#ifndef __MDFN_MATH_OPS_H #define __MDFN_MATH_OPS_H // Source: http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 // Rounds up to the nearest power of 2. static INLINE uint64 round_up_pow2(uint64 v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v++; v += (v == 0); return(v); } static INLINE uint32 uilog2(uint32 v) { // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn static const uint32 MultiplyDeBruijnBitPosition[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; v |= v >> 1; // first round down to one less than a power of 2 v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return MultiplyDeBruijnBitPosition[(uint32_t)(v * 0x07C4ACDDU) >> 27]; } // Some compilers' optimizers and some platforms might fubar the generated code from these macros, // so some tests are run in...tests.cpp #define sign_8_to_s16(_value) ((int16)(int8)(_value)) #define sign_9_to_s16(_value) (((int16)((unsigned int)(_value) << 7)) >> 7) #define sign_10_to_s16(_value) (((int16)((uint32)(_value) << 6)) >> 6) #define sign_11_to_s16(_value) (((int16)((uint32)(_value) << 5)) >> 5) #define sign_12_to_s16(_value) (((int16)((uint32)(_value) << 4)) >> 4) #define sign_13_to_s16(_value) (((int16)((uint32)(_value) << 3)) >> 3) #define sign_14_to_s16(_value) (((int16)((uint32)(_value) << 2)) >> 2) #define sign_15_to_s16(_value) (((int16)((uint32)(_value) << 1)) >> 1) // This obviously won't convert higher-than-32 bit numbers to signed 32-bit ;) // Also, this shouldn't be used for 8-bit and 16-bit signed numbers, since you can // convert those faster with typecasts... #define sign_x_to_s32(_bits, _value) (((int32)((uint32)(_value) << (32 - _bits))) >> (32 - _bits)) #endif