);
if(mmio.dmaen == true) {
if(mmio.cden == 0 && mmio.dd == DMA::DestIRAM) {
dma_normal();
} else if(mmio.cden == 1 && mmio.cdsel == 1) {
dma_cc1();
}
}
}
void SA1::mmio_w2237(uint8 data) {
mmio.dda = (mmio.dda & 0x00ffff) | (data << 16);
if(mmio.dmaen == true) {
if(mmio.cden == 0 && mmio.dd == DMA::DestBWRAM) {
dma_normal();
}
}
}
//(DTC) DMA terminal counter
void SA1::mmio_w2238(uint8 data) { mmio.dtc = (mmio.dtc & 0xff00) | (data << 0); }
void SA1::mmio_w2239(uint8 data) { mmio.dtc = (mmio.dtc & 0x00ff) | (data << 8); }
//(BBF) BW-RAM bitmap format
void SA1::mmio_w223f(uint8 data) {
mmio.bbf = (data & 0x80);
}
//(BRF) bitmap register files
void SA1::mmio_w2240(uint8 data) { mmio.brf[ 0] = data; }
void SA1::mmio_w2241(uint8 data) { mmio.brf[ 1] = data; }
void SA1::mmio_w2242(uint8 data) { mmio.brf[ 2] = data; }
void SA1::mmio_w2243(uint8 data) { mmio.brf[ 3] = data; }
void SA1::mmio_w2244(uint8 data) { mmio.brf[ 4] = data; }
void SA1::mmio_w2245(uint8 data) { mmio.brf[ 5] = data; }
void SA1::mmio_w2246(uint8 data) { mmio.brf[ 6] = data; }
void SA1::mmio_w2247(uint8 data) { mmio.brf[ 7] = data;
if(mmio.dmaen == true) {
if(mmio.cden == 1 && mmio.cdsel == 0) {
dma_cc2();
}
}
}
void SA1::mmio_w2248(uint8 data) { mmio.brf[ 8] = data; }
void SA1::mmio_w2249(uint8 data) { mmio.brf[ 9] = data; }
void SA1::mmio_w224a(uint8 data) { mmio.brf[10] = data; }
void SA1::mmio_w224b(uint8 data) { mmio.brf[11] = data; }
void SA1::mmio_w224c(uint8 data) { mmio.brf[12] = data; }
void SA1::mmio_w224d(uint8 data) { mmio.brf[13] = data; }
void SA1::mmio_w224e(uint8 data) { mmio.brf[14] = data; }
void SA1::mmio_w224f(uint8 data) { mmio.brf[15] = data;
if(mmio.dmaen == true) {
if(mmio.cden == 1 && mmio.cdsel == 0) {
dma_cc2();
}
}
}
//(MCNT) arithmetic control
void SA1::mmio_w2250(uint8 data) {
mmio.acm = (data & 0x02);
mmio.md = (data & 0x01);
if(mmio.acm) mmio.mr = 0;
}
//(MAL) multiplicand / dividend low
void SA1::mmio_w2251(uint8 data) {
mmio.ma = (mmio.ma & 0xff00) | data;
}
//(MAH) multiplicand / dividend high
void SA1::mmio_w2252(uint8 data) {
mmio.ma = (data << 8) | (mmio.ma & 0x00ff);
}
//(MBL) multiplier / divisor low
void SA1::mmio_w2253(uint8 data) {
mmio.mb = (mmio.mb & 0xff00) | data;
}
//(MBH) multiplier / divisor high
//multiplication / cumulative sum only resets MB
//division resets both MA and MB
void SA1::mmio_w2254(uint8 data) {
mmio.mb = (data << 8) | (mmio.mb & 0x00ff);
if(mmio.acm == 0) {
if(mmio.md == 0) {
//signed multiplication
mmio.mr = (int16)mmio.ma * (int16)mmio.mb;
mmio.mb = 0;
} else {
//unsigned division
if(mmio.mb == 0) {
mmio.mr = 0;
} else {
int16 quotient = (int16)mmio.ma / (uint16)mmio.mb;
uint16 remainder = (int16)mmio.ma % (uint16)mmio.mb;
mmio.mr = (remainder << 16) | quotient;
}
mmio.ma = 0;
mmio.mb = 0;
}
} else {
//sigma (accumulative multiplication)
mmio.mr += (int16)mmio.ma * (int16)mmio.mb;
mmio.overflow = (mmio.mr >= (1ULL << 40));
mmio.mr &= (1ULL << 40) - 1;
mmio.mb = 0;
}
}
//(VBD) variable-length bit processing
void SA1::mmio_w2258(uint8 data) {
mmio.hl = (data & 0x80);
mmio.vb = (data & 0x0f);
if(mmio.vb == 0) mmio.vb = 16;
if(mmio.hl == 0) {
//fixed mode
mmio.vbit += mmio.vb;
mmio.va += (mmio.vbit >> 3);
mmio.vbit &= 7;
}
}
//(VDA) variable-length bit game pak ROM start address
void SA1::mmio_w2259(uint8 data) { mmio.va = (mmio.va & 0xffff00) | (data << 0); }
void SA1::mmio_w225a(uint8 data) { mmio.va = (mmio.va & 0xff00ff) | (data << 8); }
void SA1::mmio_w225b(uint8 data) { mmio.va = (mmio.va & 0x00ffff) | (data << 16); mmio.vbit = 0; }
//(SFR) S-CPU flag read
uint8 SA1::mmio_r2300() {
uint8 data;
data = mmio.cpu_irqfl << 7;
data |= mmio.cpu_ivsw << 6;
data |= mmio.chdma_irqfl << 5;
data |= mmio.cpu_nvsw << 4;
data |= mmio.cmeg;
return data;
}
//(CFR) SA-1 flag read
uint8 SA1::mmio_r2301() {
uint8 data;
data = mmio.sa1_irqfl << 7;
data |= mmio.timer_irqfl << 6;
data |= mmio.dma_irqfl << 5;
data |= mmio.sa1_nmifl << 4;
data |= mmio.smeg;
return data;
}
//(HCR) hcounter read
uint8 SA1::mmio_r2302() {
//latch counters
mmio.hcr = status.hcounter >> 2;
mmio.vcr = status.vcounter;
return mmio.hcr >> 0; }
uint8 SA1::mmio_r2303() { return mmio.hcr >> 8; }
//(VCR) vcounter read
uint8 SA1::mmio_r2304() { return mmio.vcr >> 0; }
uint8 SA1::mmio_r2305() { return mmio.vcr >> 8; }
//(MR) arithmetic result
uint8 SA1::mmio_r2306() { return mmio.mr >> 0; }
uint8 SA1::mmio_r2307() { return mmio.mr >> 8; }
uint8 SA1::mmio_r2308() { return mmio.mr >> 16; }
uint8 SA1::mmio_r2309() { return mmio.mr >> 24; }
uint8 SA1::mmio_r230a() { return mmio.mr >> 32; }
//(OF) arithmetic overflow flag
uint8 SA1::mmio_r230b() { return mmio.overflow << 7; }
//(VDPL) variable-length data read port low
uint8 SA1::mmio_r230c() {
uint32 data = (vbrbus.read(mmio.va + 0) << 0)
| (vbrbus.read(mmio.va + 1) << 8)
| (vbrbus.read(mmio.va + 2) << 16);
data >>= mmio.vbit;
return data >> 0;
}
//(VDPH) variable-length data read port high
uint8 SA1::mmio_r230d() {
uint32 data = (vbrbus.read(mmio.va + 0) << 0)
| (vbrbus.read(mmio.va + 1) << 8)
| (vbrbus.read(mmio.va + 2) << 16);
data >>= mmio.vbit;
if(mmio.hl == 1) {
//auto-increment mode
mmio.vbit += mmio.vb;
mmio.va += (mmio.vbit >> 3);
mmio.vbit &= 7;
}
return data >> 8;
}
//(VC) version code register
uint8 SA1::mmio_r230e() {
return 0x01; //true value unknown
}
uint8 SA1::mmio_read(unsigned addr) {
(co_active() == scheduler.thread_cpu ? scheduler.sync_cpucop() : scheduler.sync_copcpu());
addr &= 0xffff;
switch(addr) {
case 0x2300: return mmio_r2300();
case 0x2301: return mmio_r2301();
case 0x2302: return mmio_r2302();
case 0x2303: return mmio_r2303();
case 0x2304: return mmio_r2304();
case 0x2305: return mmio_r2305();
case 0x2306: return mmio_r2306();
case 0x2307: return mmio_r2307();
case 0x2308: return mmio_r2308();
case 0x2309: return mmio_r2309();
case 0x230a: return mmio_r230a();
case 0x230b: return mmio_r230b();
case 0x230c: return mmio_r230c();
case 0x230d: return mmio_r230d();
case 0x230e: return mmio_r230e();
}
return 0x00;
}
void SA1::mmio_write(unsigned addr, uint8 data) {
(co_active() == scheduler.thread_cpu ? scheduler.sync_cpucop() : scheduler.sync_copcpu());
addr &= 0xffff;
switch(addr) {
case 0x2200: return mmio_w2200(data);
case 0x2201: return mmio_w2201(data);
case 0x2202: return mmio_w2202(data);
case 0x2203: return mmio_w2203(data);
case 0x2204: return mmio_w2204(data);
case 0x2205: return mmio_w2205(data);
case 0x2206: return mmio_w2206(data);
case 0x2207: return mmio_w2207(data);
case 0x2208: return mmio_w2208(data);
case 0x2209: return mmio_w2209(data);
case 0x220a: return mmio_w220a(data);
case 0x220b: return mmio_w220b(data);
case 0x220c: return mmio_w220c(data);
case 0x220d: return mmio_w220d(data);
case 0x220e: return mmio_w220e(data);
case 0x220f: return mmio_w220f(data);
case 0x2210: return mmio_w2210(data);
case 0x2211: return mmio_w2211(data);
case 0x2212: return mmio_w2212(data);
case 0x2213: return mmio_w2213(data);
case 0x2214: return mmio_w2214(data);
case 0x2215: return mmio_w2215(data);
case 0x2220: return mmio_w2220(data);
case 0x2221: return mmio_w2221(data);
case 0x2222: return mmio_w2222(data);
case 0x2223: return mmio_w2223(data);
case 0x2224: return mmio_w2224(data);
case 0x2225: return mmio_w2225(data);
case 0x2226: return mmio_w2226(data);
case 0x2227: return mmio_w2227(data);
case 0x2228: return mmio_w2228(data);
case 0x2229: return mmio_w2229(data);
case 0x222a: return mmio_w222a(data);
case 0x2230: return mmio_w2230(data);
case 0x2231: return mmio_w2231(data);
case 0x2232: return mmio_w2232(data);
case 0x2233: return mmio_w2233(data);
case 0x2234: return mmio_w2234(data);
case 0x2235: return mmio_w2235(data);
case 0x2236: return mmio_w2236(data);
case 0x2237: return mmio_w2237(data);
case 0x2238: return mmio_w2238(data);
case 0x2239: return mmio_w2239(data);
case 0x223f: return mmio_w223f(data);
case 0x2240: return mmio_w2240(data);
case 0x2241: return mmio_w2241(data);
case 0x2242: return mmio_w2242(data);
case 0x2243: return mmio_w2243(data);
case 0x2244: return mmio_w2244(data);
case 0x2245: return mmio_w2245(data);
case 0x2246: return mmio_w2246(data);
case 0x2247: return mmio_w2247(data);
case 0x2248: return mmio_w2248(data);
case 0x2249: return mmio_w2249(data);
case 0x224a: return mmio_w224a(data);
case 0x224b: return mmio_w224b(data);
case 0x224c: return mmio_w224c(data);
case 0x224d: return mmio_w224d(data);
case 0x224e: return mmio_w224e(data);
case 0x224f: return mmio_w224f(data);
case 0x2250: return mmio_w2250(data);
case 0x2251: return mmio_w2251(data);
case 0x2252: return mmio_w2252(data);
case 0x2253: return mmio_w2253(data);
case 0x2254: return mmio_w2254(data);
case 0x2258: return mmio_w2258(data);
case 0x2259: return mmio_w2259(data);
case 0x225a: return mmio_w225a(data);
case 0x225b: return mmio_w225b(data);
}
}
#endif

View File

@ -0,0 +1,256 @@
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
Memory& mmio_access(unsigned &addr);
struct MMIO {
//$2200 CCNT
bool sa1_irq;
bool sa1_rdyb;
bool sa1_resb;
bool sa1_nmi;
uint8 smeg;
//$2201 SIE
bool cpu_irqen;
bool chdma_irqen;
//$2202 SIC
bool cpu_irqcl;
bool chdma_irqcl;
//$2203,$2204 CRV
uint16 crv;
//$2205,$2206 CNV
uint16 cnv;
//$2207,$2208 CIV
uint16 civ;
//$2209 SCNT
bool cpu_irq;
bool cpu_ivsw;
bool cpu_nvsw;
uint8 cmeg;
//$220a CIE
bool sa1_irqen;
bool timer_irqen;
bool dma_irqen;
bool sa1_nmien;
//$220b CIC
bool sa1_irqcl;
bool timer_irqcl;
bool dma_irqcl;
bool sa1_nmicl;
//$220c,$220d SNV
uint16 snv;
//$220e,$220f SIV
uint16 siv;
//$2210 TMC
bool hvselb;
bool ven;
bool hen;
//$2212,$2213
uint16 hcnt;
//$2214,$2215
uint16 vcnt;
//$2220 CXB
bool cbmode;
uint8 cb;
//$2221 DXB
bool dbmode;
uint8 db;
//$2222 EXB
bool ebmode;
uint8 eb;
//$2223 FXB
bool fbmode;
uint8 fb;
//$2224 BMAPS
uint8 sbm;
//$2225 BMAP
bool sw46;
uint8 cbm;
//$2226 SBWE
bool swen;
//$2227 CBWE
bool cwen;
//$2228 BWPA
uint8 bwp;
//$2229 SIWP
uint8 siwp;
//$222a CIWP
uint8 ciwp;
//$2230 DCNT
bool dmaen;
bool dprio;
bool cden;
bool cdsel;
bool dd;
uint8 sd;
//$2231 CDMA
bool chdend;
uint8 dmasize;
uint8 dmacb;
//$2232-$2234 SDA
uint32 dsa;
//$2235-$2237 DDA
uint32 dda;
//$2238,$2239 DTC
uint16 dtc;
//$223f BBF
bool bbf;
//$2240-224f BRF
uint8 brf[16];
//$2250 MCNT
bool acm;
bool md;
//$2251,$2252 MA
uint16 ma;
//$2253,$2254 MB
uint16 mb;
//$2258 VBD
bool hl;
uint8 vb;
//$2259-$225b VDA
uint32 va;
uint8 vbit;
//$2300 SFR
bool cpu_irqfl;
bool chdma_irqfl;
//$2301 CFR
bool sa1_irqfl;
bool timer_irqfl;
bool dma_irqfl;
bool sa1_nmifl;
//$2302,$2303 HCR
uint16 hcr;
//$2304,$2305 VCR
uint16 vcr;
//$2306-230a MR
uint64 mr;
//$230b OF
bool overflow;
} mmio;
void mmio_w2200(uint8); //CCNT
void mmio_w2201(uint8); //SIE
void mmio_w2202(uint8); //SIC
void mmio_w2203(uint8); //CRVL
void mmio_w2204(uint8); //CRVH
void mmio_w2205(uint8); //CNVL
void mmio_w2206(uint8); //CNVH
void mmio_w2207(uint8); //CIVL
void mmio_w2208(uint8); //CIVH
void mmio_w2209(uint8); //SCNT
void mmio_w220a(uint8); //CIE
void mmio_w220b(uint8); //CIC
void mmio_w220c(uint8); //SNVL
void mmio_w220d(uint8); //SNVH
void mmio_w220e(uint8); //SIVL
void mmio_w220f(uint8); //SIVH
void mmio_w2210(uint8); //TMC
void mmio_w2211(uint8); //CTR
void mmio_w2212(uint8); //HCNTL
void mmio_w2213(uint8); //HCNTH
void mmio_w2214(uint8); //VCNTL
void mmio_w2215(uint8); //VCNTH
void mmio_w2220(uint8); //CXB
void mmio_w2221(uint8); //DXB
void mmio_w2222(uint8); //EXB
void mmio_w2223(uint8); //FXB
void mmio_w2224(uint8); //BMAPS
void mmio_w2225(uint8); //BMAP
void mmio_w2226(uint8); //SBWE
void mmio_w2227(uint8); //CBWE
void mmio_w2228(uint8); //BWPA
void mmio_w2229(uint8); //SIWP
void mmio_w222a(uint8); //CIWP
void mmio_w2230(uint8); //DCNT
void mmio_w2231(uint8); //CDMA
void mmio_w2232(uint8); //SDAL
void mmio_w2233(uint8); //SDAH
void mmio_w2234(uint8); //SDAB
void mmio_w2235(uint8); //DDAL
void mmio_w2236(uint8); //DDAH
void mmio_w2237(uint8); //DDAB
void mmio_w2238(uint8); //DTCL
void mmio_w2239(uint8); //DTCH
void mmio_w223f(uint8); //BBF
void mmio_w2240(uint8); //BRF0
void mmio_w2241(uint8); //BRF1
void mmio_w2242(uint8); //BRF2
void mmio_w2243(uint8); //BRF3
void mmio_w2244(uint8); //BRF4
void mmio_w2245(uint8); //BRF5
void mmio_w2246(uint8); //BRF6
void mmio_w2247(uint8); //BRF7
void mmio_w2248(uint8); //BRF8
void mmio_w2249(uint8); //BRF9
void mmio_w224a(uint8); //BRFA
void mmio_w224b(uint8); //BRFB
void mmio_w224c(uint8); //BRFC
void mmio_w224d(uint8); //BRFD
void mmio_w224e(uint8); //BRFE
void mmio_w224f(uint8); //BRFF
void mmio_w2250(uint8); //MCNT
void mmio_w2251(uint8); //MAL
void mmio_w2252(uint8); //MAH
void mmio_w2253(uint8); //MBL
void mmio_w2254(uint8); //MBH
void mmio_w2258(uint8); //VBD
void mmio_w2259(uint8); //VDAL
void mmio_w225a(uint8); //VDAH
void mmio_w225b(uint8); //VDAB
uint8 mmio_r2300(); //SFR
uint8 mmio_r2301(); //CFR
uint8 mmio_r2302(); //HCRL
uint8 mmio_r2303(); //HCRH
uint8 mmio_r2304(); //VCRL
uint8 mmio_r2305(); //VCRH
uint8 mmio_r2306(); //MR [00-07]
uint8 mmio_r2307(); //MR [08-15]
uint8 mmio_r2308(); //MR [16-23]
uint8 mmio_r2309(); //MR [24-31]
uint8 mmio_r230a(); //MR [32-40]
uint8 mmio_r230b(); //OF
uint8 mmio_r230c(); //VDPL
uint8 mmio_r230d(); //VDPH
uint8 mmio_r230e(); //VC

View File

@ -0,0 +1,327 @@
#include <../base.hpp>
#define SA1_CPP
namespace SNES {
SA1 sa1;
#include "serialization.cpp"
#include "bus/bus.cpp"
#include "dma/dma.cpp"
#include "memory/memory.cpp"
#include "mmio/mmio.cpp"
void SA1::enter() {
while(true) {
while(scheduler.sync == Scheduler::SyncAll) {
scheduler.exit(Scheduler::SynchronizeEvent);
}
if(mmio.sa1_rdyb || mmio.sa1_resb) {
//SA-1 co-processor is asleep
tick();
scheduler.sync_copcpu();
continue;
}
if(status.interrupt_pending) {
status.interrupt_pending = false;
interrupt(status.interrupt_vector);
}
(this->*opcode_table[op_readpc()])();
}
}
void SA1::last_cycle() {
if(mmio.sa1_nmi && !mmio.sa1_nmicl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.cnv;
mmio.sa1_nmifl = true;
mmio.sa1_nmicl = 1;
regs.wai = false;
} else if(!regs.p.i) {
if(mmio.timer_irqen && !mmio.timer_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.timer_irqfl = true;
regs.wai = false;
} else if(mmio.dma_irqen && !mmio.dma_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.dma_irqfl = true;
regs.wai = false;
} else if(mmio.sa1_irq && !mmio.sa1_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.sa1_irqfl = true;
regs.wai = false;
}
}
}
void SA1::interrupt(uint16 vector) {
op_read(regs.pc.d);
op_io();
if(!regs.e) op_writestack(regs.pc.b);
op_writestack(regs.pc.h);
op_writestack(regs.pc.l);
op_writestack(regs.e ? (regs.p & ~0x10) : regs.p);
regs.pc.w = vector;
regs.pc.b = 0x00;
regs.p.i = 1;
regs.p.d = 0;
}
bool SA1::interrupt_pending() {
return status.interrupt_pending;
}
void SA1::tick() {
scheduler.addclocks_cop(2);
if(++status.tick_counter == 0) scheduler.sync_copcpu();
//adjust counters:
//note that internally, status counters are in clocks;
//whereas MMIO register counters are in dots (4 clocks = 1 dot)
if(mmio.hvselb == 0) {
//HV timer
status.hcounter += 2;
if(status.hcounter >= 1364) {
status.hcounter = 0;
if(++status.vcounter >= status.scanlines) status.vcounter = 0;
}
} else {
//linear timer
status.hcounter += 2;
status.vcounter += (status.hcounter >> 11);
status.hcounter &= 0x07ff;
status.vcounter &= 0x01ff;
}
//test counters for timer IRQ
switch((mmio.ven << 1) + (mmio.hen << 0)) {
case 0: break;
case 1: if(status.hcounter == (mmio.hcnt << 2)) trigger_irq(); break;
case 2: if(status.vcounter == mmio.vcnt && status.hcounter == 0) trigger_irq(); break;
case 3: if(status.vcounter == mmio.hcnt && status.hcounter == (mmio.hcnt << 2)) trigger_irq(); break;
}
}
void SA1::trigger_irq() {
mmio.timer_irqfl = true;
if(mmio.timer_irqen) mmio.timer_irqcl = 0;
}
void SA1::init() {
}
void SA1::enable() {
}
void SA1::power() {
regs.a = regs.x = regs.y = 0x0000;
regs.s = 0x01ff;
reset();
}
void SA1::reset() {
memory::vectorsp.access = 0;
memory::cc1bwram.dma = false;
for(unsigned addr = 0; addr < memory::iram.size(); addr++) {
memory::iram.write(addr, 0x00);
}
vbrbus.init();
sa1bus.init();
regs.pc.d = 0x000000;
regs.x.h = 0x00;
regs.y.h = 0x00;
regs.s.h = 0x01;
regs.d = 0x0000;
regs.db = 0x00;
regs.p = 0x34;
regs.e = 1;
regs.mdr = 0x00;
regs.wai = false;
CPUcore::update_table();
status.tick_counter = 0;
status.interrupt_pending = false;
status.interrupt_vector = 0x0000;
status.scanlines = (system.region() == System::NTSC ? 262 : 312);
status.vcounter = 0;
status.hcounter = 0;
dma.line = 0;
//$2200 CCNT
mmio.sa1_irq = false;
mmio.sa1_rdyb = false;
mmio.sa1_resb = true;
mmio.sa1_nmi = false;
mmio.smeg = 0;
//$2201 SIE
mmio.cpu_irqen = false;
mmio.chdma_irqen = false;
//$2202 SIC
mmio.cpu_irqcl = false;
mmio.chdma_irqcl = false;
//$2203,$2204 CRV
mmio.crv = 0x0000;
//$2205,$2206 CNV
mmio.cnv = 0x0000;
//$2207,$2208 CIV
mmio.civ = 0x0000;
//$2209 SCNT
mmio.cpu_irq = false;
mmio.cpu_ivsw = false;
mmio.cpu_nvsw = false;
mmio.cmeg = 0;
//$220a CIE
mmio.sa1_irqen = false;
mmio.timer_irqen = false;
mmio.dma_irqen = false;
mmio.sa1_nmien = false;
//$220b CIC
mmio.sa1_irqcl = false;
mmio.timer_irqcl = false;
mmio.dma_irqcl = false;
mmio.sa1_nmicl = false;
//$220c,$220d SNV
mmio.snv = 0x0000;
//$220e,$220f SIV
mmio.siv = 0x0000;
//$2210
mmio.hvselb = false;
mmio.ven = false;
mmio.hen = false;
//$2212,$2213 HCNT
mmio.hcnt = 0x0000;
//$2214,$2215 VCNT
mmio.vcnt = 0x0000;
//$2220-2223 CXB, DXB, EXB, FXB
mmio.cbmode = 0;
mmio.dbmode = 0;
mmio.ebmode = 0;
mmio.fbmode = 0;
mmio.cb = 0x00;
mmio.db = 0x01;
mmio.eb = 0x02;
mmio.fb = 0x03;
//$2224 BMAPS
mmio.sbm = 0x00;
//$2225 BMAP
mmio.sw46 = false;
mmio.cbm = 0x00;
//$2226 SWBE
mmio.swen = false;
//$2227 CWBE
mmio.cwen = false;
//$2228 BWPA
mmio.bwp = 0x0f;
//$2229 SIWP
mmio.siwp = 0x00;
//$222a CIWP
mmio.ciwp = 0x00;
//$2230 DCNT
mmio.dmaen = false;
mmio.dprio = false;
mmio.cden = false;
mmio.cdsel = false;
mmio.dd = 0;
mmio.sd = 0;
//$2231 CDMA
mmio.chdend = false;
mmio.dmasize = 0;
mmio.dmacb = 0;
//$2232-$2234 SDA
mmio.dsa = 0x000000;
//$2235-$2237 DDA
mmio.dda = 0x000000;
//$2238,$2239 DTC
mmio.dtc = 0x0000;
//$223f BBF
mmio.bbf = 0;
//$2240-$224f BRF
for(unsigned i = 0; i < 16; i++) {
mmio.brf[i] = 0x00;
}
//$2250 MCNT
mmio.acm = 0;
mmio.md = 0;
//$2251,$2252 MA
mmio.ma = 0x0000;
//$2253,$2254 MB
mmio.mb = 0x0000;
//$2258 VBD
mmio.hl = false;
mmio.vb = 16;
//$2259-$225b
mmio.va = 0x000000;
mmio.vbit = 0;
//$2300 SFR
mmio.cpu_irqfl = false;
mmio.chdma_irqfl = false;
//$2301 CFR
mmio.sa1_irqfl = false;
mmio.timer_irqfl = false;
mmio.dma_irqfl = false;
mmio.sa1_nmifl = false;
//$2302,$2303 HCR
mmio.hcr = 0x0000;
//$2304,$2305 VCR
mmio.vcr = 0x0000;
//$2306-$230a MR
mmio.mr = 0;
//$230b
mmio.overflow = false;
}
SA1::SA1() {
}
};

View File

@ -0,0 +1,38 @@
#include "bus/bus.hpp"
class SA1 : public CPUcore, public MMIO {
public:
#include "dma/dma.hpp"
#include "memory/memory.hpp"
#include "mmio/mmio.hpp"
struct Status {
uint8 tick_counter;
bool interrupt_pending;
uint16 interrupt_vector;
uint16 scanlines;
uint16 vcounter;
uint16 hcounter;
} status;
void enter();
void interrupt(uint16 vector);
void tick();
alwaysinline void trigger_irq();
alwaysinline void last_cycle();
alwaysinline bool interrupt_pending();
void init();
void enable();
void power();
void reset();
void serialize(serializer&);
SA1();
};
extern SA1 sa1;
extern SA1Bus sa1bus;

View File

@ -0,0 +1,150 @@
#ifdef SA1_CPP
void SA1::serialize(serializer &s) {
CPUcore::core_serialize(s);
//sa1.hpp
s.integer(status.tick_counter);
s.integer(status.interrupt_pending);
s.integer(status.interrupt_vector);
s.integer(status.scanlines);
s.integer(status.vcounter);
s.integer(status.hcounter);
//bus/bus.hpp
s.array(memory::iram.data(), memory::iram.size());
memory::vectorsp.sync();
s.integer(memory::cc1bwram.dma);
//dma/dma.hpp
s.integer(dma.line);
//mmio/mmio.hpp
s.integer(mmio.sa1_irq);
s.integer(mmio.sa1_rdyb);
s.integer(mmio.sa1_resb);
s.integer(mmio.sa1_nmi);
s.integer(mmio.smeg);
s.integer(mmio.cpu_irqen);
s.integer(mmio.chdma_irqen);
s.integer(mmio.cpu_irqcl);
s.integer(mmio.chdma_irqcl);
s.integer(mmio.crv);
s.integer(mmio.cnv);
s.integer(mmio.civ);
s.integer(mmio.cpu_irq);
s.integer(mmio.cpu_ivsw);
s.integer(mmio.cpu_nvsw);
s.integer(mmio.cmeg);
s.integer(mmio.sa1_irqen);
s.integer(mmio.timer_irqen);
s.integer(mmio.dma_irqen);
s.integer(mmio.sa1_nmien);
s.integer(mmio.sa1_irqcl);
s.integer(mmio.timer_irqcl);
s.integer(mmio.dma_irqcl);
s.integer(mmio.sa1_nmicl);
s.integer(mmio.snv);
s.integer(mmio.siv);
s.integer(mmio.hvselb);
s.integer(mmio.ven);
s.integer(mmio.hen);
s.integer(mmio.hcnt);
s.integer(mmio.vcnt);
s.integer(mmio.cbmode);
s.integer(mmio.cb);
s.integer(mmio.dbmode);
s.integer(mmio.db);
s.integer(mmio.ebmode);
s.integer(mmio.eb);
s.integer(mmio.fbmode);
s.integer(mmio.fb);
s.integer(mmio.sbm);
s.integer(mmio.sw46);
s.integer(mmio.cbm);
s.integer(mmio.swen);
s.integer(mmio.cwen);
s.integer(mmio.bwp);
s.integer(mmio.siwp);
s.integer(mmio.ciwp);
s.integer(mmio.dmaen);
s.integer(mmio.dprio);
s.integer(mmio.cden);
s.integer(mmio.cdsel);
s.integer(mmio.dd);
s.integer(mmio.sd);
s.integer(mmio.chdend);
s.integer(mmio.dmasize);
s.integer(mmio.dmacb);
s.integer(mmio.dsa);
s.integer(mmio.dda);
s.integer(mmio.dtc);
s.integer(mmio.bbf);
s.array(mmio.brf);
s.integer(mmio.acm);
s.integer(mmio.md);
s.integer(mmio.ma);
s.integer(mmio.mb);
s.integer(mmio.hl);
s.integer(mmio.vb);
s.integer(mmio.va);
s.integer(mmio.vbit);
s.integer(mmio.cpu_irqfl);
s.integer(mmio.chdma_irqfl);
s.integer(mmio.sa1_irqfl);
s.integer(mmio.timer_irqfl);
s.integer(mmio.dma_irqfl);
s.integer(mmio.sa1_nmifl);
s.integer(mmio.hcr);
s.integer(mmio.vcr);
s.integer(mmio.mr);
s.integer(mmio.overflow);
}
#endif

View File

@ -0,0 +1,161 @@
#include <../base.hpp>
#define SDD1_CPP
namespace SNES {
SDD1 sdd1;
#include "serialization.cpp"
#include "sdd1emu.cpp"
void SDD1::init() {}
void SDD1::enable() {
//hook S-CPU DMA MMIO registers to gather information for struct dma[];
//buffer address and transfer size information for use in SDD1::read()
for(unsigned i = 0x4300; i <= 0x437f; i++) {
cpu_mmio[i & 0x7f] = memory::mmio.mmio[i - 0x2000];
memory::mmio.map(i, *this);
}
//hook S-DD1 MMIO registers
for(unsigned i = 0x4800; i <= 0x4807; i++) {
memory::mmio.map(i, *this);
}
}
void SDD1::power() {
reset();
}
void SDD1::reset() {
sdd1_enable = 0x00;
xfer_enable = 0x00;
mmc[0] = 0 << 20;
mmc[1] = 1 << 20;
mmc[2] = 2 << 20;
mmc[3] = 3 << 20;
for(unsigned i = 0; i < 8; i++) {
dma[i].addr = 0;
dma[i].size = 0;
}
buffer.ready = false;
bus.map(Bus::MapDirect, 0xc0, 0xff, 0x0000, 0xffff, *this);
}
uint8 SDD1::mmio_read(unsigned addr) {
addr &= 0xffff;
if((addr & 0x4380) == 0x4300) {
return cpu_mmio[addr & 0x7f]->mmio_read(addr);
}
switch(addr) {
case 0x4804: return mmc[0] >> 20;
case 0x4805: return mmc[1] >> 20;
case 0x4806: return mmc[2] >> 20;
case 0x4807: return mmc[3] >> 20;
}
return cpu.regs.mdr;
}
void SDD1::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if((addr & 0x4380) == 0x4300) {
unsigned channel = (addr >> 4) & 7;
switch(addr & 15) {
case 2: dma[channel].addr = (dma[channel].addr & 0xffff00) + (data << 0); break;
case 3: dma[channel].addr = (dma[channel].addr & 0xff00ff) + (data << 8); break;
case 4: dma[channel].addr = (dma[channel].addr & 0x00ffff) + (data << 16); break;
case 5: dma[channel].size = (dma[channel].size & 0xff00) + (data << 0); break;
case 6: dma[channel].size = (dma[channel].size & 0x00ff) + (data << 8); break;
}
return cpu_mmio[addr & 0x7f]->mmio_write(addr, data);
}
switch(addr) {
case 0x4800: sdd1_enable = data; break;
case 0x4801: xfer_enable = data; break;
case 0x4804: mmc[0] = data << 20; break;
case 0x4805: mmc[1] = data << 20; break;
case 0x4806: mmc[2] = data << 20; break;
case 0x4807: mmc[3] = data << 20; break;
}
}
//SDD1::read() is mapped to $[c0-ff]:[0000-ffff]
//the design is meant to be as close to the hardware design as possible, thus this code
//avoids adding S-DD1 hooks inside S-CPU::DMA emulation.
//
//the real S-DD1 cannot see $420b (DMA enable) writes, as they are not placed on the bus.
//however, $43x0-$43xf writes (DMAx channel settings) most likely do appear on the bus.
//the S-DD1 also requires fixed addresses for transfers, which wouldn't be necessary if
//it could see $420b writes (eg it would know when the transfer should begin.)
//
//the hardware needs a way to distinguish program code after $4801 writes from DMA
//decompression that follows soon after.
//
//the only plausible design for hardware would be for the S-DD1 to spy on DMAx settings,
//and begin spooling decompression on writes to $4801 that activate a channel. after that,
//it feeds decompressed data only when the ROM read address matches the DMA channel address.
//
//the actual S-DD1 transfer can occur on any channel, but it is most likely limited to
//one transfer per $420b write (for spooling purposes). however, this is not known for certain.
uint8 SDD1::read(unsigned addr) {
if(sdd1_enable & xfer_enable) {
//at least one channel has S-DD1 decompression enabled ...
for(unsigned i = 0; i < 8; i++) {
if(sdd1_enable & xfer_enable & (1 << i)) {
//S-DD1 always uses fixed transfer mode, so address will not change during transfer
if(addr == dma[i].addr) {
if(!buffer.ready) {
//first byte read for channel performs full decompression.
//this really should stream byte-by-byte, but it's not necessary since the size is known
buffer.offset = 0;
buffer.size = dma[i].size ? dma[i].size : 65536;
//sdd1emu calls this function; it needs to access uncompressed data;
//so temporarily disable decompression mode for decompress() call.
uint8 temp = sdd1_enable;
sdd1_enable = false;
sdd1emu.decompress(addr, buffer.size, buffer.data);
sdd1_enable = temp;
buffer.ready = true;
}
//fetch a decompressed byte; once buffer is depleted, disable channel and invalidate buffer
uint8 data = buffer.data[(uint16)buffer.offset++];
if(buffer.offset >= buffer.size) {
buffer.ready = false;
xfer_enable &= ~(1 << i);
}
return data;
} //address matched
} //channel enabled
} //channel loop
} //S-DD1 decompressor enabled
//S-DD1 decompression mode inactive; return ROM data
return memory::cartrom.read(mmc[(addr >> 20) & 3] + (addr & 0x0fffff));
}
void SDD1::write(unsigned addr, uint8 data) {
}
SDD1::SDD1() {
}
SDD1::~SDD1() {
}
};

View File

@ -0,0 +1,41 @@
#include "sdd1emu.hpp"
class SDD1 : public MMIO, public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
SDD1();
~SDD1();
private:
MMIO *cpu_mmio[0x80]; //bus spying hooks to glean information for struct dma[]
uint8 sdd1_enable; //channel bit-mask
uint8 xfer_enable; //channel bit-mask
unsigned mmc[4]; //memory map controller ROM indices
struct {
unsigned addr; //$43x2-$43x4 -- DMA transfer address
uint16 size; //$43x5-$43x6 -- DMA transfer size
} dma[8];
SDD1emu sdd1emu;
struct {
uint8 data[65536]; //pointer to decompressed S-DD1 data
uint16 offset; //read index into S-DD1 decompression buffer
unsigned size; //length of data buffer; reads decrement counter, set ready to false at 0
bool ready; //true when data[] is valid; false to invoke sdd1emu.decompress()
} buffer;
};
extern SDD1 sdd1;

View File

@ -0,0 +1,452 @@
#ifdef SDD1_CPP
/************************************************************************
S-DD1'algorithm emulation code
------------------------------
Author: Andreas Naive
Date: August 2003
Last update: October 2004
This code is Public Domain. There is no copyright holded by the author.
Said this, the author wish to explicitly emphasize his inalienable moral rights
over this piece of intelectual work and the previous research that made it
possible, as recognized by most of the copyright laws around the world.
This code is provided 'as-is', with no warranty, expressed or implied.
No responsability is assumed by the author in connection with it.
The author is greatly indebted with The Dumper, without whose help and
patience providing him with real S-DD1 data the research would have never been
possible. He also wish to note that in the very beggining of his research,
Neviksti had done some steps in the right direction. By last, the author is
indirectly indebted to all the people that worked and contributed in the
S-DD1 issue in the past.
An algorithm's documentation is available as a separate document.
The implementation is obvious when the algorithm is
understood.
************************************************************************/
typedef uint8 bool8;
#define SDD1_read(__addr) (sdd1.read(__addr))
////////////////////////////////////////////////////
void SDD1_IM::prepareDecomp(uint32 in_buf) {
byte_ptr=in_buf;
bit_count=4;
}
////////////////////////////////////////////////////
uint8 SDD1_IM::getCodeword(uint8 code_len) {
uint8 codeword;
uint8 comp_count;
codeword = (SDD1_read(byte_ptr))<<bit_count;
++bit_count;
if (codeword & 0x80) {
codeword |= SDD1_read(byte_ptr+1)>>(9-bit_count);
bit_count+=code_len;
}
if (bit_count & 0x08) {
byte_ptr++;
bit_count&=0x07;
}
return codeword;
}
//////////////////////////////////////////////////////
SDD1_GCD::SDD1_GCD(SDD1_IM *associatedIM) :
IM(associatedIM)
{
}
//////////////////////////////////////////////////////
void SDD1_GCD::getRunCount(uint8 code_num, uint8 *MPScount, bool8 *LPSind) {
const uint8 run_count[] = {
0x00, 0x00, 0x01, 0x00, 0x03, 0x01, 0x02, 0x00,
0x07, 0x03, 0x05, 0x01, 0x06, 0x02, 0x04, 0x00,
0x0f, 0x07, 0x0b, 0x03, 0x0d, 0x05, 0x09, 0x01,
0x0e, 0x06, 0x0a, 0x02, 0x0c, 0x04, 0x08, 0x00,
0x1f, 0x0f, 0x17, 0x07, 0x1b, 0x0b, 0x13, 0x03,
0x1d, 0x0d, 0x15, 0x05, 0x19, 0x09, 0x11, 0x01,
0x1e, 0x0e, 0x16, 0x06, 0x1a, 0x0a, 0x12, 0x02,
0x1c, 0x0c, 0x14, 0x04, 0x18, 0x08, 0x10, 0x00,
0x3f, 0x1f, 0x2f, 0x0f, 0x37, 0x17, 0x27, 0x07,
0x3b, 0x1b, 0x2b, 0x0b, 0x33, 0x13, 0x23, 0x03,
0x3d, 0x1d, 0x2d, 0x0d, 0x35, 0x15, 0x25, 0x05,
0x39, 0x19, 0x29, 0x09, 0x31, 0x11, 0x21, 0x01,
0x3e, 0x1e, 0x2e, 0x0e, 0x36, 0x16, 0x26, 0x06,
0x3a, 0x1a, 0x2a, 0x0a, 0x32, 0x12, 0x22, 0x02,
0x3c, 0x1c, 0x2c, 0x0c, 0x34, 0x14, 0x24, 0x04,
0x38, 0x18, 0x28, 0x08, 0x30, 0x10, 0x20, 0x00,
0x7f, 0x3f, 0x5f, 0x1f, 0x6f, 0x2f, 0x4f, 0x0f,
0x77, 0x37, 0x57, 0x17, 0x67, 0x27, 0x47, 0x07,
0x7b, 0x3b, 0x5b, 0x1b, 0x6b, 0x2b, 0x4b, 0x0b,
0x73, 0x33, 0x53, 0x13, 0x63, 0x23, 0x43, 0x03,
0x7d, 0x3d, 0x5d, 0x1d, 0x6d, 0x2d, 0x4d, 0x0d,
0x75, 0x35, 0x55, 0x15, 0x65, 0x25, 0x45, 0x05,
0x79, 0x39, 0x59, 0x19, 0x69, 0x29, 0x49, 0x09,
0x71, 0x31, 0x51, 0x11, 0x61, 0x21, 0x41, 0x01,
0x7e, 0x3e, 0x5e, 0x1e, 0x6e, 0x2e, 0x4e, 0x0e,
0x76, 0x36, 0x56, 0x16, 0x66, 0x26, 0x46, 0x06,
0x7a, 0x3a, 0x5a, 0x1a, 0x6a, 0x2a, 0x4a, 0x0a,
0x72, 0x32, 0x52, 0x12, 0x62, 0x22, 0x42, 0x02,
0x7c, 0x3c, 0x5c, 0x1c, 0x6c, 0x2c, 0x4c, 0x0c,
0x74, 0x34, 0x54, 0x14, 0x64, 0x24, 0x44, 0x04,
0x78, 0x38, 0x58, 0x18, 0x68, 0x28, 0x48, 0x08,
0x70, 0x30, 0x50, 0x10, 0x60, 0x20, 0x40, 0x00,
};
uint8 codeword=IM->getCodeword(code_num);
if (codeword & 0x80) {
*LPSind=1;
*MPScount=run_count[codeword>>(code_num^0x07)];
}
else {
*MPScount=(1<<code_num);
}
}
///////////////////////////////////////////////////////
SDD1_BG::SDD1_BG(SDD1_GCD *associatedGCD, uint8 code) :
GCD(associatedGCD), code_num(code)
{
}
///////////////////////////////////////////////
void SDD1_BG::prepareDecomp(void) {
MPScount=0;
LPSind=0;
}
//////////////////////////////////////////////
uint8 SDD1_BG::getBit(bool8 *endOfRun) {
uint8 bit;
if (!(MPScount || LPSind)) GCD->getRunCount(code_num, &MPScount, &LPSind);
if (MPScount) {
bit=0;
MPScount--;
}
else {
bit=1;
LPSind=0;
}
if (MPScount || LPSind) (*endOfRun)=0;
else (*endOfRun)=1;
return bit;
}
/////////////////////////////////////////////////
SDD1_PEM::SDD1_PEM(SDD1_BG *associatedBG0, SDD1_BG *associatedBG1,
SDD1_BG *associatedBG2, SDD1_BG *associatedBG3,
SDD1_BG *associatedBG4, SDD1_BG *associatedBG5,
SDD1_BG *associatedBG6, SDD1_BG *associatedBG7) {
BG[0]=associatedBG0;
BG[1]=associatedBG1;
BG[2]=associatedBG2;
BG[3]=associatedBG3;
BG[4]=associatedBG4;
BG[5]=associatedBG5;
BG[6]=associatedBG6;
BG[7]=associatedBG7;
}
/////////////////////////////////////////////////////////
const SDD1_PEM::state SDD1_PEM::evolution_table[]={
{ 0,25,25},
{ 0, 2, 1},
{ 0, 3, 1},
{ 0, 4, 2},
{ 0, 5, 3},
{ 1, 6, 4},
{ 1, 7, 5},
{ 1, 8, 6},
{ 1, 9, 7},
{ 2,10, 8},
{ 2,11, 9},
{ 2,12,10},
{ 2,13,11},
{ 3,14,12},
{ 3,15,13},
{ 3,16,14},
{ 3,17,15},
{ 4,18,16},
{ 4,19,17},
{ 5,20,18},
{ 5,21,19},
{ 6,22,20},
{ 6,23,21},
{ 7,24,22},
{ 7,24,23},
{ 0,26, 1},
{ 1,27, 2},
{ 2,28, 4},
{ 3,29, 8},
{ 4,30,12},
{ 5,31,16},
{ 6,32,18},
{ 7,24,22}
};
//////////////////////////////////////////////////////
void SDD1_PEM::prepareDecomp(void) {
for (uint8 i=0; i<32; i++) {
contextInfo[i].status=0;
contextInfo[i].MPS=0;
}
}
/////////////////////////////////////////////////////////
uint8 SDD1_PEM::getBit(uint8 context) {
bool8 endOfRun;
uint8 bit;
SDD1_ContextInfo *pContInfo=&contextInfo[context];
uint8 currStatus = pContInfo->status;
const state *pState=&SDD1_PEM::evolution_table[currStatus];
uint8 currentMPS=pContInfo->MPS;
bit=(BG[pState->code_num])->getBit(&endOfRun);
if (endOfRun)
if (bit) {
if (!(currStatus & 0xfe)) (pContInfo->MPS)^=0x01;
(pContInfo->status)=pState->nextIfLPS;
}
else
(pContInfo->status)=pState->nextIfMPS;
return bit^currentMPS;
}
//////////////////////////////////////////////////////////////
SDD1_CM::SDD1_CM(SDD1_PEM *associatedPEM) :
PEM(associatedPEM)
{
}
//////////////////////////////////////////////////////////////
void SDD1_CM::prepareDecomp(uint32 first_byte) {
bitplanesInfo = SDD1_read(first_byte) & 0xc0;
contextBitsInfo = SDD1_read(first_byte) & 0x30;
bit_number=0;
for (int i=0; i<8; i++) prevBitplaneBits[i]=0;
switch (bitplanesInfo) {
case 0x00:
currBitplane = 1;
break;
case 0x40:
currBitplane = 7;
break;
case 0x80:
currBitplane = 3;
}
}
/////////////////////////////////////////////////////////////
uint8 SDD1_CM::getBit(void) {
uint8 currContext;
uint16 *context_bits;
switch (bitplanesInfo) {
case 0x00:
currBitplane ^= 0x01;
break;
case 0x40:
currBitplane ^= 0x01;
if (!(bit_number & 0x7f)) currBitplane = ((currBitplane+2) & 0x07);
break;
case 0x80:
currBitplane ^= 0x01;
if (!(bit_number & 0x7f)) currBitplane ^= 0x02;
break;
case 0xc0:
currBitplane = bit_number & 0x07;
}
context_bits = &prevBitplaneBits[currBitplane];
currContext=(currBitplane & 0x01)<<4;
switch (contextBitsInfo) {
case 0x00:
currContext|=((*context_bits & 0x01c0)>>5)|(*context_bits & 0x0001);
break;
case 0x10:
currContext|=((*context_bits & 0x0180)>>5)|(*context_bits & 0x0001);
break;
case 0x20:
currContext|=((*context_bits & 0x00c0)>>5)|(*context_bits & 0x0001);
break;
case 0x30:
currContext|=((*context_bits & 0x0180)>>5)|(*context_bits & 0x0003);
}
uint8 bit=PEM->getBit(currContext);
*context_bits <<= 1;
*context_bits |= bit;
bit_number++;
return bit;
}
//////////////////////////////////////////////////
SDD1_OL::SDD1_OL(SDD1_CM *associatedCM) :
CM(associatedCM)
{
}
///////////////////////////////////////////////////
void SDD1_OL::prepareDecomp(uint32 first_byte, uint16 out_len, uint8 *out_buf) {
bitplanesInfo = SDD1_read(first_byte) & 0xc0;
length=out_len;
buffer=out_buf;
}
///////////////////////////////////////////////////
void SDD1_OL::launch(void) {
uint8 i;
uint8 register1, register2;
switch (bitplanesInfo) {
case 0x00:
case 0x40:
case 0x80:
i=1;
do { //if length==0, we output 2^16 bytes
if (!i) {
*(buffer++)=register2;
i=~i;
}
else {
for (register1=register2=0, i=0x80; i; i>>=1) {
if (CM->getBit()) register1 |= i;
if (CM->getBit()) register2 |= i;
}
*(buffer++)=register1;
}
} while (--length);
break;
case 0xc0:
do {
for (register1=0, i=0x01; i; i<<=1) {
if (CM->getBit()) register1 |= i;
}
*(buffer++)=register1;
} while (--length);
}
}
///////////////////////////////////////////////////////
void SDD1emu::decompress(uint32 in_buf, uint16 out_len, uint8 *out_buf) {
IM.prepareDecomp(in_buf);
BG0.prepareDecomp();
BG1.prepareDecomp();
BG2.prepareDecomp();
BG3.prepareDecomp();
BG4.prepareDecomp();
BG5.prepareDecomp();
BG6.prepareDecomp();
BG7.prepareDecomp();
PEM.prepareDecomp();
CM.prepareDecomp(in_buf);
OL.prepareDecomp(in_buf, out_len, out_buf);
OL.launch();
}
////////////////////////////////////////////////////////////
SDD1emu::SDD1emu() :
GCD(&IM),
BG0(&GCD, 0), BG1(&GCD, 1), BG2(&GCD, 2), BG3(&GCD, 3),
BG4(&GCD, 4), BG5(&GCD, 5), BG6(&GCD, 6), BG7(&GCD, 7),
PEM(&BG0, &BG1, &BG2, &BG3, &BG4, &BG5, &BG6, &BG7),
CM(&PEM),
OL(&CM)
{
}
///////////////////////////////////////////////////////////
#endif

View File

@ -0,0 +1,164 @@
/************************************************************************
S-DD1'algorithm emulation code
------------------------------
Author: Andreas Naive
Date: August 2003
Last update: October 2004
This code is Public Domain. There is no copyright holded by the author.
Said this, the author wish to explicitly emphasize his inalienable moral rights
over this piece of intelectual work and the previous research that made it
possible, as recognized by most of the copyright laws around the world.
This code is provided 'as-is', with no warranty, expressed or implied.
No responsability is assumed by the author in connection with it.
The author is greatly indebted with The Dumper, without whose help and
patience providing him with real S-DD1 data the research would have never been
possible. He also wish to note that in the very beggining of his research,
Neviksti had done some steps in the right direction. By last, the author is
indirectly indebted to all the people that worked and contributed in the
S-DD1 issue in the past.
An algorithm's documentation is available as a separate document.
The implementation is obvious when the algorithm is
understood.
************************************************************************/
#define bool8 uint8
class SDD1_IM { //Input Manager
public:
SDD1_IM(void) {}
void prepareDecomp(uint32 in_buf);
uint8 getCodeword(const uint8 code_len);
private:
uint32 byte_ptr;
uint8 bit_count;
};
////////////////////////////////////////////////////
class SDD1_GCD { //Golomb-Code Decoder
public:
SDD1_GCD(SDD1_IM *associatedIM);
void getRunCount(uint8 code_num, uint8 *MPScount, bool8 *LPSind);
private:
SDD1_IM *const IM;
};
//////////////////////////////////////////////////////
class SDD1_BG { // Bits Generator
public:
SDD1_BG(SDD1_GCD *associatedGCD, uint8 code);
void prepareDecomp(void);
uint8 getBit(bool8 *endOfRun);
private:
SDD1_GCD *const GCD;
const uint8 code_num;
uint8 MPScount;
bool8 LPSind;
};
////////////////////////////////////////////////
class SDD1_PEM { //Probability Estimation Module
public:
SDD1_PEM(SDD1_BG *associatedBG0, SDD1_BG *associatedBG1,
SDD1_BG *associatedBG2, SDD1_BG *associatedBG3,
SDD1_BG *associatedBG4, SDD1_BG *associatedBG5,
SDD1_BG *associatedBG6, SDD1_BG *associatedBG7);
void prepareDecomp(void);
uint8 getBit(uint8 context);
private:
struct state {
uint8 code_num;
uint8 nextIfMPS;
uint8 nextIfLPS;
};
static const state evolution_table[];
struct SDD1_ContextInfo {
uint8 status;
uint8 MPS;
} contextInfo[32];
SDD1_BG * BG[8];
};
///////////////////////////////////////////////////
class SDD1_CM { //Context Model
public:
SDD1_CM(SDD1_PEM *associatedPEM);
void prepareDecomp(uint32 first_byte);
uint8 getBit(void);
private:
uint8 bitplanesInfo;
uint8 contextBitsInfo;
uint8 bit_number;
uint8 currBitplane;
uint16 prevBitplaneBits[8];
SDD1_PEM *const PEM;
};
///////////////////////////////////////////////////
class SDD1_OL { //Output Logic
public:
SDD1_OL(SDD1_CM *associatedCM);
void prepareDecomp(uint32 first_byte, uint16 out_len, uint8 *out_buf);
void launch(void);
private:
uint8 bitplanesInfo;
uint16 length;
uint8 *buffer;
SDD1_CM *const CM;
};
/////////////////////////////////////////////////////////
class SDD1emu {
public:
SDD1emu(void);
void decompress(uint32 in_buf, uint16 out_len, uint8 *out_buf);
private:
SDD1_IM IM;
SDD1_GCD GCD;
SDD1_BG BG0; SDD1_BG BG1; SDD1_BG BG2; SDD1_BG BG3;
SDD1_BG BG4; SDD1_BG BG5; SDD1_BG BG6; SDD1_BG BG7;
SDD1_PEM PEM;
SDD1_CM CM;
SDD1_OL OL;
};
#undef bool8

View File

@ -0,0 +1,19 @@
#ifdef SDD1_CPP
void SDD1::serialize(serializer &s) {
s.integer(sdd1_enable);
s.integer(xfer_enable);
s.array(mmc);
for(unsigned n = 0; n < 8; n++) {
s.integer(dma[n].addr);
s.integer(dma[n].size);
}
s.array(buffer.data);
s.integer(buffer.offset);
s.integer(buffer.size);
s.integer(buffer.ready);
}
#endif

View File

@ -0,0 +1,511 @@
#ifdef SPC7110_CPP
uint8 SPC7110Decomp::read() {
if(decomp_buffer_length == 0) {
//decompress at least (decomp_buffer_size / 2) bytes to the buffer
switch(decomp_mode) {
case 0: mode0(false); break;
case 1: mode1(false); break;
case 2: mode2(false); break;
default: return 0x00;
}
}
uint8 data = decomp_buffer[decomp_buffer_rdoffset++];
decomp_buffer_rdoffset &= decomp_buffer_size - 1;
decomp_buffer_length--;
return data;
}
void SPC7110Decomp::write(uint8 data) {
decomp_buffer[decomp_buffer_wroffset++] = data;
decomp_buffer_wroffset &= decomp_buffer_size - 1;
decomp_buffer_length++;
}
uint8 SPC7110Decomp::dataread() {
unsigned size = memory::cartrom.size() - 0x100000;
while(decomp_offset >= size) decomp_offset -= size;
return memory::cartrom.read(0x100000 + decomp_offset++);
}
void SPC7110Decomp::init(unsigned mode, unsigned offset, unsigned index) {
decomp_mode = mode;
decomp_offset = offset;
decomp_buffer_rdoffset = 0;
decomp_buffer_wroffset = 0;
decomp_buffer_length = 0;
//reset context states
for(unsigned i = 0; i < 32; i++) {
context[i].index = 0;
context[i].invert = 0;
}
switch(decomp_mode) {
case 0: mode0(true); break;
case 1: mode1(true); break;
case 2: mode2(true); break;
}
//decompress up to requested output data index
while(index--) read();
}
//
void SPC7110Decomp::mode0(bool init) {
static uint8 val, in, span;
static int out, inverts, lps, in_count;
if(init == true) {
out = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned bit = 0; bit < 8; bit++) {
//get context
uint8 mask = (1 << (bit & 3)) - 1;
uint8 con = mask + ((inverts & mask) ^ (lps & mask));
if(bit > 3) con += 15;
//get prob and mps
unsigned prob = probability(con);
unsigned mps = (((out >> 15) & 1) ^ context[con].invert);
//get bit
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
out = (out << 1) + mps;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
out = (out << 1) + 1 - mps;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
inverts = (inverts << 1) + context[con].invert;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
}
//save byte
write(out);
}
}
void SPC7110Decomp::mode1(bool init) {
static int pixelorder[4], realorder[4];
static uint8 in, val, span;
static int out, inverts, lps, in_count;
if(init == true) {
for(unsigned i = 0; i < 4; i++) pixelorder[i] = i;
out = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned pixel = 0; pixel < 8; pixel++) {
//get first symbol context
unsigned a = ((out >> (1 * 2)) & 3);
unsigned b = ((out >> (7 * 2)) & 3);
unsigned c = ((out >> (8 * 2)) & 3);
unsigned con = (a == b) ? (b != c) : (b == c) ? 2 : 4 - (a == c);
//update pixel order
unsigned m, n;
for(m = 0; m < 4; m++) if(pixelorder[m] == a) break;
for(n = m; n > 0; n--) pixelorder[n] = pixelorder[n - 1];
pixelorder[0] = a;
//calculate the real pixel order
for(m = 0; m < 4; m++) realorder[m] = pixelorder[m];
//rotate reference pixel c value to top
for(m = 0; m < 4; m++) if(realorder[m] == c) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = c;
//rotate reference pixel b value to top
for(m = 0; m < 4; m++) if(realorder[m] == b) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = b;
//rotate reference pixel a value to top
for(m = 0; m < 4; m++) if(realorder[m] == a) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = a;
//get 2 symbols
for(unsigned bit = 0; bit < 2; bit++) {
//get prob
unsigned prob = probability(con);
//get symbol
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
inverts = (inverts << 1) + context[con].invert;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
//get next context
con = 5 + (con << 1) + ((lps ^ inverts) & 1);
}
//get pixel
b = realorder[(lps ^ inverts) & 3];
out = (out << 2) + b;
}
//turn pixel data into bitplanes
unsigned data = morton_2x8(out);
write(data >> 8);
write(data >> 0);
}
}
void SPC7110Decomp::mode2(bool init) {
static int pixelorder[16], realorder[16];
static uint8 bitplanebuffer[16], buffer_index;
static uint8 in, val, span;
static int out0, out1, inverts, lps, in_count;
if(init == true) {
for(unsigned i = 0; i < 16; i++) pixelorder[i] = i;
buffer_index = 0;
out0 = out1 = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned pixel = 0; pixel < 8; pixel++) {
//get first symbol context
unsigned a = ((out0 >> (0 * 4)) & 15);
unsigned b = ((out0 >> (7 * 4)) & 15);
unsigned c = ((out1 >> (0 * 4)) & 15);
unsigned con = 0;
unsigned refcon = (a == b) ? (b != c) : (b == c) ? 2 : 4 - (a == c);
//update pixel order
unsigned m, n;
for(m = 0; m < 16; m++) if(pixelorder[m] == a) break;
for(n = m; n > 0; n--) pixelorder[n] = pixelorder[n - 1];
pixelorder[0] = a;
//calculate the real pixel order
for(m = 0; m < 16; m++) realorder[m] = pixelorder[m];
//rotate reference pixel c value to top
for(m = 0; m < 16; m++) if(realorder[m] == c) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = c;
//rotate reference pixel b value to top
for(m = 0; m < 16; m++) if(realorder[m] == b) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = b;
//rotate reference pixel a value to top
for(m = 0; m < 16; m++) if(realorder[m] == a) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = a;
//get 4 symbols
for(unsigned bit = 0; bit < 4; bit++) {
//get prob
unsigned prob = probability(con);
//get symbol
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
unsigned invertbit = context[con].invert;
inverts = (inverts << 1) + invertbit;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
//get next context
con = mode2_context_table[con][flag_lps ^ invertbit] + (con == 1 ? refcon : 0);
}
//get pixel
b = realorder[(lps ^ inverts) & 0x0f];
out1 = (out1 << 4) + ((out0 >> 28) & 0x0f);
out0 = (out0 << 4) + b;
}
//convert pixel data into bitplanes
unsigned data = morton_4x8(out0);
write(data >> 24);
write(data >> 16);
bitplanebuffer[buffer_index++] = data >> 8;
bitplanebuffer[buffer_index++] = data >> 0;
if(buffer_index == 16) {
for(unsigned i = 0; i < 16; i++) write(bitplanebuffer[i]);
buffer_index = 0;
}
}
}
//
const uint8 SPC7110Decomp::evolution_table[53][4] = {
//{ prob, nextlps, nextmps, toggle invert },
{ 0x5a, 1, 1, 1 },
{ 0x25, 6, 2, 0 },
{ 0x11, 8, 3, 0 },
{ 0x08, 10, 4, 0 },
{ 0x03, 12, 5, 0 },
{ 0x01, 15, 5, 0 },
{ 0x5a, 7, 7, 1 },
{ 0x3f, 19, 8, 0 },
{ 0x2c, 21, 9, 0 },
{ 0x20, 22, 10, 0 },
{ 0x17, 23, 11, 0 },
{ 0x11, 25, 12, 0 },
{ 0x0c, 26, 13, 0 },
{ 0x09, 28, 14, 0 },
{ 0x07, 29, 15, 0 },
{ 0x05, 31, 16, 0 },
{ 0x04, 32, 17, 0 },
{ 0x03, 34, 18, 0 },
{ 0x02, 35, 5, 0 },
{ 0x5a, 20, 20, 1 },
{ 0x48, 39, 21, 0 },
{ 0x3a, 40, 22, 0 },
{ 0x2e, 42, 23, 0 },
{ 0x26, 44, 24, 0 },
{ 0x1f, 45, 25, 0 },
{ 0x19, 46, 26, 0 },
{ 0x15, 25, 27, 0 },
{ 0x11, 26, 28, 0 },
{ 0x0e, 26, 29, 0 },
{ 0x0b, 27, 30, 0 },
{ 0x09, 28, 31, 0 },
{ 0x08, 29, 32, 0 },
{ 0x07, 30, 33, 0 },
{ 0x05, 31, 34, 0 },
{ 0x04, 33, 35, 0 },
{ 0x04, 33, 36, 0 },
{ 0x03, 34, 37, 0 },
{ 0x02, 35, 38, 0 },
{ 0x02, 36, 5, 0 },
{ 0x58, 39, 40, 1 },
{ 0x4d, 47, 41, 0 },
{ 0x43, 48, 42, 0 },
{ 0x3b, 49, 43, 0 },
{ 0x34, 50, 44, 0 },
{ 0x2e, 51, 45, 0 },
{ 0x29, 44, 46, 0 },
{ 0x25, 45, 24, 0 },
{ 0x56, 47, 48, 1 },
{ 0x4f, 47, 49, 0 },
{ 0x47, 48, 50, 0 },
{ 0x41, 49, 51, 0 },
{ 0x3c, 50, 52, 0 },
{ 0x37, 51, 43, 0 },
};
const uint8 SPC7110Decomp::mode2_context_table[32][2] = {
//{ next 0, next 1 },
{ 1, 2 },
{ 3, 8 },
{ 13, 14 },
{ 15, 16 },
{ 17, 18 },
{ 19, 20 },
{ 21, 22 },
{ 23, 24 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 27, 28 },
{ 29, 30 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
};
uint8 SPC7110Decomp::probability (unsigned n) { return evolution_table[context[n].index][0]; }
uint8 SPC7110Decomp::next_lps (unsigned n) { return evolution_table[context[n].index][1]; }
uint8 SPC7110Decomp::next_mps (unsigned n) { return evolution_table[context[n].index][2]; }
bool SPC7110Decomp::toggle_invert(unsigned n) { return evolution_table[context[n].index][3]; }
unsigned SPC7110Decomp::morton_2x8(unsigned data) {
//reverse morton lookup: de-interleave two 8-bit values
//15, 13, 11, 9, 7, 5, 3, 1 -> 15- 8
//14, 12, 10, 8, 6, 4, 2, 0 -> 7- 0
return morton16[0][(data >> 0) & 255] + morton16[1][(data >> 8) & 255];
}
unsigned SPC7110Decomp::morton_4x8(unsigned data) {
//reverse morton lookup: de-interleave four 8-bit values
//31, 27, 23, 19, 15, 11, 7, 3 -> 31-24
//30, 26, 22, 18, 14, 10, 6, 2 -> 23-16
//29, 25, 21, 17, 13, 9, 5, 1 -> 15- 8
//28, 24, 20, 16, 12, 8, 4, 0 -> 7- 0
return morton32[0][(data >> 0) & 255] + morton32[1][(data >> 8) & 255]
+ morton32[2][(data >> 16) & 255] + morton32[3][(data >> 24) & 255];
}
//
void SPC7110Decomp::reset() {
//mode 3 is invalid; this is treated as a special case to always return 0x00
//set to mode 3 so that reading decomp port before starting first decomp will return 0x00
decomp_mode = 3;
decomp_buffer_rdoffset = 0;
decomp_buffer_wroffset = 0;
decomp_buffer_length = 0;
}
SPC7110Decomp::SPC7110Decomp() {
decomp_buffer = new uint8_t[decomp_buffer_size];
reset();
//initialize reverse morton lookup tables
for(unsigned i = 0; i < 256; i++) {
#define map(x, y) (((i >> x) & 1) << y)
//2x8-bit
morton16[1][i] = map(7, 15) + map(6, 7) + map(5, 14) + map(4, 6)
+ map(3, 13) + map(2, 5) + map(1, 12) + map(0, 4);
morton16[0][i] = map(7, 11) + map(6, 3) + map(5, 10) + map(4, 2)
+ map(3, 9) + map(2, 1) + map(1, 8) + map(0, 0);
//4x8-bit
morton32[3][i] = map(7, 31) + map(6, 23) + map(5, 15) + map(4, 7)
+ map(3, 30) + map(2, 22) + map(1, 14) + map(0, 6);
morton32[2][i] = map(7, 29) + map(6, 21) + map(5, 13) + map(4, 5)
+ map(3, 28) + map(2, 20) + map(1, 12) + map(0, 4);
morton32[1][i] = map(7, 27) + map(6, 19) + map(5, 11) + map(4, 3)
+ map(3, 26) + map(2, 18) + map(1, 10) + map(0, 2);
morton32[0][i] = map(7, 25) + map(6, 17) + map(5, 9) + map(4, 1)
+ map(3, 24) + map(2, 16) + map(1, 8) + map(0, 0);
#undef map
}
}
SPC7110Decomp::~SPC7110Decomp() {
delete[] decomp_buffer;
}
#endif

View File

@ -0,0 +1,46 @@
class SPC7110Decomp {
public:
uint8 read();
void init(unsigned mode, unsigned offset, unsigned index);
void reset();
void serialize(serializer&);
SPC7110Decomp();
~SPC7110Decomp();
private:
unsigned decomp_mode;
unsigned decomp_offset;
//read() will spool chunks half the size of decomp_buffer_size
enum { decomp_buffer_size = 64 }; //must be >= 64, and must be a power of two
uint8 *decomp_buffer;
unsigned decomp_buffer_rdoffset;
unsigned decomp_buffer_wroffset;
unsigned decomp_buffer_length;
void write(uint8 data);
uint8 dataread();
void mode0(bool init);
void mode1(bool init);
void mode2(bool init);
static const uint8 evolution_table[53][4];
static const uint8 mode2_context_table[32][2];
struct ContextState {
uint8 index;
uint8 invert;
} context[32];
uint8 probability(unsigned n);
uint8 next_lps(unsigned n);
uint8 next_mps(unsigned n);
bool toggle_invert(unsigned n);
unsigned morton16[2][256];
unsigned morton32[4][256];
unsigned morton_2x8(unsigned data);
unsigned morton_4x8(unsigned data);
};

View File

@ -0,0 +1,81 @@
#ifdef SPC7110_CPP
void SPC7110Decomp::serialize(serializer &s) {
s.integer(decomp_mode);
s.integer(decomp_offset);
s.array(decomp_buffer, decomp_buffer_size);
s.integer(decomp_buffer_rdoffset);
s.integer(decomp_buffer_wroffset);
s.integer(decomp_buffer_length);
for(unsigned n = 0; n < 32; n++) {
s.integer(context[n].index);
s.integer(context[n].invert);
}
}
void SPC7110::serialize(serializer &s) {
s.integer(r4801);
s.integer(r4802);
s.integer(r4803);
s.integer(r4804);
s.integer(r4805);
s.integer(r4806);
s.integer(r4807);
s.integer(r4808);
s.integer(r4809);
s.integer(r480a);
s.integer(r480b);
s.integer(r480c);
decomp.serialize(s);
s.integer(r4811);
s.integer(r4812);
s.integer(r4813);
s.integer(r4814);
s.integer(r4815);
s.integer(r4816);
s.integer(r4817);
s.integer(r4818);
s.integer(r481x);
s.integer(r4814_latch);
s.integer(r4815_latch);
s.integer(r4820);
s.integer(r4821);
s.integer(r4822);
s.integer(r4823);
s.integer(r4824);
s.integer(r4825);
s.integer(r4826);
s.integer(r4827);
s.integer(r4828);
s.integer(r4829);
s.integer(r482a);
s.integer(r482b);
s.integer(r482c);
s.integer(r482d);
s.integer(r482e);
s.integer(r482f);
s.integer(r4830);
s.integer(r4831);
s.integer(r4832);
s.integer(r4833);
s.integer(r4834);
s.integer(dx_offset);
s.integer(ex_offset);
s.integer(fx_offset);
s.integer(r4840);
s.integer(r4841);
s.integer(r4842);
s.integer(rtc_state);
s.integer(rtc_mode);
s.integer(rtc_index);
}
#endif

View File

@ -0,0 +1,677 @@
#include <../base.hpp>
#define SPC7110_CPP
namespace SNES {
SPC7110 spc7110;
#include "serialization.cpp"
#include "decomp.cpp"
const unsigned SPC7110::months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void SPC7110::init() {}
void SPC7110::enable() {
uint16_t limit = (cartridge.has_spc7110rtc() ? 0x4842 : 0x483f);
for(uint16_t i = 0x4800; i <= limit; i++) memory::mmio.map(i, *this);
}
void SPC7110::power() {
reset();
}
void SPC7110::reset() {
r4801 = 0x00;
r4802 = 0x00;
r4803 = 0x00;
r4804 = 0x00;
r4805 = 0x00;
r4806 = 0x00;
r4807 = 0x00;
r4808 = 0x00;
r4809 = 0x00;
r480a = 0x00;
r480b = 0x00;
r480c = 0x00;
decomp.reset();
r4811 = 0x00;
r4812 = 0x00;
r4813 = 0x00;
r4814 = 0x00;
r4815 = 0x00;
r4816 = 0x00;
r4817 = 0x00;
r4818 = 0x00;
r481x = 0x00;
r4814_latch = false;
r4815_latch = false;
r4820 = 0x00;
r4821 = 0x00;
r4822 = 0x00;
r4823 = 0x00;
r4824 = 0x00;
r4825 = 0x00;
r4826 = 0x00;
r4827 = 0x00;
r4828 = 0x00;
r4829 = 0x00;
r482a = 0x00;
r482b = 0x00;
r482c = 0x00;
r482d = 0x00;
r482e = 0x00;
r482f = 0x00;
r4830 = 0x00;
mmio_write(0x4831, 0);
mmio_write(0x4832, 1);
mmio_write(0x4833, 2);
r4834 = 0x00;
r4840 = 0x00;
r4841 = 0x00;
r4842 = 0x00;
if(cartridge.has_spc7110rtc()) {
rtc_state = RTCS_Inactive;
rtc_mode = RTCM_Linear;
rtc_index = 0;
}
}
unsigned SPC7110::datarom_addr(unsigned addr) {
unsigned size = memory::cartrom.size() - 0x100000;
while(addr >= size) addr -= size;
return addr + 0x100000;
}
unsigned SPC7110::data_pointer() { return r4811 + (r4812 << 8) + (r4813 << 16); }
unsigned SPC7110::data_adjust() { return r4814 + (r4815 << 8); }
unsigned SPC7110::data_increment() { return r4816 + (r4817 << 8); }
void SPC7110::set_data_pointer(unsigned addr) { r4811 = addr; r4812 = addr >> 8; r4813 = addr >> 16; }
void SPC7110::set_data_adjust(unsigned addr) { r4814 = addr; r4815 = addr >> 8; }
void SPC7110::update_time(int offset) {
time_t rtc_time
= (memory::cartrtc.read(16) << 0)
| (memory::cartrtc.read(17) << 8)
| (memory::cartrtc.read(18) << 16)
| (memory::cartrtc.read(19) << 24);
time_t current_time = time(0) - offset;
//sizeof(time_t) is platform-dependent; though memory::cartrtc needs to be platform-agnostic.
//yet platforms with 32-bit signed time_t will overflow every ~68 years. handle this by
//accounting for overflow at the cost of 1-bit precision (to catch underflow). this will allow
//memory::cartrtc timestamp to remain valid for up to ~34 years from the last update, even if
//time_t overflows. calculation should be valid regardless of number representation, time_t size,
//or whether time_t is signed or unsigned.
time_t diff
= (current_time >= rtc_time)
? (current_time - rtc_time)
: (std::numeric_limits<time_t>::max() - rtc_time + current_time + 1); //compensate for overflow
if(diff > std::numeric_limits<time_t>::max() / 2) diff = 0; //compensate for underflow
bool update = true;
if(memory::cartrtc.read(13) & 1) update = false; //do not update if CR0 timer disable flag is set
if(memory::cartrtc.read(15) & 3) update = false; //do not update if CR2 timer disable flags are set
if(diff > 0 && update == true) {
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
unsigned minute = memory::cartrtc.read( 2) + memory::cartrtc.read( 3) * 10;
unsigned hour = memory::cartrtc.read( 4) + memory::cartrtc.read( 5) * 10;
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8) + memory::cartrtc.read( 9) * 10;
unsigned year = memory::cartrtc.read(10) + memory::cartrtc.read(11) * 10;
unsigned weekday = memory::cartrtc.read(12);
day--;
month--;
year += (year >= 90) ? 1900 : 2000; //range = 1990-2089
second += diff;
while(second >= 60) {
second -= 60;
minute++;
if(minute < 60) continue;
minute = 0;
hour++;
if(hour < 24) continue;
hour = 0;
day++;
weekday = (weekday + 1) % 7;
unsigned days = months[month % 12];
if(days == 28) {
bool leapyear = false;
if((year % 4) == 0) {
leapyear = true;
if((year % 100) == 0 && (year % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
if(day < days) continue;
day = 0;
month++;
if(month < 12) continue;
month = 0;
year++;
}
day++;
month++;
year %= 100;
memory::cartrtc.write( 0, second % 10);
memory::cartrtc.write( 1, second / 10);
memory::cartrtc.write( 2, minute % 10);
memory::cartrtc.write( 3, minute / 10);
memory::cartrtc.write( 4, hour % 10);
memory::cartrtc.write( 5, hour / 10);
memory::cartrtc.write( 6, day % 10);
memory::cartrtc.write( 7, day / 10);
memory::cartrtc.write( 8, month % 10);
memory::cartrtc.write( 9, month / 10);
memory::cartrtc.write(10, year % 10);
memory::cartrtc.write(11, (year / 10) % 10);
memory::cartrtc.write(12, weekday % 7);
}
memory::cartrtc.write(16, current_time >> 0);
memory::cartrtc.write(17, current_time >> 8);
memory::cartrtc.write(18, current_time >> 16);
memory::cartrtc.write(19, current_time >> 24);
}
uint8 SPC7110::mmio_read(unsigned addr) {
addr &= 0xffff;
switch(addr) {
//==================
//decompression unit
//==================
case 0x4800: {
uint16 counter = (r4809 + (r480a << 8));
counter--;
r4809 = counter;
r480a = counter >> 8;
return decomp.read();
}
case 0x4801: return r4801;
case 0x4802: return r4802;
case 0x4803: return r4803;
case 0x4804: return r4804;
case 0x4805: return r4805;
case 0x4806: return r4806;
case 0x4807: return r4807;
case 0x4808: return r4808;
case 0x4809: return r4809;
case 0x480a: return r480a;
case 0x480b: return r480b;
case 0x480c: {
uint8 status = r480c;
r480c &= 0x7f;
return status;
}
//==============
//data port unit
//==============
case 0x4810: {
if(r481x != 0x07) return 0x00;
unsigned addr = data_pointer();
unsigned adjust = data_adjust();
if(r4818 & 8) adjust = (int16)adjust; //16-bit sign extend
unsigned adjustaddr = addr;
if(r4818 & 2) {
adjustaddr += adjust;
set_data_adjust(adjust + 1);
}
uint8 data = memory::cartrom.read(datarom_addr(adjustaddr));
if(!(r4818 & 2)) {
unsigned increment = (r4818 & 1) ? data_increment() : 1;
if(r4818 & 4) increment = (int16)increment; //16-bit sign extend
if((r4818 & 16) == 0) {
set_data_pointer(addr + increment);
} else {
set_data_adjust(adjust + increment);
}
}
return data;
}
case 0x4811: return r4811;
case 0x4812: return r4812;
case 0x4813: return r4813;
case 0x4814: return r4814;
case 0x4815: return r4815;
case 0x4816: return r4816;
case 0x4817: return r4817;
case 0x4818: return r4818;
case 0x481a: {
if(r481x != 0x07) return 0x00;
unsigned addr = data_pointer();
unsigned adjust = data_adjust();
if(r4818 & 8) adjust = (int16)adjust; //16-bit sign extend
uint8 data = memory::cartrom.read(datarom_addr(addr + adjust));
if((r4818 & 0x60) == 0x60) {
if((r4818 & 16) == 0) {
set_data_pointer(addr + adjust);
} else {
set_data_adjust(adjust + adjust);
}
}
return data;
}
//=========
//math unit
//=========
case 0x4820: return r4820;
case 0x4821: return r4821;
case 0x4822: return r4822;
case 0x4823: return r4823;
case 0x4824: return r4824;
case 0x4825: return r4825;
case 0x4826: return r4826;
case 0x4827: return r4827;
case 0x4828: return r4828;
case 0x4829: return r4829;
case 0x482a: return r482a;
case 0x482b: return r482b;
case 0x482c: return r482c;
case 0x482d: return r482d;
case 0x482e: return r482e;
case 0x482f: {
uint8 status = r482f;
r482f &= 0x7f;
return status;
}
//===================
//memory mapping unit
//===================
case 0x4830: return r4830;
case 0x4831: return r4831;
case 0x4832: return r4832;
case 0x4833: return r4833;
case 0x4834: return r4834;
//====================
//real-time clock unit
//====================
case 0x4840: return r4840;
case 0x4841: {
if(rtc_state == RTCS_Inactive || rtc_state == RTCS_ModeSelect) return 0x00;
r4842 = 0x80;
uint8 data = memory::cartrtc.read(rtc_index);
rtc_index = (rtc_index + 1) & 15;
return data;
}
case 0x4842: {
uint8 status = r4842;
r4842 &= 0x7f;
return status;
}
}
return cpu.regs.mdr;
}
void SPC7110::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
switch(addr) {
//==================
//decompression unit
//==================
case 0x4801: r4801 = data; break;
case 0x4802: r4802 = data; break;
case 0x4803: r4803 = data; break;
case 0x4804: r4804 = data; break;
case 0x4805: r4805 = data; break;
case 0x4806: {
r4806 = data;
unsigned table = (r4801 + (r4802 << 8) + (r4803 << 16));
unsigned index = (r4804 << 2);
unsigned length = (r4809 + (r480a << 8));
unsigned addr = datarom_addr(table + index);
unsigned mode = (memory::cartrom.read(addr + 0));
unsigned offset = (memory::cartrom.read(addr + 1) << 16)
+ (memory::cartrom.read(addr + 2) << 8)
+ (memory::cartrom.read(addr + 3) << 0);
decomp.init(mode, offset, (r4805 + (r4806 << 8)) << mode);
r480c = 0x80;
} break;
case 0x4807: r4807 = data; break;
case 0x4808: r4808 = data; break;
case 0x4809: r4809 = data; break;
case 0x480a: r480a = data; break;
case 0x480b: r480b = data; break;
//==============
//data port unit
//==============
case 0x4811: r4811 = data; r481x |= 0x01; break;
case 0x4812: r4812 = data; r481x |= 0x02; break;
case 0x4813: r4813 = data; r481x |= 0x04; break;
case 0x4814: {
r4814 = data;
r4814_latch = true;
if(!r4815_latch) break;
if(!(r4818 & 2)) break;
if(r4818 & 0x10) break;
if((r4818 & 0x60) == 0x20) {
unsigned increment = data_adjust() & 0xff;
if(r4818 & 8) increment = (int8)increment; //8-bit sign extend
set_data_pointer(data_pointer() + increment);
} else if((r4818 & 0x60) == 0x40) {
unsigned increment = data_adjust();
if(r4818 & 8) increment = (int16)increment; //16-bit sign extend
set_data_pointer(data_pointer() + increment);
}
} break;
case 0x4815: {
r4815 = data;
r4815_latch = true;
if(!r4814_latch) break;
if(!(r4818 & 2)) break;
if(r4818 & 0x10) break;
if((r4818 & 0x60) == 0x20) {
unsigned increment = data_adjust() & 0xff;
if(r4818 & 8) increment = (int8)increment; //8-bit sign extend
set_data_pointer(data_pointer() + increment);
} else if((r4818 & 0x60) == 0x40) {
unsigned increment = data_adjust();
if(r4818 & 8) increment = (int16)increment; //16-bit sign extend
set_data_pointer(data_pointer() + increment);
}
} break;
case 0x4816: r4816 = data; break;
case 0x4817: r4817 = data; break;
case 0x4818: {
if(r481x != 0x07) break;
r4818 = data;
r4814_latch = r4815_latch = false;
} break;
//=========
//math unit
//=========
case 0x4820: r4820 = data; break;
case 0x4821: r4821 = data; break;
case 0x4822: r4822 = data; break;
case 0x4823: r4823 = data; break;
case 0x4824: r4824 = data; break;
case 0x4825: {
r4825 = data;
if(r482e & 1) {
//signed 16-bit x 16-bit multiplication
int16 r0 = (int16)(r4824 + (r4825 << 8));
int16 r1 = (int16)(r4820 + (r4821 << 8));
signed result = r0 * r1;
r4828 = result;
r4829 = result >> 8;
r482a = result >> 16;
r482b = result >> 24;
} else {
//unsigned 16-bit x 16-bit multiplication
uint16 r0 = (uint16)(r4824 + (r4825 << 8));
uint16 r1 = (uint16)(r4820 + (r4821 << 8));
unsigned result = r0 * r1;
r4828 = result;
r4829 = result >> 8;
r482a = result >> 16;
r482b = result >> 24;
}
r482f = 0x80;
} break;
case 0x4826: r4826 = data; break;
case 0x4827: {
r4827 = data;
if(r482e & 1) {
//signed 32-bit x 16-bit division
int32 dividend = (int32)(r4820 + (r4821 << 8) + (r4822 << 16) + (r4823 << 24));
int16 divisor = (int16)(r4826 + (r4827 << 8));
int32 quotient;
int16 remainder;
if(divisor) {
quotient = (int32)(dividend / divisor);
remainder = (int32)(dividend % divisor);
} else {
//illegal division by zero
quotient = 0;
remainder = dividend & 0xffff;
}
r4828 = quotient;
r4829 = quotient >> 8;
r482a = quotient >> 16;
r482b = quotient >> 24;
r482c = remainder;
r482d = remainder >> 8;
} else {
//unsigned 32-bit x 16-bit division
uint32 dividend = (uint32)(r4820 + (r4821 << 8) + (r4822 << 16) + (r4823 << 24));
uint16 divisor = (uint16)(r4826 + (r4827 << 8));
uint32 quotient;
uint16 remainder;
if(divisor) {
quotient = (uint32)(dividend / divisor);
remainder = (uint16)(dividend % divisor);
} else {
//illegal division by zero
quotient = 0;
remainder = dividend & 0xffff;
}
r4828 = quotient;
r4829 = quotient >> 8;
r482a = quotient >> 16;
r482b = quotient >> 24;
r482c = remainder;
r482d = remainder >> 8;
}
r482f = 0x80;
} break;
case 0x482e: {
//reset math unit
r4820 = r4821 = r4822 = r4823 = 0;
r4824 = r4825 = r4826 = r4827 = 0;
r4828 = r4829 = r482a = r482b = 0;
r482c = r482d = 0;
r482e = data;
} break;
//===================
//memory mapping unit
//===================
case 0x4830: r4830 = data; break;
case 0x4831: {
r4831 = data;
dx_offset = datarom_addr(data * 0x100000);
} break;
case 0x4832: {
r4832 = data;
ex_offset = datarom_addr(data * 0x100000);
} break;
case 0x4833: {
r4833 = data;
fx_offset = datarom_addr(data * 0x100000);
} break;
case 0x4834: r4834 = data; break;
//====================
//real-time clock unit
//====================
case 0x4840: {
r4840 = data;
if(!(r4840 & 1)) {
//disable RTC
rtc_state = RTCS_Inactive;
update_time();
} else {
//enable RTC
r4842 = 0x80;
rtc_state = RTCS_ModeSelect;
}
} break;
case 0x4841: {
r4841 = data;
switch(rtc_state) {
case RTCS_ModeSelect: {
if(data == RTCM_Linear || data == RTCM_Indexed) {
r4842 = 0x80;
rtc_state = RTCS_IndexSelect;
rtc_mode = (RTC_Mode)data;
rtc_index = 0;
}
} break;
case RTCS_IndexSelect: {
r4842 = 0x80;
rtc_index = data & 15;
if(rtc_mode == RTCM_Linear) rtc_state = RTCS_Write;
} break;
case RTCS_Write: {
r4842 = 0x80;
//control register 0
if(rtc_index == 13) {
//increment second counter
if(data & 2) update_time(+1);
//round minute counter
if(data & 8) {
update_time();
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
//clear seconds
memory::cartrtc.write(0, 0);
memory::cartrtc.write(1, 0);
if(second >= 30) update_time(+60);
}
}
//control register 2
if(rtc_index == 15) {
//disable timer and clear second counter
if((data & 1) && !(memory::cartrtc.read(15) & 1)) {
update_time();
//clear seconds
memory::cartrtc.write(0, 0);
memory::cartrtc.write(1, 0);
}
//disable timer
if((data & 2) && !(memory::cartrtc.read(15) & 2)) {
update_time();
}
}
memory::cartrtc.write(rtc_index, data & 15);
rtc_index = (rtc_index + 1) & 15;
} break;
} //switch(rtc_state)
} break;
}
}
uint8 SPC7110::read(unsigned addr) {
//$[00-0f|80-8f]:[8000-ffff], $[c0-cf]:[0000-ffff] mapped directly to memory::cartrom
if((addr & 0xffe000) == 0x006000 || (addr & 0xffe000) == 0x306000) {
//$[00|30]:[6000-7fff]
return memory::cartram.read(addr & 0x1fff);
}
if((addr & 0xff0000) == 0x500000) {
//$[50]:[0000-ffff]
return mmio_read(0x4800);
}
if((addr & 0xf00000) == 0xd00000) {
//$[d0-df]:[0000-ffff]
return memory::cartrom.read(dx_offset + (addr & 0x0fffff));
}
if((addr & 0xf00000) == 0xe00000) {
//$[e0-ef]:[0000-ffff]
return memory::cartrom.read(ex_offset + (addr & 0x0fffff));
}
if((addr & 0xf00000) == 0xf00000) {
//$[f0-ff]:[0000-ffff]
return memory::cartrom.read(fx_offset + (addr & 0x0fffff));
}
return cpu.regs.mdr;
}
void SPC7110::write(unsigned addr, uint8 data) {
if((addr & 0xffe000) == 0x006000 || (addr & 0xffe000) == 0x306000) {
//$[00|30]:[6000-7fff]
if(r4830 & 0x80) memory::cartram.write(addr & 0x1fff, data);
return;
}
}
SPC7110::SPC7110() {
}
};

View File

@ -0,0 +1,136 @@
/*****
* SPC7110 emulator - version 0.03 (2008-08-10)
* Copyright (c) 2008, byuu and neviksti
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* The software is provided "as is" and the author disclaims all warranties
* with regard to this software including all implied warranties of
* merchantibility and fitness, in no event shall the author be liable for
* any special, direct, indirect, or consequential damages or any damages
* whatsoever resulting from loss of use, data or profits, whether in an
* action of contract, negligence or other tortious action, arising out of
* or in connection with the use or performance of this software.
*****/
#include "decomp.hpp"
class SPC7110 : public MMIO, public Memory {
public:
void init();
void enable();
void power();
void reset();
unsigned datarom_addr(unsigned addr);
unsigned data_pointer();
unsigned data_adjust();
unsigned data_increment();
void set_data_pointer(unsigned addr);
void set_data_adjust(unsigned addr);
void update_time(int offset = 0);
time_t create_time();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
//spc7110decomp
void decomp_init();
uint8 decomp_read();
void serialize(serializer&);
SPC7110();
private:
//==================
//decompression unit
//==================
uint8 r4801; //compression table low
uint8 r4802; //compression table high
uint8 r4803; //compression table bank
uint8 r4804; //compression table index
uint8 r4805; //decompression buffer index low
uint8 r4806; //decompression buffer index high
uint8 r4807; //???
uint8 r4808; //???
uint8 r4809; //compression length low
uint8 r480a; //compression length high
uint8 r480b; //decompression control register
uint8 r480c; //decompression status
SPC7110Decomp decomp;
//==============
//data port unit
//==============
uint8 r4811; //data pointer low
uint8 r4812; //data pointer high
uint8 r4813; //data pointer bank
uint8 r4814; //data adjust low
uint8 r4815; //data adjust high
uint8 r4816; //data increment low
uint8 r4817; //data increment high
uint8 r4818; //data port control register
uint8 r481x;
bool r4814_latch;
bool r4815_latch;
//=========
//math unit
//=========
uint8 r4820; //16-bit multiplicand B0, 32-bit dividend B0
uint8 r4821; //16-bit multiplicand B1, 32-bit dividend B1
uint8 r4822; //32-bit dividend B2
uint8 r4823; //32-bit dividend B3
uint8 r4824; //16-bit multiplier B0
uint8 r4825; //16-bit multiplier B1
uint8 r4826; //16-bit divisor B0
uint8 r4827; //16-bit divisor B1
uint8 r4828; //32-bit product B0, 32-bit quotient B0
uint8 r4829; //32-bit product B1, 32-bit quotient B1
uint8 r482a; //32-bit product B2, 32-bit quotient B2
uint8 r482b; //32-bit product B3, 32-bit quotient B3
uint8 r482c; //16-bit remainder B0
uint8 r482d; //16-bit remainder B1
uint8 r482e; //math control register
uint8 r482f; //math status
//===================
//memory mapping unit
//===================
uint8 r4830; //SRAM write enable
uint8 r4831; //$[d0-df]:[0000-ffff] mapping
uint8 r4832; //$[e0-ef]:[0000-ffff] mapping
uint8 r4833; //$[f0-ff]:[0000-ffff] mapping
uint8 r4834; //???
unsigned dx_offset;
unsigned ex_offset;
unsigned fx_offset;
//====================
//real-time clock unit
//====================
uint8 r4840; //RTC latch
uint8 r4841; //RTC index/data port
uint8 r4842; //RTC status
enum RTC_State { RTCS_Inactive, RTCS_ModeSelect, RTCS_IndexSelect, RTCS_Write };
enum RTC_Mode { RTCM_Linear = 0x03, RTCM_Indexed = 0x0c };
unsigned rtc_state;
unsigned rtc_mode;
unsigned rtc_index;
static const unsigned months[12];
};
extern SPC7110 spc7110;

View File

@ -0,0 +1,8 @@
#ifdef SRTC_CPP
void SRTC::serialize(serializer &s) {
s.integer(rtc_mode);
s.integer(rtc_index);
}
#endif

View File

@ -0,0 +1,233 @@
#include <../base.hpp>
#define SRTC_CPP
namespace SNES {
SRTC srtc;
#include "serialization.cpp"
const unsigned SRTC::months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void SRTC::init() {
}
void SRTC::enable() {
memory::mmio.map(0x2800, *this);
memory::mmio.map(0x2801, *this);
}
void SRTC::power() {
reset();
}
void SRTC::reset() {
rtc_mode = RtcRead;
rtc_index = -1;
update_time();
}
void SRTC::update_time() {
time_t rtc_time
= (memory::cartrtc.read(16) << 0)
| (memory::cartrtc.read(17) << 8)
| (memory::cartrtc.read(18) << 16)
| (memory::cartrtc.read(19) << 24);
time_t current_time = time(0);
//sizeof(time_t) is platform-dependent; though memory::cartrtc needs to be platform-agnostic.
//yet platforms with 32-bit signed time_t will overflow every ~68 years. handle this by
//accounting for overflow at the cost of 1-bit precision (to catch underflow). this will allow
//memory::cartrtc timestamp to remain valid for up to ~34 years from the last update, even if
//time_t overflows. calculation should be valid regardless of number representation, time_t size,
//or whether time_t is signed or unsigned.
time_t diff
= (current_time >= rtc_time)
? (current_time - rtc_time)
: (std::numeric_limits<time_t>::max() - rtc_time + current_time + 1); //compensate for overflow
if(diff > std::numeric_limits<time_t>::max() / 2) diff = 0; //compensate for underflow
if(diff > 0) {
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
unsigned minute = memory::cartrtc.read( 2) + memory::cartrtc.read( 3) * 10;
unsigned hour = memory::cartrtc.read( 4) + memory::cartrtc.read( 5) * 10;
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8);
unsigned year = memory::cartrtc.read( 9) + memory::cartrtc.read(10) * 10 + memory::cartrtc.read(11) * 100;
unsigned weekday = memory::cartrtc.read(12);
day--;
month--;
year += 1000;
second += diff;
while(second >= 60) {
second -= 60;
minute++;
if(minute < 60) continue;
minute = 0;
hour++;
if(hour < 24) continue;
hour = 0;
day++;
weekday = (weekday + 1) % 7;
unsigned days = months[month % 12];
if(days == 28) {
bool leapyear = false;
if((year % 4) == 0) {
leapyear = true;
if((year % 100) == 0 && (year % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
if(day < days) continue;
day = 0;
month++;
if(month < 12) continue;
month = 0;
year++;
}
day++;
month++;
year -= 1000;
memory::cartrtc.write( 0, second % 10);
memory::cartrtc.write( 1, second / 10);
memory::cartrtc.write( 2, minute % 10);
memory::cartrtc.write( 3, minute / 10);
memory::cartrtc.write( 4, hour % 10);
memory::cartrtc.write( 5, hour / 10);
memory::cartrtc.write( 6, day % 10);
memory::cartrtc.write( 7, day / 10);
memory::cartrtc.write( 8, month);
memory::cartrtc.write( 9, year % 10);
memory::cartrtc.write(10, (year / 10) % 10);
memory::cartrtc.write(11, year / 100);
memory::cartrtc.write(12, weekday % 7);
}
memory::cartrtc.write(16, current_time >> 0);
memory::cartrtc.write(17, current_time >> 8);
memory::cartrtc.write(18, current_time >> 16);
memory::cartrtc.write(19, current_time >> 24);
}
//returns day of week for specified date
//eg 0 = Sunday, 1 = Monday, ... 6 = Saturday
//usage: weekday(2008, 1, 1) returns weekday of January 1st, 2008
unsigned SRTC::weekday(unsigned year, unsigned month, unsigned day) {
unsigned y = 1900, m = 1; //epoch is 1900-01-01
unsigned sum = 0; //number of days passed since epoch
year = max(1900, year);
month = max(1, min(12, month));
day = max(1, min(31, day));
while(y < year) {
bool leapyear = false;
if((y % 4) == 0) {
leapyear = true;
if((y % 100) == 0 && (y % 400) != 0) leapyear = false;
}
sum += leapyear ? 366 : 365;
y++;
}
while(m < month) {
unsigned days = months[m - 1];
if(days == 28) {
bool leapyear = false;
if((y % 4) == 0) {
leapyear = true;
if((y % 100) == 0 && (y % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
sum += days;
m++;
}
sum += day - 1;
return (sum + 1) % 7; //1900-01-01 was a Monday
}
uint8 SRTC::mmio_read(unsigned addr) {
addr &= 0xffff;
if(addr == 0x2800) {
if(rtc_mode != RtcRead) return 0x00;
if(rtc_index < 0) {
update_time();
rtc_index++;
return 0x0f;
} else if(rtc_index > 12) {
rtc_index = -1;
return 0x0f;
} else {
return memory::cartrtc.read(rtc_index++);
}
}
return cpu.regs.mdr;
}
void SRTC::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr == 0x2801) {
data &= 0x0f; //only the low four bits are used
if(data == 0x0d) {
rtc_mode = RtcRead;
rtc_index = -1;
return;
}
if(data == 0x0e) {
rtc_mode = RtcCommand;
return;
}
if(data == 0x0f) return; //unknown behavior
if(rtc_mode == RtcWrite) {
if(rtc_index >= 0 && rtc_index < 12) {
memory::cartrtc.write(rtc_index++, data);
if(rtc_index == 12) {
//day of week is automatically calculated and written
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8);
unsigned year = memory::cartrtc.read( 9) + memory::cartrtc.read(10) * 10 + memory::cartrtc.read(11) * 100;
year += 1000;
memory::cartrtc.write(rtc_index++, weekday(year, month, day));
}
}
} else if(rtc_mode == RtcCommand) {
if(data == 0) {
rtc_mode = RtcWrite;
rtc_index = 0;
} else if(data == 4) {
rtc_mode = RtcReady;
rtc_index = -1;
for(unsigned i = 0; i < 13; i++) memory::cartrtc.write(i, 0);
} else {
//unknown behavior
rtc_mode = RtcReady;
}
}
}
}
SRTC::SRTC() {
}
};

View File

@ -0,0 +1,24 @@
class SRTC : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
void serialize(serializer&);
SRTC();
private:
static const unsigned months[12];
enum RtcMode { RtcReady, RtcCommand, RtcRead, RtcWrite };
unsigned rtc_mode;
signed rtc_index;
void update_time();
unsigned weekday(unsigned year, unsigned month, unsigned day);
};
extern SRTC srtc;

View File

@ -0,0 +1,7 @@
#ifdef ST010_CPP
void ST010::serialize(serializer &s) {
s.array(ram);
}
#endif

View File

@ -0,0 +1,95 @@
#include <../base.hpp>
#define ST010_CPP
namespace SNES {
ST010 st010;
#include "st010_data.hpp"
#include "serialization.cpp"
#include "st010_op.cpp"
void ST010::init() {
}
void ST010::enable() {
bus.map(Bus::MapDirect, 0x68, 0x6f, 0x0000, 0x0fff, *this);
bus.map(Bus::MapDirect, 0xe8, 0xef, 0x0000, 0x0fff, *this);
}
int16 ST010::sin(int16 theta) {
return sin_table[(theta >> 8) & 0xff];
}
int16 ST010::cos(int16 theta) {
return sin_table[((theta + 0x4000) >> 8) & 0xff];
}
uint8 ST010::readb(uint16 addr) {
return ram[addr & 0xfff];
}
uint16 ST010::readw(uint16 addr) {
return (readb(addr + 0) << 0) |
(readb(addr + 1) << 8);
}
uint32 ST010::readd(uint16 addr) {
return (readb(addr + 0) << 0) |
(readb(addr + 1) << 8) |
(readb(addr + 2) << 16) |
(readb(addr + 3) << 24);
}
void ST010::writeb(uint16 addr, uint8 data) {
ram[addr & 0xfff] = data;
}
void ST010::writew(uint16 addr, uint16 data) {
writeb(addr + 0, data >> 0);
writeb(addr + 1, data >> 8);
}
void ST010::writed(uint16 addr, uint32 data) {
writeb(addr + 0, data >> 0);
writeb(addr + 1, data >> 8);
writeb(addr + 2, data >> 16);
writeb(addr + 3, data >> 24);
}
//
void ST010::power() {
reset();
}
void ST010::reset() {
memset(ram, 0x00, sizeof ram);
}
//
uint8 ST010::read(unsigned addr) {
return readb(addr);
}
void ST010::write(unsigned addr, uint8 data) {
writeb(addr, data);
if((addr & 0xfff) == 0x0021 && (data & 0x80)) {
switch(ram[0x0020]) {
case 0x01: op_01(); break;
case 0x02: op_02(); break;
case 0x03: op_03(); break;
case 0x04: op_04(); break;
case 0x05: op_05(); break;
case 0x06: op_06(); break;
case 0x07: op_07(); break;
case 0x08: op_08(); break;
}
ram[0x0021] &= ~0x80;
}
}
};

View File

@ -0,0 +1,44 @@
class ST010 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
uint8 ram[0x1000];
static const int16 sin_table[256];
static const int16 mode7_scale[176];
static const uint8 arctan[32][32];
//interfaces to sin table
int16 sin(int16 theta);
int16 cos(int16 theta);
//interfaces to ram buffer
uint8 readb (uint16 addr);
uint16 readw (uint16 addr);
uint32 readd (uint16 addr);
void writeb(uint16 addr, uint8 data);
void writew(uint16 addr, uint16 data);
void writed(uint16 addr, uint32 data);
//opcodes
void op_01();
void op_02();
void op_03();
void op_04();
void op_05();
void op_06();
void op_07();
void op_08();
void op_01(int16 x0, int16 y0, int16 &x1, int16 &y1, int16 &quadrant, int16 &theta);
};
extern ST010 st010;

View File

@ -0,0 +1,126 @@
const int16 ST010::sin_table[256] = {
0x0000, 0x0324, 0x0648, 0x096a, 0x0c8c, 0x0fab, 0x12c8, 0x15e2,
0x18f9, 0x1c0b, 0x1f1a, 0x2223, 0x2528, 0x2826, 0x2b1f, 0x2e11,
0x30fb, 0x33df, 0x36ba, 0x398c, 0x3c56, 0x3f17, 0x41ce, 0x447a,
0x471c, 0x49b4, 0x4c3f, 0x4ebf, 0x5133, 0x539b, 0x55f5, 0x5842,
0x5a82, 0x5cb3, 0x5ed7, 0x60eb, 0x62f1, 0x64e8, 0x66cf, 0x68a6,
0x6a6d, 0x6c23, 0x6dc9, 0x6f5e, 0x70e2, 0x7254, 0x73b5, 0x7504,
0x7641, 0x776b, 0x7884, 0x7989, 0x7a7c, 0x7b5c, 0x7c29, 0x7ce3,
0x7d89, 0x7e1d, 0x7e9c, 0x7f09, 0x7f61, 0x7fa6, 0x7fd8, 0x7ff5,
0x7fff, 0x7ff5, 0x7fd8, 0x7fa6, 0x7f61, 0x7f09, 0x7e9c, 0x7e1d,
0x7d89, 0x7ce3, 0x7c29, 0x7b5c, 0x7a7c, 0x7989, 0x7884, 0x776b,
0x7641, 0x7504, 0x73b5, 0x7254, 0x70e2, 0x6f5e, 0x6dc9, 0x6c23,
0x6a6d, 0x68a6, 0x66cf, 0x64e8, 0x62f1, 0x60eb, 0x5ed7, 0x5cb3,
0x5a82, 0x5842, 0x55f5, 0x539b, 0x5133, 0x4ebf, 0x4c3f, 0x49b4,
0x471c, 0x447a, 0x41ce, 0x3f17, 0x3c56, 0x398c, 0x36ba, 0x33df,
0x30fb, 0x2e11, 0x2b1f, 0x2826, 0x2528, 0x2223, 0x1f1a, 0x1c0b,
0x18f8, 0x15e2, 0x12c8, 0x0fab, 0x0c8c, 0x096a, 0x0648, 0x0324,
0x0000, -0x0324, -0x0648, -0x096b, -0x0c8c, -0x0fab, -0x12c8, -0x15e2,
-0x18f9, -0x1c0b, -0x1f1a, -0x2223, -0x2528, -0x2826, -0x2b1f, -0x2e11,
-0x30fb, -0x33df, -0x36ba, -0x398d, -0x3c56, -0x3f17, -0x41ce, -0x447a,
-0x471c, -0x49b4, -0x4c3f, -0x4ebf, -0x5133, -0x539b, -0x55f5, -0x5842,
-0x5a82, -0x5cb3, -0x5ed7, -0x60ec, -0x62f1, -0x64e8, -0x66cf, -0x68a6,
-0x6a6d, -0x6c23, -0x6dc9, -0x6f5e, -0x70e2, -0x7254, -0x73b5, -0x7504,
-0x7641, -0x776b, -0x7884, -0x7989, -0x7a7c, -0x7b5c, -0x7c29, -0x7ce3,
-0x7d89, -0x7e1d, -0x7e9c, -0x7f09, -0x7f61, -0x7fa6, -0x7fd8, -0x7ff5,
-0x7fff, -0x7ff5, -0x7fd8, -0x7fa6, -0x7f61, -0x7f09, -0x7e9c, -0x7e1d,
-0x7d89, -0x7ce3, -0x7c29, -0x7b5c, -0x7a7c, -0x7989, -0x7883, -0x776b,
-0x7641, -0x7504, -0x73b5, -0x7254, -0x70e2, -0x6f5e, -0x6dc9, -0x6c23,
-0x6a6d, -0x68a6, -0x66cf, -0x64e8, -0x62f1, -0x60eb, -0x5ed7, -0x5cb3,
-0x5a82, -0x5842, -0x55f5, -0x539a, -0x5133, -0x4ebf, -0x4c3f, -0x49b3,
-0x471c, -0x447a, -0x41cd, -0x3f17, -0x3c56, -0x398c, -0x36b9, -0x33de,
-0x30fb, -0x2e10, -0x2b1f, -0x2826, -0x2527, -0x2223, -0x1f19, -0x1c0b,
-0x18f8, -0x15e2, -0x12c8, -0x0fab, -0x0c8b, -0x096a, -0x0647, -0x0324
};
const int16 ST010::mode7_scale[176] = {
0x0380, 0x0325, 0x02da, 0x029c, 0x0268, 0x023b, 0x0215, 0x01f3,
0x01d5, 0x01bb, 0x01a3, 0x018e, 0x017b, 0x016a, 0x015a, 0x014b,
0x013e, 0x0132, 0x0126, 0x011c, 0x0112, 0x0109, 0x0100, 0x00f8,
0x00f0, 0x00e9, 0x00e3, 0x00dc, 0x00d6, 0x00d1, 0x00cb, 0x00c6,
0x00c1, 0x00bd, 0x00b8, 0x00b4, 0x00b0, 0x00ac, 0x00a8, 0x00a5,
0x00a2, 0x009e, 0x009b, 0x0098, 0x0095, 0x0093, 0x0090, 0x008d,
0x008b, 0x0088, 0x0086, 0x0084, 0x0082, 0x0080, 0x007e, 0x007c,
0x007a, 0x0078, 0x0076, 0x0074, 0x0073, 0x0071, 0x006f, 0x006e,
0x006c, 0x006b, 0x0069, 0x0068, 0x0067, 0x0065, 0x0064, 0x0063,
0x0062, 0x0060, 0x005f, 0x005e, 0x005d, 0x005c, 0x005b, 0x005a,
0x0059, 0x0058, 0x0057, 0x0056, 0x0055, 0x0054, 0x0053, 0x0052,
0x0051, 0x0051, 0x0050, 0x004f, 0x004e, 0x004d, 0x004d, 0x004c,
0x004b, 0x004b, 0x004a, 0x0049, 0x0048, 0x0048, 0x0047, 0x0047,
0x0046, 0x0045, 0x0045, 0x0044, 0x0044, 0x0043, 0x0042, 0x0042,
0x0041, 0x0041, 0x0040, 0x0040, 0x003f, 0x003f, 0x003e, 0x003e,
0x003d, 0x003d, 0x003c, 0x003c, 0x003b, 0x003b, 0x003a, 0x003a,
0x003a, 0x0039, 0x0039, 0x0038, 0x0038, 0x0038, 0x0037, 0x0037,
0x0036, 0x0036, 0x0036, 0x0035, 0x0035, 0x0035, 0x0034, 0x0034,
0x0034, 0x0033, 0x0033, 0x0033, 0x0032, 0x0032, 0x0032, 0x0031,
0x0031, 0x0031, 0x0030, 0x0030, 0x0030, 0x0030, 0x002f, 0x002f,
0x002f, 0x002e, 0x002e, 0x002e, 0x002e, 0x002d, 0x002d, 0x002d,
0x002d, 0x002c, 0x002c, 0x002c, 0x002c, 0x002b, 0x002b, 0x002b
};
const uint8 ST010::arctan[32][32] = {
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 },
{ 0x80, 0xa0, 0xad, 0xb3, 0xb6, 0xb8, 0xb9, 0xba, 0xbb, 0xbb, 0xbc, 0xbc, 0xbd, 0xbd, 0xbd, 0xbd,
0xbd, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbf, 0xbf, 0xbf, 0xbf },
{ 0x80, 0x93, 0xa0, 0xa8, 0xad, 0xb0, 0xb3, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xba, 0xbb,
0xbb, 0xbb, 0xbb, 0xbc, 0xbc, 0xbc, 0xbc, 0xbc, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd },
{ 0x80, 0x8d, 0x98, 0xa0, 0xa6, 0xaa, 0xad, 0xb0, 0xb1, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb7, 0xb8,
0xb8, 0xb9, 0xb9, 0xba, 0xba, 0xba, 0xba, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbc, 0xbc, 0xbc, 0xbc },
{ 0x80, 0x8a, 0x93, 0x9a, 0xa0, 0xa5, 0xa8, 0xab, 0xad, 0xaf, 0xb0, 0xb2, 0xb3, 0xb4, 0xb5, 0xb5,
0xb6, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8, 0xb9, 0xb9, 0xb9, 0xba, 0xba, 0xba, 0xba, 0xba, 0xbb, 0xbb },
{ 0x80, 0x88, 0x90, 0x96, 0x9b, 0xa0, 0xa4, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3,
0xb4, 0xb4, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8, 0xb9, 0xb9, 0xb9, 0xb9, 0xb9 },
{ 0x80, 0x87, 0x8d, 0x93, 0x98, 0x9c, 0xa0, 0xa3, 0xa6, 0xa8, 0xaa, 0xac, 0xad, 0xae, 0xb0, 0xb0,
0xb1, 0xb2, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8 },
{ 0x80, 0x86, 0x8b, 0x90, 0x95, 0x99, 0x9d, 0xa0, 0xa3, 0xa5, 0xa7, 0xa9, 0xaa, 0xac, 0xad, 0xae,
0xaf, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7 },
{ 0x80, 0x85, 0x8a, 0x8f, 0x93, 0x97, 0x9a, 0x9d, 0xa0, 0xa2, 0xa5, 0xa6, 0xa8, 0xaa, 0xab, 0xac,
0xad, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb5, 0xb5 },
{ 0x80, 0x85, 0x89, 0x8d, 0x91, 0x95, 0x98, 0x9b, 0x9e, 0xa0, 0xa0, 0xa4, 0xa6, 0xa7, 0xa9, 0xaa,
0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb4 },
{ 0x80, 0x84, 0x88, 0x8c, 0x90, 0x93, 0x96, 0x99, 0x9b, 0x9e, 0xa0, 0xa2, 0xa4, 0xa5, 0xa7, 0xa8,
0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xaf, 0xb0, 0xb0, 0xb1, 0xb2, 0xb2, 0xb2, 0xb3, 0xb3 },
{ 0x80, 0x84, 0x87, 0x8b, 0x8e, 0x91, 0x94, 0x97, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa3, 0xa5, 0xa6,
0xa7, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb1, 0xb2, 0xb2 },
{ 0x80, 0x83, 0x87, 0x8a, 0x8d, 0x90, 0x93, 0x96, 0x98, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa3, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xb0, 0xb0, 0xb0, 0xb1 },
{ 0x80, 0x83, 0x86, 0x89, 0x8c, 0x8f, 0x92, 0x94, 0x96, 0x99, 0x9b, 0x9d, 0x9e, 0xa0, 0xa2, 0xa3,
0xa4, 0xa5, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xaf, 0xb0 },
{ 0x80, 0x83, 0x86, 0x89, 0x8b, 0x8e, 0x90, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9e, 0xa0, 0xa1,
0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xac, 0xad, 0xad, 0xae, 0xae, 0xaf },
{ 0x80, 0x83, 0x85, 0x88, 0x8b, 0x8d, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9b, 0x9d, 0x9f, 0xa0,
0xa1, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa, 0xab, 0xab, 0xac, 0xad, 0xad, 0xae },
{ 0x80, 0x83, 0x85, 0x88, 0x8a, 0x8c, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9a, 0x9c, 0x9d, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa5, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xab, 0xac, 0xad },
{ 0x80, 0x82, 0x85, 0x87, 0x89, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x97, 0x99, 0x9b, 0x9c, 0x9d,
0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xac },
{ 0x80, 0x82, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x96, 0x98, 0x99, 0x9b, 0x9c,
0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x95, 0x97, 0x98, 0x9a, 0x9b,
0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x91, 0x93, 0x94, 0x96, 0x97, 0x99, 0x9a,
0x9b, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5, 0xa6, 0xa7, 0xa7, 0xa8, 0xa9 },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8b, 0x8d, 0x8f, 0x90, 0x92, 0x94, 0x95, 0x97, 0x98, 0x99,
0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa8 },
{ 0x80, 0x82, 0x84, 0x86, 0x87, 0x89, 0x8b, 0x8d, 0x8e, 0x90, 0x91, 0x93, 0x94, 0x96, 0x97, 0x98,
0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa3, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7 },
{ 0x80, 0x82, 0x84, 0x85, 0x87, 0x89, 0x8a, 0x8c, 0x8e, 0x8f, 0x91, 0x92, 0x94, 0x95, 0x96, 0x98,
0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5, 0xa6 },
{ 0x80, 0x82, 0x83, 0x85, 0x87, 0x88, 0x8a, 0x8c, 0x8d, 0x8f, 0x90, 0x92, 0x93, 0x94, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x88, 0x8a, 0x8b, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa4 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x88, 0x89, 0x8b, 0x8c, 0x8e, 0x8f, 0x90, 0x92, 0x93, 0x94, 0x95,
0x96, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x87, 0x89, 0x8a, 0x8c, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x93, 0x95,
0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa1, 0xa2, 0xa3 },
{ 0x80, 0x81, 0x83, 0x84, 0x86, 0x87, 0x89, 0x8a, 0x8b, 0x8d, 0x8e, 0x8f, 0x90, 0x92, 0x93, 0x94,
0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa1, 0xa2 },
{ 0x80, 0x81, 0x83, 0x84, 0x86, 0x87, 0x88, 0x8a, 0x8b, 0x8c, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93,
0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0, 0xa1, 0xa1 },
{ 0x80, 0x81, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8b, 0x8c, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x93,
0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0, 0xa1 },
{ 0x80, 0x81, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8a, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92,
0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0 }
};

View File

@ -0,0 +1,261 @@
#ifdef ST010_CPP
//ST-010 emulation code - Copyright (C) 2003 The Dumper, Matthew Kendora, Overload, Feather
//bsnes port - Copyright (C) 2007 byuu
void ST010::op_01(int16 x0, int16 y0, int16 &x1, int16 &y1, int16 &quadrant, int16 &theta) {
if((x0 < 0) && (y0 < 0)) {
x1 = -x0;
y1 = -y0;
quadrant = -0x8000;
} else if(x0 < 0) {
x1 = y0;
y1 = -x0;
quadrant = -0x4000;
} else if(y0 < 0) {
x1 = -y0;
y1 = x0;
quadrant = 0x4000;
} else {
x1 = x0;
y1 = y0;
quadrant = 0x0000;
}
while((x1 > 0x1f) || (y1 > 0x1f)) {
if(x1 > 1) { x1 >>= 1; }
if(y1 > 1) { y1 >>= 1; }
}
if(y1 == 0) { quadrant += 0x4000; }
theta = (arctan[y1][x1] << 8) ^ quadrant;
}
//
void ST010::op_01() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 x1, y1, quadrant, theta;
op_01(x0, y0, x1, y1, quadrant, theta);
writew(0x0000, x1);
writew(0x0002, y1);
writew(0x0004, quadrant);
//writew(0x0006, y0); //Overload's docs note this write occurs, SNES9x disagrees
writew(0x0010, theta);
}
void ST010::op_02() {
int16 positions = readw(0x0024);
uint16 *places = (uint16*)(ram + 0x0040);
uint16 *drivers = (uint16*)(ram + 0x0080);
bool sorted;
uint16 temp;
if(positions > 1) {
do {
sorted = true;
for(int i = 0; i < positions - 1; i++) {
if(places[i] < places[i + 1]) {
temp = places[i + 1];
places[i + 1] = places[i];
places[i] = temp;
temp = drivers[i + 1];
drivers[i + 1] = drivers[i];
drivers[i] = temp;
sorted = false;
}
}
positions--;
} while(!sorted);
}
}
void ST010::op_03() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 multiplier = readw(0x0004);
int32 x1, y1;
x1 = x0 * multiplier << 1;
y1 = y0 * multiplier << 1;
writed(0x0010, x1);
writed(0x0014, y1);
}
void ST010::op_04() {
int16 x = readw(0x0000);
int16 y = readw(0x0002);
int16 square;
//calculate the vector length of (x,y)
square = (int16)sqrt((double)(y * y + x * x));
writew(0x0010, square);
}
void ST010::op_05() {
int32 dx, dy;
int16 a1, b1, c1;
uint16 o1;
bool wrap = false;
//target (x,y) coordinates
int16 ypos_max = readw(0x00c0);
int16 xpos_max = readw(0x00c2);
//current coordinates and direction
int32 ypos = readd(0x00c4);
int32 xpos = readd(0x00c8);
uint16 rot = readw(0x00cc);
//physics
uint16 speed = readw(0x00d4);
uint16 accel = readw(0x00d6);
uint16 speed_max = readw(0x00d8);
//special condition acknowledgement
int16 system = readw(0x00da);
int16 flags = readw(0x00dc);
//new target coordinates
int16 ypos_new = readw(0x00de);
int16 xpos_new = readw(0x00e0);
//mask upper bit
xpos_new &= 0x7fff;
//get the current distance
dx = xpos_max - (xpos >> 16);
dy = ypos_max - (ypos >> 16);
//quirk: clear and move in9
writew(0x00d2, 0xffff);
writew(0x00da, 0x0000);
//grab the target angle
op_01(dy, dx, a1, b1, c1, (int16&)o1);
//check for wrapping
if(abs(o1 - rot) > 0x8000) {
o1 += 0x8000;
rot += 0x8000;
wrap = true;
}
uint16 old_speed = speed;
//special case
if(abs(o1 - rot) == 0x8000) {
speed = 0x100;
}
//slow down for sharp curves
else if(abs(o1 - rot) >= 0x1000) {
uint32 slow = abs(o1 - rot);
slow >>= 4; //scaling
speed -= slow;
}
//otherwise accelerate
else {
speed += accel;
if(speed > speed_max) {
speed = speed_max; //clip speed
}
}
//prevent negative/positive overflow
if(abs(old_speed - speed) > 0x8000) {
if(old_speed < speed) { speed = 0; }
else speed = 0xff00;
}
//adjust direction by so many degrees
//be careful of negative adjustments
if((o1 > rot && (o1 - rot) > 0x80) || (o1 < rot && (rot - o1) >= 0x80)) {
if(o1 < rot) { rot -= 0x280; }
else if(o1 > rot) { rot += 0x280; }
}
//turn off wrapping
if(wrap) { rot -= 0x8000; }
//now check the distances (store for later)
dx = (xpos_max << 16) - xpos;
dy = (ypos_max << 16) - ypos;
dx >>= 16;
dy >>= 16;
//if we're in so many units of the target, signal it
if((system && (dy <= 6 && dy >= -8) && (dx <= 126 && dx >= -128)) || (!system && (dx <= 6 && dx >= -8) && (dy <= 126 && dy >= -128))) {
//announce our new destination and flag it
xpos_max = xpos_new & 0x7fff;
ypos_max = ypos_new;
flags |= 0x08;
}
//update position
xpos -= (cos(rot) * 0x400 >> 15) * (speed >> 8) << 1;
ypos -= (sin(rot) * 0x400 >> 15) * (speed >> 8) << 1;
//quirk: mask upper byte
xpos &= 0x1fffffff;
ypos &= 0x1fffffff;
writew(0x00c0, ypos_max);
writew(0x00c2, xpos_max);
writed(0x00c4, ypos);
writed(0x00c8, xpos);
writew(0x00cc, rot);
writew(0x00d4, speed);
writew(0x00dc, flags);
}
void ST010::op_06() {
int16 multiplicand = readw(0x0000);
int16 multiplier = readw(0x0002);
int32 product;
product = multiplicand * multiplier << 1;
writed(0x0010, product);
}
void ST010::op_07() {
int16 theta = readw(0x0000);
int16 data;
for(int i = 0, offset = 0; i < 176; i++) {
data = mode7_scale[i] * cos(theta) >> 15;
writew(0x00f0 + offset, data);
writew(0x0510 + offset, data);
data = mode7_scale[i] * sin(theta) >> 15;
writew(0x0250 + offset, data);
if(data) { data = ~data; }
writew(0x03b0 + offset, data);
offset += 2;
}
}
void ST010::op_08() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 theta = readw(0x0004);
int16 x1, y1;
x1 = (y0 * sin(theta) >> 15) + (x0 * cos(theta) >> 15);
y1 = (y0 * cos(theta) >> 15) - (x0 * sin(theta) >> 15);
writew(0x0010, x1);
writew(0x0012, y1);
}
#endif

View File

@ -0,0 +1,20 @@
#include <../base.hpp>
#define ST011_CPP
namespace SNES {
ST011 st011;
void ST011::init() {
}
void ST011::enable() {
}
void ST011::power() {
}
void ST011::reset() {
}
};

View File

@ -0,0 +1,9 @@
class ST011 {
public:
void init();
void enable();
void power();
void reset();
};
extern ST011 st011;

View File

@ -0,0 +1,124 @@
#include <../base.hpp>
#define ST018_CPP
namespace SNES {
ST018 st018;
uint8 ST018::mmio_read(unsigned addr) {
addr &= 0xffff;
if(addr == 0x3800) return regs.r3800;
if(addr == 0x3804) return regs.r3804;
return cpu.regs.mdr;
}
void ST018::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr == 0x3802) {
switch(regs.mode) {
case Waiting: {
switch(data) {
case 0x01: regs.r3800 = regs.r3800_01; break;
case 0xaa: op_board_upload(); break;
case 0xb2: op_b2(); break;
case 0xb3: op_b3(); break;
case 0xb4: op_b4(); break;
case 0xb5: op_b5(); break;
case 0xf1: op_query_chip(); break;
case 0xf2: op_query_chip(); break;
default: fprintf(stdout, "* ST018 w3802::%.2x\n", data); break;
}
} return;
case BoardUpload: {
op_board_upload(data);
} return;
}
}
if(addr == 0x3804) {
regs.w3804 <<= 8;
regs.w3804 |= data;
regs.w3804 &= 0xffffff;
return;
}
}
void ST018::init() {
}
void ST018::enable() {
for(unsigned i = 0x3800; i <= 0x38ff; i++) memory::mmio.map(i, *this);
}
void ST018::power() {
reset();
}
void ST018::reset() {
regs.mode = Waiting;
regs.r3800 = 0x00;
regs.r3804 = 0x85;
regs.w3804 = 0;
for(unsigned i = 0; i < 97; i++) board[i] = 0;
}
//=============
//ST018 opcodes
//=============
void ST018::op_board_upload() {
regs.mode = BoardUpload;
regs.counter = 0;
regs.r3800 = 0xe0;
}
void ST018::op_board_upload(uint8 data) {
board[regs.counter] = data;
regs.r3800 = 96 - regs.counter;
regs.counter++;
if(regs.counter >= 97) {
regs.mode = Waiting;
#if 0
for(unsigned y = 0; y < 9; y++) {
for(unsigned x = 0; x < 9; x++) {
fprintf(stdout, "%.2x ", board[y * 9 + x]);
}
fprintf(stdout, "\n");
}
for(unsigned n = 0; n < 16; n++) fprintf(stdout, "%.2x ", board[81 + n]);
fprintf(stdout, "\n\n");
#endif
}
}
void ST018::op_b2() {
fprintf(stdout, "* ST018 w3802::b2\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 0; //unknown
}
void ST018::op_b3() {
fprintf(stdout, "* ST018 w3802::b3\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 1; //0 = player lost?
}
void ST018::op_b4() {
fprintf(stdout, "* ST018 w3802::b4\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 1; //0 = player won?
}
void ST018::op_b5() {
fprintf(stdout, "* ST018 w3802::b5\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 0; //1 = move will result in checkmate?
}
void ST018::op_query_chip() {
regs.r3800 = 0x00;
}
};

View File

@ -0,0 +1,51 @@
class ST018 : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
enum mode_t { Waiting, BoardUpload };
struct regs_t {
mode_t mode;
uint8 r3800;
uint8 r3800_01;
uint8 r3804;
unsigned w3804;
unsigned counter;
} regs;
enum PieceID {
Pawn = 0x00, //foot soldier
Lance = 0x04, //incense chariot
Knight = 0x08, //cassia horse
Silver = 0x0c, //silver general
Gold = 0x10, //gold general
Rook = 0x14, //flying chariot
Bishop = 0x18, //angle mover
King = 0x1c, //king
};
enum PieceFlag {
PlayerA = 0x20,
PlayerB = 0x40,
};
uint8 board[9 * 9 + 16];
private:
void op_board_upload();
void op_board_upload(uint8 data);
void op_b2();
void op_b3();
void op_b4();
void op_b5();
void op_query_chip();
};
extern ST018 st018;

View File

@ -0,0 +1,106 @@
#ifdef SUPERFX_CPP
SuperFXBus superfxbus;
namespace memory {
SuperFXGSUROM gsurom;
SuperFXGSURAM gsuram;
SuperFXCPUROM fxrom;
SuperFXCPURAM fxram;
}
void SuperFXBus::init() {
map(MapDirect, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
map(MapLinear, 0x00, 0x3f, 0x0000, 0x7fff, memory::gsurom);
map(MapLinear, 0x00, 0x3f, 0x8000, 0xffff, memory::gsurom);
map(MapLinear, 0x40, 0x5f, 0x0000, 0xffff, memory::gsurom);
map(MapLinear, 0x60, 0x7f, 0x0000, 0xffff, memory::gsuram);
bus.map(MapLinear, 0x00, 0x3f, 0x6000, 0x7fff, memory::fxram, 0x0000, 0x2000);
bus.map(MapLinear, 0x00, 0x3f, 0x8000, 0xffff, memory::fxrom);
bus.map(MapLinear, 0x40, 0x5f, 0x0000, 0xffff, memory::fxrom);
bus.map(MapLinear, 0x60, 0x7d, 0x0000, 0xffff, memory::fxram);
bus.map(MapLinear, 0x80, 0xbf, 0x6000, 0x7fff, memory::fxram, 0x0000, 0x2000);
bus.map(MapLinear, 0x80, 0xbf, 0x8000, 0xffff, memory::fxrom);
bus.map(MapLinear, 0xc0, 0xdf, 0x0000, 0xffff, memory::fxrom);
bus.map(MapLinear, 0xe0, 0xff, 0x0000, 0xffff, memory::fxram);
}
//ROM / RAM access from the SuperFX CPU
unsigned SuperFXGSUROM::size() const {
return memory::cartrom.size();
}
uint8 SuperFXGSUROM::read(unsigned addr) {
while(!superfx.regs.scmr.ron && scheduler.sync != Scheduler::SyncAll) {
superfx.add_clocks(6);
scheduler.sync_copcpu();
}
return memory::cartrom.read(addr);
}
void SuperFXGSUROM::write(unsigned addr, uint8 data) {
while(!superfx.regs.scmr.ron && scheduler.sync != Scheduler::SyncAll) {
superfx.add_clocks(6);
scheduler.sync_copcpu();
}
memory::cartrom.write(addr, data);
}
unsigned SuperFXGSURAM::size() const {
return memory::cartram.size();
}
uint8 SuperFXGSURAM::read(unsigned addr) {
while(!superfx.regs.scmr.ran && scheduler.sync != Scheduler::SyncAll) {
superfx.add_clocks(6);
scheduler.sync_copcpu();
}
return memory::cartram.read(addr);
}
void SuperFXGSURAM::write(unsigned addr, uint8 data) {
while(!superfx.regs.scmr.ran && scheduler.sync != Scheduler::SyncAll) {
superfx.add_clocks(6);
scheduler.sync_copcpu();
}
memory::cartram.write(addr, data);
}
//ROM / RAM access from the S-CPU
unsigned SuperFXCPUROM::size() const {
return memory::cartrom.size();
}
uint8 SuperFXCPUROM::read(unsigned addr) {
if(superfx.regs.sfr.g && superfx.regs.scmr.ron) {
static const uint8_t data[16] = {
0x00, 0x01, 0x00, 0x01, 0x04, 0x01, 0x00, 0x01,
0x00, 0x01, 0x08, 0x01, 0x00, 0x01, 0x0c, 0x01,
};
return data[addr & 15];
}
return memory::cartrom.read(addr);
}
void SuperFXCPUROM::write(unsigned addr, uint8 data) {
memory::cartrom.write(addr, data);
}
unsigned SuperFXCPURAM::size() const {
return memory::cartram.size();
}
uint8 SuperFXCPURAM::read(unsigned addr) {
if(superfx.regs.sfr.g && superfx.regs.scmr.ran) return cpu.regs.mdr;
return memory::cartram.read(addr);
}
void SuperFXCPURAM::write(unsigned addr, uint8 data) {
memory::cartram.write(addr, data);
}
#endif

View File

@ -0,0 +1,34 @@
struct SuperFXBus : Bus {
void init();
};
struct SuperFXGSUROM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXGSURAM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXCPUROM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXCPURAM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
namespace memory {
extern SuperFXGSUROM gsurom;
extern SuperFXGSURAM gsuram;
extern SuperFXCPUROM fxrom;
extern SuperFXCPURAM fxram;
}

View File

@ -0,0 +1,107 @@
#ifdef SUPERFX_CPP
#include "opcodes.cpp"
#include "opcode_table.cpp"
uint8 SuperFX::color(uint8 source) {
if(regs.por.highnibble) return (regs.colr & 0xf0) | (source >> 4);
if(regs.por.freezehigh) return (regs.colr & 0xf0) | (source & 0x0f);
return source;
}
void SuperFX::plot(uint8 x, uint8 y) {
uint8 color = regs.colr;
if(regs.por.dither && regs.scmr.md != 3) {
if((x ^ y) & 1) color >>= 4;
color &= 0x0f;
}
if(!regs.por.transparent) {
if(regs.scmr.md == 3) {
if(regs.por.freezehigh) {
if((color & 0x0f) == 0) return;
} else {
if(color == 0) return;
}
} else {
if((color & 0x0f) == 0) return;
}
}
uint16 offset = (y << 5) + (x >> 3);
if(offset != pixelcache[0].offset) {
pixelcache_flush(pixelcache[1]);
pixelcache[1] = pixelcache[0];
pixelcache[0].bitpend = 0x00;
pixelcache[0].offset = offset;
}
x = (x & 7) ^ 7;
pixelcache[0].data[x] = color;
pixelcache[0].bitpend |= 1 << x;
if(pixelcache[0].bitpend == 0xff) {
pixelcache_flush(pixelcache[1]);
pixelcache[1] = pixelcache[0];
pixelcache[0].bitpend = 0x00;
}
}
uint8 SuperFX::rpix(uint8 x, uint8 y) {
pixelcache_flush(pixelcache[1]);
pixelcache_flush(pixelcache[0]);
unsigned cn; //character number
switch(regs.por.obj ? 3 : regs.scmr.ht) {
case 0: cn = ((x & 0xf8) << 1) + ((y & 0xf8) >> 3); break;
case 1: cn = ((x & 0xf8) << 1) + ((x & 0xf8) >> 1) + ((y & 0xf8) >> 3); break;
case 2: cn = ((x & 0xf8) << 1) + ((x & 0xf8) << 0) + ((y & 0xf8) >> 3); break;
case 3: cn = ((y & 0x80) << 2) + ((x & 0x80) << 1) + ((y & 0x78) << 1) + ((x & 0x78) >> 3); break;
}
unsigned bpp = 2 << (regs.scmr.md - (regs.scmr.md >> 1)); // = [regs.scmr.md]{ 2, 4, 4, 8 };
unsigned addr = 0x700000 + (cn * (bpp << 3)) + (regs.scbr << 10) + ((y & 0x07) * 2);
uint8 data = 0x00;
x = (x & 7) ^ 7;
for(unsigned n = 0; n < bpp; n++) {
unsigned byte = ((n >> 1) << 4) + (n & 1); // = [n]{ 0, 1, 16, 17, 32, 33, 48, 49 };
add_clocks(memory_access_speed);
data |= ((superfxbus.read(addr + byte) >> x) & 1) << n;
}
return data;
}
void SuperFX::pixelcache_flush(pixelcache_t &cache) {
if(cache.bitpend == 0x00) return;
uint8 x = cache.offset << 3;
uint8 y = cache.offset >> 5;
unsigned cn; //character number
switch(regs.por.obj ? 3 : regs.scmr.ht) {
case 0: cn = ((x & 0xf8) << 1) + ((y & 0xf8) >> 3); break;
case 1: cn = ((x & 0xf8) << 1) + ((x & 0xf8) >> 1) + ((y & 0xf8) >> 3); break;
case 2: cn = ((x & 0xf8) << 1) + ((x & 0xf8) << 0) + ((y & 0xf8) >> 3); break;
case 3: cn = ((y & 0x80) << 2) + ((x & 0x80) << 1) + ((y & 0x78) << 1) + ((x & 0x78) >> 3); break;
}
unsigned bpp = 2 << (regs.scmr.md - (regs.scmr.md >> 1)); // = [regs.scmr.md]{ 2, 4, 4, 8 };
unsigned addr = 0x700000 + (cn * (bpp << 3)) + (regs.scbr << 10) + ((y & 0x07) * 2);
for(unsigned n = 0; n < bpp; n++) {
unsigned byte = ((n >> 1) << 4) + (n & 1); // = [n]{ 0, 1, 16, 17, 32, 33, 48, 49 };
uint8 data = 0x00;
for(unsigned x = 0; x < 8; x++) data |= ((cache.data[x] >> n) & 1) << x;
if(cache.bitpend != 0xff) {
add_clocks(memory_access_speed);
data &= cache.bitpend;
data |= superfxbus.read(addr + byte) & ~cache.bitpend;
}
add_clocks(memory_access_speed);
superfxbus.write(addr + byte, data);
}
cache.bitpend = 0x00;
}
#endif

View File

@ -0,0 +1,92 @@
#include "registers.hpp"
uint8 color(uint8 source);
void plot(uint8 x, uint8 y);
uint8 rpix(uint8 x, uint8 y);
void pixelcache_flush(pixelcache_t &cache);
void (SuperFX::*opcode_table[1024])();
void initialize_opcode_table();
//opcodes.cpp
template<int> void op_adc_i();
template<int> void op_adc_r();
template<int> void op_add_i();
template<int> void op_add_r();
void op_alt1();
void op_alt2();
void op_alt3();
template<int> void op_and_i();
template<int> void op_and_r();
void op_asr();
void op_bge();
void op_bcc();
void op_bcs();
void op_beq();
template<int> void op_bic_i();
template<int> void op_bic_r();
void op_blt();
void op_bmi();
void op_bne();
void op_bpl();
void op_bra();
void op_bvc();
void op_bvs();
void op_cache();
void op_cmode();
template<int> void op_cmp_r();
void op_color();
template<int> void op_dec_r();
void op_div2();
void op_fmult();
template<int> void op_from_r();
void op_getb();
void op_getbl();
void op_getbh();
void op_getbs();
void op_getc();
void op_hib();
template<int> void op_ibt_r();
template<int> void op_inc_r();
template<int> void op_iwt_r();
template<int> void op_jmp_r();
template<int> void op_ldb_ir();
template<int> void op_ldw_ir();
template<int> void op_link();
template<int> void op_ljmp_r();
template<int> void op_lm_r();
template<int> void op_lms_r();
void op_lmult();
void op_lob();
void op_loop();
void op_lsr();
void op_merge();
template<int> void op_mult_i();
template<int> void op_mult_r();
void op_nop();
void op_not();
template<int> void op_or_i();
template<int> void op_or_r();
void op_plot();
void op_ramb();
void op_rol();
void op_romb();
void op_ror();
void op_rpix();
template<int> void op_sbc_r();
void op_sbk();
void op_sex();
template<int> void op_sm_r();
template<int> void op_sms_r();
template<int> void op_stb_ir();
void op_stop();
template<int> void op_stw_ir();
template<int> void op_sub_i();
template<int> void op_sub_r();
void op_swap();
template<int> void op_to_r();
template<int> void op_umult_i();
template<int> void op_umult_r();
template<int> void op_with_r();
template<int> void op_xor_i();
template<int> void op_xor_r();

View File

@ -0,0 +1,270 @@
#ifdef SUPERFX_CPP
void SuperFX::initialize_opcode_table() {
#define op4(id, name) \
op(id+ 0, name< 1>) op(id+ 1, name< 2>) op(id+ 2, name< 3>) op(id+ 3, name< 4>)
#define op6(id, name) \
op(id+ 0, name< 8>) op(id+ 1, name< 9>) op(id+ 2, name<10>) op(id+ 3, name<11>) \
op(id+ 4, name<12>) op(id+ 5, name<13>)
#define op12(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>)
#define op15l(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>) \
op(id+12, name<12>) op(id+13, name<13>) op(id+14, name<14>)
#define op15h(id, name) \
op(id+ 0, name< 1>) op(id+ 1, name< 2>) op(id+ 2, name< 3>) op(id+ 3, name< 4>) \
op(id+ 4, name< 5>) op(id+ 5, name< 6>) op(id+ 6, name< 7>) op(id+ 7, name< 8>) \
op(id+ 8, name< 9>) op(id+ 9, name<10>) op(id+10, name<11>) op(id+11, name<12>) \
op(id+12, name<13>) op(id+13, name<14>) op(id+14, name<15>)
#define op16(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>) \
op(id+12, name<12>) op(id+13, name<13>) op(id+14, name<14>) op(id+15, name<15>)
//======
// ALT0
//======
#define op(id, name) opcode_table[ 0 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stw_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldw_ir)
op (0x4c, plot)
op (0x4d, swap)
op (0x4e, color)
op (0x4f, not)
op16 (0x50, add_r)
op16 (0x60, sub_r)
op (0x70, merge)
op15h(0x71, and_r)
op16 (0x80, mult_r)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, asr)
op (0x97, ror)
op6 (0x98, jmp_r)
op (0x9e, lob)
op (0x9f, fmult)
op16 (0xa0, ibt_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, or_r)
op15l(0xd0, inc_r)
op (0xdf, getc)
op15l(0xe0, dec_r)
op (0xef, getb)
op16 (0xf0, iwt_r)
#undef op
//======
// ALT1
//======
#define op(id, name) opcode_table[256 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stb_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldb_ir)
op (0x4c, rpix)
op (0x4d, swap)
op (0x4e, cmode)
op (0x4f, not)
op16 (0x50, adc_r)
op16 (0x60, sbc_r)
op (0x70, merge)
op15h(0x71, bic_r)
op16 (0x80, umult_r)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, div2)
op (0x97, ror)
op6 (0x98, ljmp_r)
op (0x9e, lob)
op (0x9f, lmult)
op16 (0xa0, lms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, xor_r)
op15l(0xd0, inc_r)
op (0xdf, getc)
op15l(0xe0, dec_r)
op (0xef, getbh)
op16 (0xf0, lm_r)
#undef op
//======
// ALT2
//======
#define op(id, name) opcode_table[512 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stw_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldw_ir)
op (0x4c, plot)
op (0x4d, swap)
op (0x4e, color)
op (0x4f, not)
op16 (0x50, add_i)
op16 (0x60, sub_i)
op (0x70, merge)
op15h(0x71, and_i)
op16 (0x80, mult_i)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, asr)
op (0x97, ror)
op6 (0x98, jmp_r)
op (0x9e, lob)
op (0x9f, fmult)
op16 (0xa0, sms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, or_i)
op15l(0xd0, inc_r)
op (0xdf, ramb)
op15l(0xe0, dec_r)
op (0xef, getbl)
op16 (0xf0, sm_r)
#undef op
//======
// ALT3
//======
#define op(id, name) opcode_table[768 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stb_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldb_ir)
op (0x4c, rpix)
op (0x4d, swap)
op (0x4e, cmode)
op (0x4f, not)
op16 (0x50, adc_i)
op16 (0x60, cmp_r)
op (0x70, merge)
op15h(0x71, bic_i)
op16 (0x80, umult_i)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, div2)
op (0x97, ror)
op6 (0x98, ljmp_r)
op (0x9e, lob)
op (0x9f, lmult)
op16 (0xa0, lms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, xor_i)
op15l(0xd0, inc_r)
op (0xdf, romb)
op15l(0xe0, dec_r)
op (0xef, getbs)
op16 (0xf0, lm_r)
#undef op
#undef op4
#undef op6
#undef op12
#undef op15l
#undef op15h
#undef op16
}
#endif

View File

@ -0,0 +1,661 @@
#ifdef SUPERFX_CPP
//$00 stop
void SuperFX::op_stop() {
if(regs.cfgr.irq == 0) {
regs.sfr.irq = 1;
cpu.regs.irq = 1;
}
regs.sfr.g = 0;
regs.pipeline = 0x01;
regs.reset();
}
//$01 nop
void SuperFX::op_nop() {
regs.reset();
}
//$02 cache
void SuperFX::op_cache() {
if(regs.cbr != (regs.r[15] & 0xfff0)) {
regs.cbr = regs.r[15] & 0xfff0;
cache_flush();
}
regs.reset();
}
//$03 lsr
void SuperFX::op_lsr() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = regs.sr() >> 1;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$04 rol
void SuperFX::op_rol() {
bool carry = (regs.sr() & 0x8000);
regs.dr() = (regs.sr() << 1) | regs.sfr.cy;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = carry;
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$05 bra e
void SuperFX::op_bra() {
regs.r[15] += (int8)pipe();
}
//$06 blt e
void SuperFX::op_blt() {
int e = (int8)pipe();
if((regs.sfr.s ^ regs.sfr.ov) == 0) regs.r[15] += e;
}
//$07 bge e
void SuperFX::op_bge() {
int e = (int8)pipe();
if((regs.sfr.s ^ regs.sfr.ov) == 1) regs.r[15] += e;
}
//$08 bne e
void SuperFX::op_bne() {
int e = (int8)pipe();
if(regs.sfr.z == 0) regs.r[15] += e;
}
//$09 beq e
void SuperFX::op_beq() {
int e = (int8)pipe();
if(regs.sfr.z == 1) regs.r[15] += e;
}
//$0a bpl e
void SuperFX::op_bpl() {
int e = (int8)pipe();
if(regs.sfr.s == 0) regs.r[15] += e;
}
//$0b bmi e
void SuperFX::op_bmi() {
int e = (int8)pipe();
if(regs.sfr.s == 1) regs.r[15] += e;
}
//$0c bcc e
void SuperFX::op_bcc() {
int e = (int8)pipe();
if(regs.sfr.cy == 0) regs.r[15] += e;
}
//$0d bcs e
void SuperFX::op_bcs() {
int e = (int8)pipe();
if(regs.sfr.cy == 1) regs.r[15] += e;
}
//$0e bvc e
void SuperFX::op_bvc() {
int e = (int8)pipe();
if(regs.sfr.ov == 0) regs.r[15] += e;
}
//$0f bvs e
void SuperFX::op_bvs() {
int e = (int8)pipe();
if(regs.sfr.ov == 1) regs.r[15] += e;
}
//$10-1f(b0): to rN
//$10-1f(b1): move rN
template<int n> void SuperFX::op_to_r() {
if(regs.sfr.b == 0) {
regs.dreg = n;
} else {
regs.r[n] = regs.sr();
regs.reset();
}
}
//$20-2f: with rN
template<int n> void SuperFX::op_with_r() {
regs.sreg = n;
regs.dreg = n;
regs.sfr.b = 1;
}
//$30-3b(alt0): stw (rN)
template<int n> void SuperFX::op_stw_ir() {
regs.ramaddr = regs.r[n];
rambuffer_write(regs.ramaddr ^ 0, regs.sr() >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.sr() >> 8);
regs.reset();
}
//$30-3b(alt1): stb (rN)
template<int n> void SuperFX::op_stb_ir() {
regs.ramaddr = regs.r[n];
rambuffer_write(regs.ramaddr, regs.sr());
regs.reset();
}
//$3c loop
void SuperFX::op_loop() {
regs.r[12]--;
regs.sfr.s = (regs.r[12] & 0x8000);
regs.sfr.z = (regs.r[12] == 0);
if(!regs.sfr.z) regs.r[15] = regs.r[13];
regs.reset();
}
//$3d alt1
void SuperFX::op_alt1() {
regs.sfr.b = 0;
regs.sfr.alt1 = 1;
}
//$3e alt2
void SuperFX::op_alt2() {
regs.sfr.b = 0;
regs.sfr.alt2 = 1;
}
//$3f alt3
void SuperFX::op_alt3() {
regs.sfr.b = 0;
regs.sfr.alt1 = 1;
regs.sfr.alt2 = 1;
}
//$40-4b(alt0): ldw (rN)
template<int n> void SuperFX::op_ldw_ir() {
regs.ramaddr = regs.r[n];
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.dr() = data;
regs.reset();
}
//$40-4b(alt1): ldb (rN)
template<int n> void SuperFX::op_ldb_ir() {
regs.ramaddr = regs.r[n];
regs.dr() = rambuffer_read(regs.ramaddr);
regs.reset();
}
//$4c(alt0): plot
void SuperFX::op_plot() {
plot(regs.r[1], regs.r[2]);
regs.r[1]++;
regs.reset();
}
//$4c(alt1): rpix
void SuperFX::op_rpix() {
regs.dr() = rpix(regs.r[1], regs.r[2]);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$4d: swap
void SuperFX::op_swap() {
regs.dr() = (regs.sr() >> 8) | (regs.sr() << 8);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$4e(alt0): color
void SuperFX::op_color() {
regs.colr = color(regs.sr());
regs.reset();
}
//$4e(alt1): cmode
void SuperFX::op_cmode() {
regs.por = regs.sr();
regs.reset();
}
//$4f: not
void SuperFX::op_not() {
regs.dr() = ~regs.sr();
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$50-5f(alt0): add rN
template<int n> void SuperFX::op_add_r() {
int r = regs.sr() + regs.r[n];
regs.sfr.ov = ~(regs.sr() ^ regs.r[n]) & (regs.r[n] ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt1): adc rN
template<int n> void SuperFX::op_adc_r() {
int r = regs.sr() + regs.r[n] + regs.sfr.cy;
regs.sfr.ov = ~(regs.sr() ^ regs.r[n]) & (regs.r[n] ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt2): add #N
template<int n> void SuperFX::op_add_i() {
int r = regs.sr() + n;
regs.sfr.ov = ~(regs.sr() ^ n) & (n ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt3): adc #N
template<int n> void SuperFX::op_adc_i() {
int r = regs.sr() + n + regs.sfr.cy;
regs.sfr.ov = ~(regs.sr() ^ n) & (n ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt0): sub rN
template<int n> void SuperFX::op_sub_r() {
int r = regs.sr() - regs.r[n];
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt1): sbc rN
template<int n> void SuperFX::op_sbc_r() {
int r = regs.sr() - regs.r[n] - !regs.sfr.cy;
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt2): sub #N
template<int n> void SuperFX::op_sub_i() {
int r = regs.sr() - n;
regs.sfr.ov = (regs.sr() ^ n) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt3): cmp rN
template<int n> void SuperFX::op_cmp_r() {
int r = regs.sr() - regs.r[n];
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.reset();
}
//$70: merge
void SuperFX::op_merge() {
regs.dr() = (regs.r[7] & 0xff00) | (regs.r[8] >> 8);
regs.sfr.ov = (regs.dr() & 0xc0c0);
regs.sfr.s = (regs.dr() & 0x8080);
regs.sfr.cy = (regs.dr() & 0xe0e0);
regs.sfr.z = (regs.dr() & 0xf0f0);
regs.reset();
}
//$71-7f(alt0): and rN
template<int n> void SuperFX::op_and_r() {
regs.dr() = regs.sr() & regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt1): bic rN
template<int n> void SuperFX::op_bic_r() {
regs.dr() = regs.sr() & ~regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt2): and #N
template<int n> void SuperFX::op_and_i() {
regs.dr() = regs.sr() & n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt3): bic #N
template<int n> void SuperFX::op_bic_i() {
regs.dr() = regs.sr() & ~n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$80-8f(alt0): mult rN
template<int n> void SuperFX::op_mult_r() {
regs.dr() = (int8)regs.sr() * (int8)regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt1): umult rN
template<int n> void SuperFX::op_umult_r() {
regs.dr() = (uint8)regs.sr() * (uint8)regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt2): mult #N
template<int n> void SuperFX::op_mult_i() {
regs.dr() = (int8)regs.sr() * (int8)n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt3): umult #N
template<int n> void SuperFX::op_umult_i() {
regs.dr() = (uint8)regs.sr() * (uint8)n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$90: sbk
void SuperFX::op_sbk() {
rambuffer_write(regs.ramaddr ^ 0, regs.sr() >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.sr() >> 8);
regs.reset();
}
//$91-94: link #N
template<int n> void SuperFX::op_link() {
regs.r[11] = regs.r[15] + n;
regs.reset();
}
//$95: sex
void SuperFX::op_sex() {
regs.dr() = (int8)regs.sr();
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$96(alt0): asr
void SuperFX::op_asr() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = (int16_t)regs.sr() >> 1;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$96(alt1): div2
void SuperFX::op_div2() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = ((int16_t)regs.sr() >> 1) + ((regs.sr() + 1) >> 16);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$97: ror
void SuperFX::op_ror() {
bool carry = (regs.sr() & 1);
regs.dr() = (regs.sfr.cy << 15) | (regs.sr() >> 1);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = carry;
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$98-9d(alt0): jmp rN
template<int n> void SuperFX::op_jmp_r() {
regs.r[15] = regs.r[n];
regs.reset();
}
//$98-9d(alt1): ljmp rN
template<int n> void SuperFX::op_ljmp_r() {
regs.pbr = regs.r[n] & 0x7f;
regs.r[15] = regs.sr();
regs.cbr = regs.r[15] & 0xfff0;
cache_flush();
regs.reset();
}
//$9e: lob
void SuperFX::op_lob() {
regs.dr() = regs.sr() & 0xff;
regs.sfr.s = (regs.dr() & 0x80);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$9f(alt0): fmult
void SuperFX::op_fmult() {
uint32_t result = (int16_t)regs.sr() * (int16_t)regs.r[6];
regs.dr() = result >> 16;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = (result & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
add_clocks(4 + (regs.cfgr.ms0 << 2));
}
//$9f(alt1): lmult
void SuperFX::op_lmult() {
uint32_t result = (int16_t)regs.sr() * (int16_t)regs.r[6];
regs.r[4] = result;
regs.dr() = result >> 16;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = (result & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
add_clocks(4 + (regs.cfgr.ms0 << 2));
}
//$a0-af(alt0): ibt rN,#pp
template<int n> void SuperFX::op_ibt_r() {
regs.r[n] = (int8)pipe();
regs.reset();
}
//$a0-af(alt1): lms rN,(yy)
template<int n> void SuperFX::op_lms_r() {
regs.ramaddr = pipe() << 1;
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.r[n] = data;
regs.reset();
}
//$a0-af(alt2): sms (yy),rN
template<int n> void SuperFX::op_sms_r() {
regs.ramaddr = pipe() << 1;
rambuffer_write(regs.ramaddr ^ 0, regs.r[n] >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.r[n] >> 8);
regs.reset();
}
//$b0-bf(b0): from rN
//$b0-bf(b1): moves rN
template<int n> void SuperFX::op_from_r() {
if(regs.sfr.b == 0) {
regs.sreg = n;
} else {
regs.dr() = regs.r[n];
regs.sfr.ov = (regs.dr() & 0x80);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
}
//$c0: hib
void SuperFX::op_hib() {
regs.dr() = regs.sr() >> 8;
regs.sfr.s = (regs.dr() & 0x80);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt0): or rN
template<int n> void SuperFX::op_or_r() {
regs.dr() = regs.sr() | regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt1): xor rN
template<int n> void SuperFX::op_xor_r() {
regs.dr() = regs.sr() ^ regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt2): or #N
template<int n> void SuperFX::op_or_i() {
regs.dr() = regs.sr() | n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt3): xor #N
template<int n> void SuperFX::op_xor_i() {
regs.dr() = regs.sr() ^ n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$d0-de: inc rN
template<int n> void SuperFX::op_inc_r() {
regs.r[n]++;
regs.sfr.s = (regs.r[n] & 0x8000);
regs.sfr.z = (regs.r[n] == 0);
regs.reset();
}
//$df(alt0): getc
void SuperFX::op_getc() {
regs.colr = color(rombuffer_read());
regs.reset();
}
//$df(alt2): ramb
void SuperFX::op_ramb() {
rambuffer_sync();
regs.rambr = regs.sr();
regs.reset();
}
//$df(alt3): romb
void SuperFX::op_romb() {
rombuffer_sync();
regs.rombr = regs.sr() & 0x7f;
regs.reset();
}
//$e0-ee: dec rN
template<int n> void SuperFX::op_dec_r() {
regs.r[n]--;
regs.sfr.s = (regs.r[n] & 0x8000);
regs.sfr.z = (regs.r[n] == 0);
regs.reset();
}
//$ef(alt0): getb
void SuperFX::op_getb() {
regs.dr() = rombuffer_read();
regs.reset();
}
//$ef(alt1): getbh
void SuperFX::op_getbh() {
regs.dr() = (rombuffer_read() << 8) | (regs.sr() & 0x00ff);
regs.reset();
}
//$ef(alt2): getbl
void SuperFX::op_getbl() {
regs.dr() = (regs.sr() & 0xff00) | (rombuffer_read() << 0);
regs.reset();
}
//$ef(alt3): getbs
void SuperFX::op_getbs() {
regs.dr() = (int8)rombuffer_read();
regs.reset();
}
//$f0-ff(alt0): iwt rN,#xx
template<int n> void SuperFX::op_iwt_r() {
uint16_t data;
data = pipe() << 0;
data |= pipe() << 8;
regs.r[n] = data;
regs.reset();
}
//$f0-ff(alt1): lm rN,(xx)
template<int n> void SuperFX::op_lm_r() {
regs.ramaddr = pipe() << 0;
regs.ramaddr |= pipe() << 8;
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.r[n] = data;
regs.reset();
}
//$f0-ff(alt2): sm (xx),rN
template<int n> void SuperFX::op_sm_r() {
regs.ramaddr = pipe() << 0;
regs.ramaddr |= pipe() << 8;
rambuffer_write(regs.ramaddr ^ 0, regs.r[n] >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.r[n] >> 8);
regs.reset();
}
#endif

View File

@ -0,0 +1,175 @@
//accepts a callback binding so r14 writes can trigger ROM buffering transparently
struct reg16_t : noncopyable {
uint16 data;
function<void (uint16)> on_modify;
inline operator unsigned() const { return data; }
inline uint16 assign(uint16 i) {
if(on_modify) on_modify(i);
else data = i;
return data;
}
inline unsigned operator++() { return assign(data + 1); }
inline unsigned operator--() { return assign(data - 1); }
inline unsigned operator++(int) { unsigned r = data; assign(data + 1); return r; }
inline unsigned operator--(int) { unsigned r = data; assign(data - 1); return r; }
inline unsigned operator = (unsigned i) { return assign(i); }
inline unsigned operator |= (unsigned i) { return assign(data | i); }
inline unsigned operator ^= (unsigned i) { return assign(data ^ i); }
inline unsigned operator &= (unsigned i) { return assign(data & i); }
inline unsigned operator <<= (unsigned i) { return assign(data << i); }
inline unsigned operator >>= (unsigned i) { return assign(data >> i); }
inline unsigned operator += (unsigned i) { return assign(data + i); }
inline unsigned operator -= (unsigned i) { return assign(data - i); }
inline unsigned operator *= (unsigned i) { return assign(data * i); }
inline unsigned operator /= (unsigned i) { return assign(data / i); }
inline unsigned operator %= (unsigned i) { return assign(data % i); }
inline unsigned operator = (const reg16_t& i) { return assign(i); }
reg16_t() : data(0) {}
};
struct sfr_t {
bool irq; //interrupt flag
bool b; //WITH flag
bool ih; //immediate higher 8-bit flag
bool il; //immediate lower 8-bit flag
bool alt2; //ALT2 mode
bool alt1; //ALT2 instruction mode
bool r; //ROM r14 read flag
bool g; //GO flag
bool ov; //overflow flag
bool s; //sign flag
bool cy; //carry flag
bool z; //zero flag
operator unsigned() const {
return (irq << 15) | (b << 12) | (ih << 11) | (il << 10) | (alt2 << 9) | (alt1 << 8)
| (r << 6) | (g << 5) | (ov << 4) | (s << 3) | (cy << 2) | (z << 1);
}
sfr_t& operator=(uint16_t data) {
irq = data & 0x8000;
b = data & 0x1000;
ih = data & 0x0800;
il = data & 0x0400;
alt2 = data & 0x0200;
alt1 = data & 0x0100;
r = data & 0x0040;
g = data & 0x0020;
ov = data & 0x0010;
s = data & 0x0008;
cy = data & 0x0004;
z = data & 0x0002;
return *this;
}
};
struct scmr_t {
unsigned ht;
bool ron;
bool ran;
unsigned md;
operator unsigned() const {
return ((ht >> 1) << 5) | (ron << 4) | (ran << 3) | ((ht & 1) << 2) | (md);
}
scmr_t& operator=(uint8 data) {
ht = (bool)(data & 0x20) << 1;
ht |= (bool)(data & 0x04) << 0;
ron = data & 0x10;
ran = data & 0x08;
md = data & 0x03;
return *this;
}
};
struct por_t {
bool obj;
bool freezehigh;
bool highnibble;
bool dither;
bool transparent;
operator unsigned() const {
return (obj << 4) | (freezehigh << 3) | (highnibble << 2) | (dither << 1) | (transparent);
}
por_t& operator=(uint8 data) {
obj = data & 0x10;
freezehigh = data & 0x08;
highnibble = data & 0x04;
dither = data & 0x02;
transparent = data & 0x01;
return *this;
}
};
struct cfgr_t {
bool irq;
bool ms0;
operator unsigned() const {
return (irq << 7) | (ms0 << 5);
}
cfgr_t& operator=(uint8 data) {
irq = data & 0x80;
ms0 = data & 0x20;
return *this;
}
};
struct regs_t {
uint8 pipeline;
uint16 ramaddr;
reg16_t r[16]; //general purpose registers
sfr_t sfr; //status flag register
uint8 pbr; //program bank register
uint8 rombr; //game pack ROM bank register
bool rambr; //game pack RAM bank register
uint16 cbr; //cache base register
uint8 scbr; //screen base register
scmr_t scmr; //screen mode register
uint8 colr; //color register
por_t por; //plot option register
bool bramr; //back-up RAM register
uint8 vcr; //version code register
cfgr_t cfgr; //config register
bool clsr; //clock select register
unsigned romcl; //clock ticks until romdr is valid
uint8 romdr; //ROM buffer data register
unsigned ramcl; //clock ticks until ramdr is valid
uint16 ramar; //RAM buffer address register
uint8 ramdr; //RAM buffer data register
unsigned sreg, dreg;
reg16_t& sr() { return r[sreg]; } //source register (from)
reg16_t& dr() { return r[dreg]; } //destination register (to)
void reset() {
sfr.b = 0;
sfr.alt1 = 0;
sfr.alt2 = 0;
sreg = 0;
dreg = 0;
}
} regs;
struct cache_t {
uint8 buffer[512];
bool valid[32];
} cache;
struct pixelcache_t {
uint16 offset;
uint8 bitpend;
uint8 data[8];
} pixelcache[2];

View File

@ -0,0 +1,279 @@
#ifdef SUPERFX_CPP
void SuperFX::disassemble_opcode(char *output) {
*output = 0;
if(!regs.sfr.alt2) {
if(!regs.sfr.alt1) {
disassemble_alt0(output);
} else {
disassemble_alt1(output);
}
} else {
if(!regs.sfr.alt1) {
disassemble_alt2(output);
} else {
disassemble_alt3(output);
}
}
unsigned length = strlen(output);
while(length++ < 20) strcat(output, " ");
}
#define case4(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3
#define case6(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5
#define case12(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11
#define case15(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11: case id+12: case id+13: case id+14
#define case16(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11: case id+12: case id+13: case id+14: case id+15
#define op0 regs.pipeline
#define op1 superfxbus.read((regs.pbr << 16) + regs.r[15] + 0)
#define op2 superfxbus.read((regs.pbr << 16) + regs.r[15] + 1)
void SuperFX::disassemble_alt0(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stw (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldw (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "plot"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "color"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "add r%u", op0 & 15); break;
case16(0x60): sprintf(t, "sub r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "and r%u", op0 & 15); break;
case16(0x80): sprintf(t, "mult r%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "asr"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "jmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "fmult"); break;
case16(0xa0): sprintf(t, "ibt r%u,#$%.2x", op0 & 15, op1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib");
case15(0xc1): sprintf(t, "or r%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "getc"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getb"); break;
case16(0xf0): sprintf(t, "iwt r%u,#$%.2x%.2x", op0 & 15, op2, op1); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt1(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stb (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldb (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "rpix"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "cmode"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "adc r%u", op0 & 15); break;
case16(0x60): sprintf(t, "sbc r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "bic r%u", op0 & 15); break;
case16(0x80): sprintf(t, "umult r%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "div2"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "ljmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "lmult"); break;
case16(0xa0): sprintf(t, "lms r%u,(#$%.4x)", op0 & 15, op1 << 1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "xor r%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "getc"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbh"); break;
case16(0xf0): sprintf(t, "lm r%u", op0 & 15); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt2(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stw (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldw (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "plot"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "color"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "add #%u", op0 & 15); break;
case16(0x60): sprintf(t, "sub #%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "and #%u", op0 & 15); break;
case16(0x80): sprintf(t, "mult #%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "asr"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "jmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "fmult"); break;
case16(0xa0): sprintf(t, "sms r%u,(#$%.4x)", op0 & 15, op1 << 1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "or #%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "ramb"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbl"); break;
case16(0xf0): sprintf(t, "sm r%u", op0 & 15); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt3(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stb (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldb (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "rpix"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "cmode"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "adc #%u", op0 & 15); break;
case16(0x60): sprintf(t, "cmp r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "bic #%u", op0 & 15); break;
case16(0x80): sprintf(t, "umult #%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "div2"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "ljmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "lmult"); break;
case16(0xa0): sprintf(t, "lms r%u", op0 & 15); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "xor #%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "romb"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbs"); break;
case16(0xf0): sprintf(t, "lm r%u", op0 & 15); break;
}
strcat(output, t);
}
#undef case4
#undef case6
#undef case12
#undef case15
#undef case16
#undef op0
#undef op1
#undef op2
#endif

View File

@ -0,0 +1,5 @@
void disassemble_opcode(char *output);
void disassemble_alt0(char *output);
void disassemble_alt1(char *output);
void disassemble_alt2(char *output);
void disassemble_alt3(char *output);

View File

@ -0,0 +1,71 @@
#ifdef SUPERFX_CPP
uint8 SuperFX::op_read(uint16 addr) {
uint16 offset = addr - regs.cbr;
if(offset < 512) {
if(cache.valid[offset >> 4] == false) {
unsigned dp = offset & 0xfff0;
unsigned sp = (regs.pbr << 16) + ((regs.cbr + dp) & 0xfff0);
for(unsigned n = 0; n < 16; n++) {
add_clocks(memory_access_speed);
cache.buffer[dp++] = superfxbus.read(sp++);
}
cache.valid[offset >> 4] = true;
} else {
add_clocks(cache_access_speed);
}
return cache.buffer[offset];
}
if(regs.pbr <= 0x5f) {
//$[00-5f]:[0000-ffff] ROM
rombuffer_sync();
add_clocks(memory_access_speed);
return superfxbus.read((regs.pbr << 16) + addr);
} else {
//$[60-7f]:[0000-ffff] RAM
rambuffer_sync();
add_clocks(memory_access_speed);
return superfxbus.read((regs.pbr << 16) + addr);
}
}
uint8 SuperFX::peekpipe() {
uint8 result = regs.pipeline;
regs.pipeline = op_read(regs.r[15]);
r15_modified = false;
return result;
}
uint8 SuperFX::pipe() {
uint8 result = regs.pipeline;
regs.pipeline = op_read(++regs.r[15]);
r15_modified = false;
return result;
}
void SuperFX::cache_flush() {
for(unsigned n = 0; n < 32; n++) cache.valid[n] = false;
}
uint8 SuperFX::cache_mmio_read(uint16 addr) {
addr = (addr + regs.cbr) & 511;
return cache.buffer[addr];
}
void SuperFX::cache_mmio_write(uint16 addr, uint8 data) {
addr = (addr + regs.cbr) & 511;
cache.buffer[addr] = data;
if((addr & 15) == 15) cache.valid[addr >> 4] = true;
}
void SuperFX::memory_reset() {
for(unsigned n = 0; n < 512; n++) cache.buffer[n] = 0x00;
for(unsigned n = 0; n < 32; n++) cache.valid[n] = false;
for(unsigned n = 0; n < 2; n++) {
pixelcache[n].offset = ~0;
pixelcache[n].bitpend = 0x00;
}
}
#endif

View File

@ -0,0 +1,9 @@
uint8 op_read(uint16 addr);
alwaysinline uint8 peekpipe();
alwaysinline uint8 pipe();
void cache_flush();
uint8 cache_mmio_read(uint16 addr);
void cache_mmio_write(uint16 addr, uint8 data);
void memory_reset();

View File

@ -0,0 +1,118 @@
#ifdef SUPERFX_CPP
uint8 SuperFX::mmio_read(unsigned addr) {
scheduler.sync_cpucop();
addr &= 0xffff;
if(addr >= 0x3100 && addr <= 0x32ff) {
return cache_mmio_read(addr - 0x3100);
}
if(addr >= 0x3000 && addr <= 0x301f) {
return regs.r[(addr >> 1) & 15] >> ((addr & 1) << 3);
}
switch(addr) {
case 0x3030: {
return regs.sfr >> 0;
}
case 0x3031: {
uint8 r = regs.sfr >> 8;
regs.sfr.irq = 0;
cpu.regs.irq = 0;
return r;
}
case 0x3034: {
return regs.pbr;
}
case 0x3036: {
return regs.rombr;
}
case 0x303b: {
return regs.vcr;
}
case 0x303c: {
return regs.rambr;
}
case 0x303e: {
return regs.cbr >> 0;
}
case 0x303f: {
return regs.cbr >> 8;
}
}
return 0x00;
}
void SuperFX::mmio_write(unsigned addr, uint8 data) {
scheduler.sync_cpucop();
addr &= 0xffff;
if(addr >= 0x3100 && addr <= 0x32ff) {
return cache_mmio_write(addr - 0x3100, data);
}
if(addr >= 0x3000 && addr <= 0x301f) {
unsigned n = (addr >> 1) & 15;
if((addr & 1) == 0) {
regs.r[n] = (regs.r[n] & 0xff00) | data;
} else {
regs.r[n] = (data << 8) | (regs.r[n] & 0xff);
}
if(addr == 0x301f) regs.sfr.g = 1;
return;
}
switch(addr) {
case 0x3030: {
bool g = regs.sfr.g;
regs.sfr = (regs.sfr & 0xff00) | (data << 0);
if(g == 1 && regs.sfr.g == 0) {
regs.cbr = 0x0000;
cache_flush();
}
} break;
case 0x3031: {
regs.sfr = (data << 8) | (regs.sfr & 0x00ff);
} break;
case 0x3033: {
regs.bramr = data;
} break;
case 0x3034: {
regs.pbr = data & 0x7f;
cache_flush();
} break;
case 0x3037: {
regs.cfgr = data;
update_speed();
} break;
case 0x3038: {
regs.scbr = data;
} break;
case 0x3039: {
regs.clsr = data;
update_speed();
} break;
case 0x303a: {
regs.scmr = data;
} break;
}
}
#endif

View File

@ -0,0 +1,2 @@
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);

Some files were not shown because too many files have changed in this diff Show More