beetle-pce-fast-libretro/deps/crypto/sha1.c
2017-08-07 19:40:55 +02:00

150 lines
3.8 KiB
C

/*********************************************************************
* Filename: sha1.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA1 hashing algorithm.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <string.h>
#include "sha1.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
/*********************** FUNCTION DEFINITIONS ***********************/
void sha1_transform(SHA1_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, i, j, t, m[80];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
for ( ; i < 80; ++i) {
m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
m[i] = (m[i] << 1) | (m[i] >> 31);
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
for (i = 0; i < 20; ++i) {
t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 40; ++i) {
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 60; ++i) {
t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 80; ++i) {
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
}
void sha1_init(SHA1_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xc3d2e1f0;
ctx->k[0] = 0x5a827999;
ctx->k[1] = 0x6ed9eba1;
ctx->k[2] = 0x8f1bbcdc;
ctx->k[3] = 0xca62c1d6;
}
void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len)
{
size_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha1_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha1_final(SHA1_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha1_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha1_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
}
}