beetle-pce-fast-libretro/mednafen/lynx/memmap.cpp

223 lines
6.2 KiB
C++

//
// Copyright (c) 2004 K. Wilkins
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from
// the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
//////////////////////////////////////////////////////////////////////////////
// Handy - An Atari Lynx Emulator //
// Copyright (c) 1996,1997 //
// K. Wilkins //
//////////////////////////////////////////////////////////////////////////////
// Lynx memory map class //
//////////////////////////////////////////////////////////////////////////////
// //
// This class provides the register $FFF9 functionality to the emulator, it //
// sets which devices can be seen by the CPU. //
// //
// K. Wilkins //
// August 1997 //
// //
//////////////////////////////////////////////////////////////////////////////
// Revision History: //
// ----------------- //
// //
// 01Aug1997 KW Document header added & class documented. //
// //
//////////////////////////////////////////////////////////////////////////////
#define MEMMAP_CPP
//#include <crtdbg.h>
//#define TRACE_MEMMAP
#include "system.h"
#include "memmap.h"
#include <string.h>
// IGNORE THIS TEXT, now overridden by new system
//
// We will hold 16 different memory maps for the "top" area which are selected
// on the basis of mMemMap->mSelector:
//
// Code Vect ROM Mikie Susie
//----------------------------------------------------
// (Default) 0000 V R M S
// 0001 V R M RAM
// 0001 V R RAM S
// 0011 V R RAM RAM
// 0100 V RAM M S
// ..
// ..
// 1111 RAM RAM RAM RAM
//
// Get it.....
//
// We can then index with mMemoryHandlers[mMemMap->mSelector][addr] for speed
//
CMemMap::CMemMap(CSystem& parent)
:mSystem(parent)
{
Reset();
}
void CMemMap::Reset(void)
{
// Initialise ALL pointers to RAM then overload to correct
for(int loop=0;loop<SYSTEM_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRam;
// Special case for ourselves.
mSystem.mMemoryHandlers[0xFFF8]=mSystem.mRam;
mSystem.mMemoryHandlers[0xFFF9]=mSystem.mMemMap;
mSusieEnabled=-1;
mMikieEnabled=-1;
mRomEnabled=-1;
mVectorsEnabled=-1;
// Initialise everything correctly
Poke(0,0);
}
INLINE void CMemMap::Poke(uint32 addr, uint8 data)
{
TRACE_MEMMAP1("Poke() - Data %02x",data);
int newstate,loop;
// FC00-FCFF Susie area
newstate=(data&0x01)?FALSE:TRUE;
if(newstate!=mSusieEnabled)
{
mSusieEnabled=newstate;
if(mSusieEnabled)
{
for(loop=SUSIE_START;loop<SUSIE_START+SUSIE_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mSusie;
}
else
{
for(loop=SUSIE_START;loop<SUSIE_START+SUSIE_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRam;
}
}
// FD00-FCFF Mikie area
newstate=(data&0x02)?FALSE:TRUE;
if(newstate!=mMikieEnabled)
{
mMikieEnabled=newstate;
if(mMikieEnabled)
{
for(loop=MIKIE_START;loop<MIKIE_START+MIKIE_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mMikie;
}
else
{
for(loop=MIKIE_START;loop<MIKIE_START+MIKIE_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRam;
}
}
// FE00-FFF7 Rom area
newstate=(data&0x04)?FALSE:TRUE;
if(newstate!=mRomEnabled)
{
mRomEnabled=newstate;
if(mRomEnabled)
{
for(loop=BROM_START;loop<BROM_START+(BROM_SIZE-8);loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRom;
}
else
{
for(loop=BROM_START;loop<BROM_START+(BROM_SIZE-8);loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRam;
}
}
// FFFA-FFFF Vector area - Overload ROM space
newstate=(data&0x08)?FALSE:TRUE;
if(newstate!=mVectorsEnabled)
{
mVectorsEnabled=newstate;
if(mVectorsEnabled)
{
for(loop=VECTOR_START;loop<VECTOR_START+VECTOR_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRom;
}
else
{
for(loop=VECTOR_START;loop<VECTOR_START+VECTOR_SIZE;loop++) mSystem.mMemoryHandlers[loop]=mSystem.mRam;
}
}
}
INLINE uint8 CMemMap::Peek(uint32 addr)
{
uint8 retval=0;
retval+=(mSusieEnabled)?0:0x01;
retval+=(mMikieEnabled)?0:0x02;
retval+=(mRomEnabled)?0:0x04;
retval+=(mVectorsEnabled)?0:0x08;
TRACE_MEMMAP1("Peek() - Data %02x",retval);
return retval;
}
int CMemMap::StateAction(StateMem *sm, int load, int data_only)
{
SFORMAT MemMapRegs[] =
{
SFVAR(mMikieEnabled),
SFVAR(mSusieEnabled),
SFVAR(mRomEnabled),
SFVAR(mVectorsEnabled),
SFEND
};
std::vector <SSDescriptor> love;
love.push_back(SSDescriptor(MemMapRegs, "MMAP"));
int ret = MDFNSS_StateAction(sm, load, data_only, love);
if(load)
{
// The peek will give us the correct value to put back
uint8 mystate=Peek(0);
// Now set to un-initialised so the poke will set correctly
mSusieEnabled=-1;
mMikieEnabled=-1;
mRomEnabled=-1;
mVectorsEnabled=-1;
// Set banks correctly
Poke(0,mystate);
}
return ret;
}
//END OF FILE