beetle-pce-fast-libretro/mednafen/gba/bios.cpp
2012-11-27 04:44:20 +01:00

1165 lines
28 KiB
C++

// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2005 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "GBA.h"
#include "bios.h"
#include "GBAinline.h"
#include "Globals.h"
#include <math.h>
namespace MDFN_IEN_GBA
{
int16 sineTable[256] = {
(int16)0x0000, (int16)0x0192, (int16)0x0323, (int16)0x04B5, (int16)0x0645, (int16)0x07D5, (int16)0x0964, (int16)0x0AF1,
(int16)0x0C7C, (int16)0x0E05, (int16)0x0F8C, (int16)0x1111, (int16)0x1294, (int16)0x1413, (int16)0x158F, (int16)0x1708,
(int16)0x187D, (int16)0x19EF, (int16)0x1B5D, (int16)0x1CC6, (int16)0x1E2B, (int16)0x1F8B, (int16)0x20E7, (int16)0x223D,
(int16)0x238E, (int16)0x24DA, (int16)0x261F, (int16)0x275F, (int16)0x2899, (int16)0x29CD, (int16)0x2AFA, (int16)0x2C21,
(int16)0x2D41, (int16)0x2E5A, (int16)0x2F6B, (int16)0x3076, (int16)0x3179, (int16)0x3274, (int16)0x3367, (int16)0x3453,
(int16)0x3536, (int16)0x3612, (int16)0x36E5, (int16)0x37AF, (int16)0x3871, (int16)0x392A, (int16)0x39DA, (int16)0x3A82,
(int16)0x3B20, (int16)0x3BB6, (int16)0x3C42, (int16)0x3CC5, (int16)0x3D3E, (int16)0x3DAE, (int16)0x3E14, (int16)0x3E71,
(int16)0x3EC5, (int16)0x3F0E, (int16)0x3F4E, (int16)0x3F84, (int16)0x3FB1, (int16)0x3FD3, (int16)0x3FEC, (int16)0x3FFB,
(int16)0x4000, (int16)0x3FFB, (int16)0x3FEC, (int16)0x3FD3, (int16)0x3FB1, (int16)0x3F84, (int16)0x3F4E, (int16)0x3F0E,
(int16)0x3EC5, (int16)0x3E71, (int16)0x3E14, (int16)0x3DAE, (int16)0x3D3E, (int16)0x3CC5, (int16)0x3C42, (int16)0x3BB6,
(int16)0x3B20, (int16)0x3A82, (int16)0x39DA, (int16)0x392A, (int16)0x3871, (int16)0x37AF, (int16)0x36E5, (int16)0x3612,
(int16)0x3536, (int16)0x3453, (int16)0x3367, (int16)0x3274, (int16)0x3179, (int16)0x3076, (int16)0x2F6B, (int16)0x2E5A,
(int16)0x2D41, (int16)0x2C21, (int16)0x2AFA, (int16)0x29CD, (int16)0x2899, (int16)0x275F, (int16)0x261F, (int16)0x24DA,
(int16)0x238E, (int16)0x223D, (int16)0x20E7, (int16)0x1F8B, (int16)0x1E2B, (int16)0x1CC6, (int16)0x1B5D, (int16)0x19EF,
(int16)0x187D, (int16)0x1708, (int16)0x158F, (int16)0x1413, (int16)0x1294, (int16)0x1111, (int16)0x0F8C, (int16)0x0E05,
(int16)0x0C7C, (int16)0x0AF1, (int16)0x0964, (int16)0x07D5, (int16)0x0645, (int16)0x04B5, (int16)0x0323, (int16)0x0192,
(int16)0x0000, (int16)0xFE6E, (int16)0xFCDD, (int16)0xFB4B, (int16)0xF9BB, (int16)0xF82B, (int16)0xF69C, (int16)0xF50F,
(int16)0xF384, (int16)0xF1FB, (int16)0xF074, (int16)0xEEEF, (int16)0xED6C, (int16)0xEBED, (int16)0xEA71, (int16)0xE8F8,
(int16)0xE783, (int16)0xE611, (int16)0xE4A3, (int16)0xE33A, (int16)0xE1D5, (int16)0xE075, (int16)0xDF19, (int16)0xDDC3,
(int16)0xDC72, (int16)0xDB26, (int16)0xD9E1, (int16)0xD8A1, (int16)0xD767, (int16)0xD633, (int16)0xD506, (int16)0xD3DF,
(int16)0xD2BF, (int16)0xD1A6, (int16)0xD095, (int16)0xCF8A, (int16)0xCE87, (int16)0xCD8C, (int16)0xCC99, (int16)0xCBAD,
(int16)0xCACA, (int16)0xC9EE, (int16)0xC91B, (int16)0xC851, (int16)0xC78F, (int16)0xC6D6, (int16)0xC626, (int16)0xC57E,
(int16)0xC4E0, (int16)0xC44A, (int16)0xC3BE, (int16)0xC33B, (int16)0xC2C2, (int16)0xC252, (int16)0xC1EC, (int16)0xC18F,
(int16)0xC13B, (int16)0xC0F2, (int16)0xC0B2, (int16)0xC07C, (int16)0xC04F, (int16)0xC02D, (int16)0xC014, (int16)0xC005,
(int16)0xC000, (int16)0xC005, (int16)0xC014, (int16)0xC02D, (int16)0xC04F, (int16)0xC07C, (int16)0xC0B2, (int16)0xC0F2,
(int16)0xC13B, (int16)0xC18F, (int16)0xC1EC, (int16)0xC252, (int16)0xC2C2, (int16)0xC33B, (int16)0xC3BE, (int16)0xC44A,
(int16)0xC4E0, (int16)0xC57E, (int16)0xC626, (int16)0xC6D6, (int16)0xC78F, (int16)0xC851, (int16)0xC91B, (int16)0xC9EE,
(int16)0xCACA, (int16)0xCBAD, (int16)0xCC99, (int16)0xCD8C, (int16)0xCE87, (int16)0xCF8A, (int16)0xD095, (int16)0xD1A6,
(int16)0xD2BF, (int16)0xD3DF, (int16)0xD506, (int16)0xD633, (int16)0xD767, (int16)0xD8A1, (int16)0xD9E1, (int16)0xDB26,
(int16)0xDC72, (int16)0xDDC3, (int16)0xDF19, (int16)0xE075, (int16)0xE1D5, (int16)0xE33A, (int16)0xE4A3, (int16)0xE611,
(int16)0xE783, (int16)0xE8F8, (int16)0xEA71, (int16)0xEBED, (int16)0xED6C, (int16)0xEEEF, (int16)0xF074, (int16)0xF1FB,
(int16)0xF384, (int16)0xF50F, (int16)0xF69C, (int16)0xF82B, (int16)0xF9BB, (int16)0xFB4B, (int16)0xFCDD, (int16)0xFE6E
};
void BIOS_ArcTan()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("ArcTan: %08x (VCOUNT=%2d)\n",
reg[0].I,
VCOUNT);
}
#endif
int32 a = -(((int32)(reg[0].I*reg[0].I)) >> 14);
int32 b = ((0xA9 * a) >> 14) + 0x390;
b = ((b * a) >> 14) + 0x91C;
b = ((b * a) >> 14) + 0xFB6;
b = ((b * a) >> 14) + 0x16AA;
b = ((b * a) >> 14) + 0x2081;
b = ((b * a) >> 14) + 0x3651;
b = ((b * a) >> 14) + 0xA2F9;
a = ((int32)reg[0].I * b) >> 16;
reg[0].I = a;
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("ArcTan: return=%08x\n",
reg[0].I);
}
#endif
}
void BIOS_ArcTan2()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("ArcTan2: %08x,%08x (VCOUNT=%2d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
int32 x = reg[0].I;
int32 y = reg[1].I;
uint32 res = 0;
if (y == 0) {
res = ((x>>16) & 0x8000);
} else {
if (x == 0) {
res = ((y>>16) & 0x8000) + 0x4000;
} else {
if ((abs(x) > abs(y)) || ((abs(x) == abs(y)) && (!((x<0) && (y<0))))) {
reg[1].I = x;
reg[0].I = y << 14;
BIOS_Div();
BIOS_ArcTan();
if (x < 0)
res = 0x8000 + reg[0].I;
else
res = (((y>>16) & 0x8000)<<1) + reg[0].I;
} else {
reg[0].I = x << 14;
BIOS_Div();
BIOS_ArcTan();
res = (0x4000 + ((y>>16) & 0x8000)) - reg[0].I;
}
}
}
reg[0].I = res;
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("ArcTan2: return=%08x\n",
reg[0].I);
}
#endif
}
void BIOS_BitUnPack()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("BitUnPack: %08x,%08x,%08x (VCOUNT=%2d)\n",
reg[0].I,
reg[1].I,
reg[2].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = reg[2].I;
int len = CPUReadHalfWord(header);
// check address
if(((source & 0xe000000) == 0) || ((source + len) & 0xe000000) == 0)
return;
int bits = CPUReadByte(header+2);
int revbits = 8 - bits;
// uint32 value = 0;
uint32 base = CPUReadMemory(header+4);
bool addBase = (base & 0x80000000) ? true : false;
base &= 0x7fffffff;
int dataSize = CPUReadByte(header+3);
int data = 0;
int bitwritecount = 0;
while(1) {
len -= 1;
if(len < 0)
break;
int mask = 0xff >> revbits;
uint8 b = CPUReadByte(source);
source++;
int bitcount = 0;
while(1) {
if(bitcount >= 8)
break;
uint32 d = b & mask;
uint32 temp = d >> bitcount;
if(d || addBase) {
temp += base;
}
data |= temp << bitwritecount;
bitwritecount += dataSize;
if(bitwritecount >= 32) {
CPUWriteMemory(dest, data);
dest += 4;
data = 0;
bitwritecount = 0;
}
mask <<= bits;
bitcount += bits;
}
}
}
void BIOS_BgAffineSet()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("BgAffineSet: %08x,%08x,%08x (VCOUNT=%2d)\n",
reg[0].I,
reg[1].I,
reg[2].I,
VCOUNT);
}
#endif
uint32 src = reg[0].I;
uint32 dest = reg[1].I;
int num = reg[2].I;
for(int i = 0; i < num; i++) {
int32 cx = CPUReadMemory(src);
src+=4;
int32 cy = CPUReadMemory(src);
src+=4;
int16 dispx = CPUReadHalfWord(src);
src+=2;
int16 dispy = CPUReadHalfWord(src);
src+=2;
int16 rx = CPUReadHalfWord(src);
src+=2;
int16 ry = CPUReadHalfWord(src);
src+=2;
uint16 theta = CPUReadHalfWord(src)>>8;
src+=4; // keep structure alignment
int32 a = sineTable[(theta+0x40)&255];
int32 b = sineTable[theta];
int16 dx = (rx * a)>>14;
int16 dmx = (rx * b)>>14;
int16 dy = (ry * b)>>14;
int16 dmy = (ry * a)>>14;
CPUWriteHalfWord(dest, dx);
dest += 2;
CPUWriteHalfWord(dest, -dmx);
dest += 2;
CPUWriteHalfWord(dest, dy);
dest += 2;
CPUWriteHalfWord(dest, dmy);
dest += 2;
int32 startx = cx - dx * dispx + dmx * dispy;
int32 starty = cy - dy * dispx - dmy * dispy;
CPUWriteMemory(dest, startx);
dest += 4;
CPUWriteMemory(dest, starty);
dest += 4;
}
}
void BIOS_CpuSet()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("CpuSet: 0x%08x,0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I, reg[1].I,
reg[2].I, VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 cnt = reg[2].I;
if(((source & 0xe000000) == 0) ||
((source + (((cnt << 11)>>9) & 0x1fffff)) & 0xe000000) == 0)
return;
int count = cnt & 0x1FFFFF;
// 32-bit ?
if((cnt >> 26) & 1) {
// needed for 32-bit mode!
source &= 0xFFFFFFFC;
dest &= 0xFFFFFFFC;
// fill ?
if((cnt >> 24) & 1) {
uint32 value = (source>0x0EFFFFFF ? 0x1CAD1CAD : CPUReadMemory(source));
while(count) {
CPUWriteMemory(dest, value);
dest += 4;
count--;
}
} else {
// copy
while(count) {
CPUWriteMemory(dest, (source>0x0EFFFFFF ? 0x1CAD1CAD : CPUReadMemory(source)));
source += 4;
dest += 4;
count--;
}
}
} else {
// 16-bit fill?
if((cnt >> 24) & 1) {
uint16 value = (source>0x0EFFFFFF ? 0x1CAD : CPUReadHalfWord(source));
while(count) {
CPUWriteHalfWord(dest, value);
dest += 2;
count--;
}
} else {
// copy
while(count) {
CPUWriteHalfWord(dest, (source>0x0EFFFFFF ? 0x1CAD : CPUReadHalfWord(source)));
source += 2;
dest += 2;
count--;
}
}
}
}
void BIOS_CpuFastSet()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("CpuFastSet: 0x%08x,0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I, reg[1].I,
reg[2].I, VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 cnt = reg[2].I;
if(((source & 0xe000000) == 0) ||
((source + (((cnt << 11)>>9) & 0x1fffff)) & 0xe000000) == 0)
return;
// needed for 32-bit mode!
source &= 0xFFFFFFFC;
dest &= 0xFFFFFFFC;
int count = cnt & 0x1FFFFF;
// fill?
if((cnt >> 24) & 1) {
while(count > 0) {
// BIOS always transfers 32 bytes at a time
uint32 value = (source>0x0EFFFFFF ? 0xBAFFFFFB : CPUReadMemory(source));
for(int i = 0; i < 8; i++) {
CPUWriteMemory(dest, value);
dest += 4;
}
count -= 8;
}
} else {
// copy
while(count > 0) {
// BIOS always transfers 32 bytes at a time
for(int i = 0; i < 8; i++) {
CPUWriteMemory(dest, (source>0x0EFFFFFF ? 0xBAFFFFFB :CPUReadMemory(source)));
source += 4;
dest += 4;
}
count -= 8;
}
}
}
void BIOS_Diff8bitUnFilterWram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Diff8bitUnFilterWram: 0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I,
reg[1].I, VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
(((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0))
return;
int len = header >> 8;
uint8 data = CPUReadByte(source++);
CPUWriteByte(dest++, data);
len--;
while(len > 0) {
uint8 diff = CPUReadByte(source++);
data += diff;
CPUWriteByte(dest++, data);
len--;
}
}
void BIOS_Diff8bitUnFilterVram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Diff8bitUnFilterVram: 0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I,
reg[1].I, VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int len = header >> 8;
uint8 data = CPUReadByte(source++);
uint16 writeData = data;
int shift = 8;
int bytes = 1;
while(len >= 2) {
uint8 diff = CPUReadByte(source++);
data += diff;
writeData |= (data << shift);
bytes++;
shift += 8;
if(bytes == 2) {
CPUWriteHalfWord(dest, writeData);
dest += 2;
len -= 2;
bytes = 0;
writeData = 0;
shift = 0;
}
}
}
void BIOS_Diff16bitUnFilter()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Diff16bitUnFilter: 0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I,
reg[1].I, VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int len = header >> 8;
uint16 data = CPUReadHalfWord(source);
source += 2;
CPUWriteHalfWord(dest, data);
dest += 2;
len -= 2;
while(len >= 2) {
uint16 diff = CPUReadHalfWord(source);
source += 2;
data += diff;
CPUWriteHalfWord(dest, data);
dest += 2;
len -= 2;
}
}
void BIOS_Div()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Div: 0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
int number = reg[0].I;
int denom = reg[1].I;
if(denom != 0) {
reg[0].I = number / denom;
reg[1].I = number % denom;
int32 temp = (int32)reg[0].I;
reg[3].I = temp < 0 ? (uint32)-temp : (uint32)temp;
}
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Div: return=0x%08x,0x%08x,0x%08x\n",
reg[0].I,
reg[1].I,
reg[3].I);
}
#endif
}
void BIOS_DivARM()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("DivARM: 0x%08x, (VCOUNT=%d)\n",
reg[0].I,
VCOUNT);
}
#endif
uint32 temp = reg[0].I;
reg[0].I = reg[1].I;
reg[1].I = temp;
BIOS_Div();
}
void BIOS_HuffUnComp()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("HuffUnComp: 0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
uint8 treeSize = CPUReadByte(source++);
uint32 treeStart = source;
source += ((treeSize+1)<<1)-1; // minus because we already skipped one byte
int len = header >> 8;
uint32 mask = 0x80000000;
uint32 data = CPUReadMemory(source);
source += 4;
int pos = 0;
uint8 rootNode = CPUReadByte(treeStart);
uint8 currentNode = rootNode;
bool writeData = false;
int byteShift = 0;
int byteCount = 0;
uint32 writeValue = 0;
if((header & 0x0F) == 8) {
while(len > 0) {
// take left
if(pos == 0)
pos++;
else
pos += (((currentNode & 0x3F)+1)<<1);
if(data & mask) {
// right
if(currentNode & 0x40)
writeData = true;
currentNode = CPUReadByte(treeStart+pos+1);
} else {
// left
if(currentNode & 0x80)
writeData = true;
currentNode = CPUReadByte(treeStart+pos);
}
if(writeData) {
writeValue |= (currentNode << byteShift);
byteCount++;
byteShift += 8;
pos = 0;
currentNode = rootNode;
writeData = false;
if(byteCount == 4) {
byteCount = 0;
byteShift = 0;
CPUWriteMemory(dest, writeValue);
writeValue = 0;
dest += 4;
len -= 4;
}
}
mask >>= 1;
if(mask == 0) {
mask = 0x80000000;
data = CPUReadMemory(source);
source += 4;
}
}
} else {
int halfLen = 0;
int value = 0;
while(len > 0) {
// take left
if(pos == 0)
pos++;
else
pos += (((currentNode & 0x3F)+1)<<1);
if((data & mask)) {
// right
if(currentNode & 0x40)
writeData = true;
currentNode = CPUReadByte(treeStart+pos+1);
} else {
// left
if(currentNode & 0x80)
writeData = true;
currentNode = CPUReadByte(treeStart+pos);
}
if(writeData) {
if(halfLen == 0)
value |= currentNode;
else
value |= (currentNode<<4);
halfLen += 4;
if(halfLen == 8) {
writeValue |= (value << byteShift);
byteCount++;
byteShift += 8;
halfLen = 0;
value = 0;
if(byteCount == 4) {
byteCount = 0;
byteShift = 0;
CPUWriteMemory(dest, writeValue);
dest += 4;
writeValue = 0;
len -= 4;
}
}
pos = 0;
currentNode = rootNode;
writeData = false;
}
mask >>= 1;
if(mask == 0) {
mask = 0x80000000;
data = CPUReadMemory(source);
source += 4;
}
}
}
}
void BIOS_LZ77UnCompVram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("LZ77UnCompVram: 0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int byteCount = 0;
int byteShift = 0;
uint32 writeValue = 0;
int len = header >> 8;
while(len > 0) {
uint8 d = CPUReadByte(source++);
if(d) {
for(int i = 0; i < 8; i++) {
if(d & 0x80) {
uint16 data = CPUReadByte(source++) << 8;
data |= CPUReadByte(source++);
int length = (data >> 12) + 3;
int offset = (data & 0x0FFF);
uint32 windowOffset = dest + byteCount - offset - 1;
for(int j = 0; j < length; j++) {
writeValue |= (CPUReadByte(windowOffset++) << byteShift);
byteShift += 8;
byteCount++;
if(byteCount == 2) {
CPUWriteHalfWord(dest, writeValue);
dest += 2;
byteCount = 0;
byteShift = 0;
writeValue = 0;
}
len--;
if(len == 0)
return;
}
} else {
writeValue |= (CPUReadByte(source++) << byteShift);
byteShift += 8;
byteCount++;
if(byteCount == 2) {
CPUWriteHalfWord(dest, writeValue);
dest += 2;
byteCount = 0;
byteShift = 0;
writeValue = 0;
}
len--;
if(len == 0)
return;
}
d <<= 1;
}
} else {
for(int i = 0; i < 8; i++) {
writeValue |= (CPUReadByte(source++) << byteShift);
byteShift += 8;
byteCount++;
if(byteCount == 2) {
CPUWriteHalfWord(dest, writeValue);
dest += 2;
byteShift = 0;
byteCount = 0;
writeValue = 0;
}
len--;
if(len == 0)
return;
}
}
}
}
void BIOS_LZ77UnCompWram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("LZ77UnCompWram: 0x%08x,0x%08x (VCOUNT=%d)\n", reg[0].I, reg[1].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int len = header >> 8;
while(len > 0) {
uint8 d = CPUReadByte(source++);
if(d) {
for(int i = 0; i < 8; i++) {
if(d & 0x80) {
uint16 data = CPUReadByte(source++) << 8;
data |= CPUReadByte(source++);
int length = (data >> 12) + 3;
int offset = (data & 0x0FFF);
uint32 windowOffset = dest - offset - 1;
for(int j = 0; j < length; j++) {
CPUWriteByte(dest++, CPUReadByte(windowOffset++));
len--;
if(len == 0)
return;
}
} else {
CPUWriteByte(dest++, CPUReadByte(source++));
len--;
if(len == 0)
return;
}
d <<= 1;
}
} else {
for(int i = 0; i < 8; i++) {
CPUWriteByte(dest++, CPUReadByte(source++));
len--;
if(len == 0)
return;
}
}
}
}
void BIOS_ObjAffineSet()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("ObjAffineSet: 0x%08x,0x%08x,0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
reg[2].I,
reg[3].I,
VCOUNT);
}
#endif
uint32 src = reg[0].I;
uint32 dest = reg[1].I;
int num = reg[2].I;
int offset = reg[3].I;
for(int i = 0; i < num; i++) {
int16 rx = CPUReadHalfWord(src);
src+=2;
int16 ry = CPUReadHalfWord(src);
src+=2;
uint16 theta = CPUReadHalfWord(src)>>8;
src+=4; // keep structure alignment
int32 a = (int32)sineTable[(theta+0x40)&255];
int32 b = (int32)sineTable[theta];
int16 dx = ((int32)rx * a)>>14;
int16 dmx = ((int32)rx * b)>>14;
int16 dy = ((int32)ry * b)>>14;
int16 dmy = ((int32)ry * a)>>14;
CPUWriteHalfWord(dest, dx);
dest += offset;
CPUWriteHalfWord(dest, -dmx);
dest += offset;
CPUWriteHalfWord(dest, dy);
dest += offset;
CPUWriteHalfWord(dest, dmy);
dest += offset;
}
}
void BIOS_RegisterRamReset(uint32 flags)
{
// no need to trace here. this is only called directly from GBA.cpp
// to emulate bios initialization
CPUUpdateRegister(0x0, 0x80);
if(flags) {
if(flags & 0x01) {
// clear work RAM
memset(workRAM, 0, 0x40000);
}
if(flags & 0x02) {
// clear internal RAM
memset(internalRAM, 0, 0x7e00); // don't clear 0x7e00-0x7fff
}
if(flags & 0x04) {
// clear palette RAM
memset(paletteRAM, 0, 0x400);
}
if(flags & 0x08) {
// clear VRAM
memset(vram, 0, 0x18000);
}
if(flags & 0x10) {
// clean OAM
memset(oam, 0, 0x400);
}
if(flags & 0x80) {
int i;
for(i = 0; i < 0x10; i++)
CPUUpdateRegister(0x200+i*2, 0);
for(i = 0; i < 0xF; i++)
CPUUpdateRegister(0x4+i*2, 0);
for(i = 0; i < 0x20; i++)
CPUUpdateRegister(0x20+i*2, 0);
for(i = 0; i < 0x18; i++)
CPUUpdateRegister(0xb0+i*2, 0);
CPUUpdateRegister(0x130, 0);
CPUUpdateRegister(0x20, 0x100);
CPUUpdateRegister(0x30, 0x100);
CPUUpdateRegister(0x26, 0x100);
CPUUpdateRegister(0x36, 0x100);
}
if(flags & 0x20) {
int i;
for(i = 0; i < 8; i++)
CPUUpdateRegister(0x110+i*2, 0);
CPUUpdateRegister(0x134, 0x8000);
for(i = 0; i < 7; i++)
CPUUpdateRegister(0x140+i*2, 0);
}
if(flags & 0x40) {
int i;
CPUWriteByte(0x4000084, 0);
CPUWriteByte(0x4000084, 0x80);
CPUWriteMemory(0x4000080, 0x880e0000);
CPUUpdateRegister(0x88, CPUReadHalfWord(0x4000088)&0x3ff);
CPUWriteByte(0x4000070, 0x70);
for(i = 0; i < 8; i++)
CPUUpdateRegister(0x90+i*2, 0);
CPUWriteByte(0x4000070, 0);
for(i = 0; i < 8; i++)
CPUUpdateRegister(0x90+i*2, 0);
CPUWriteByte(0x4000084, 0);
}
}
}
void BIOS_RegisterRamReset()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("RegisterRamReset: 0x%08x (VCOUNT=%d)\n",
reg[0].I,
VCOUNT);
}
#endif
BIOS_RegisterRamReset(reg[0].I);
}
void BIOS_RLUnCompVram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("RLUnCompVram: 0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source & 0xFFFFFFFC);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int len = header >> 8;
int byteCount = 0;
int byteShift = 0;
uint32 writeValue = 0;
while(len > 0) {
uint8 d = CPUReadByte(source++);
int l = d & 0x7F;
if(d & 0x80) {
uint8 data = CPUReadByte(source++);
l += 3;
for(int i = 0;i < l; i++) {
writeValue |= (data << byteShift);
byteShift += 8;
byteCount++;
if(byteCount == 2) {
CPUWriteHalfWord(dest, writeValue);
dest += 2;
byteCount = 0;
byteShift = 0;
writeValue = 0;
}
len--;
if(len == 0)
return;
}
} else {
l++;
for(int i = 0; i < l; i++) {
writeValue |= (CPUReadByte(source++) << byteShift);
byteShift += 8;
byteCount++;
if(byteCount == 2) {
CPUWriteHalfWord(dest, writeValue);
dest += 2;
byteCount = 0;
byteShift = 0;
writeValue = 0;
}
len--;
if(len == 0)
return;
}
}
}
}
void BIOS_RLUnCompWram()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("RLUnCompWram: 0x%08x,0x%08x (VCOUNT=%d)\n",
reg[0].I,
reg[1].I,
VCOUNT);
}
#endif
uint32 source = reg[0].I;
uint32 dest = reg[1].I;
uint32 header = CPUReadMemory(source & 0xFFFFFFFC);
source += 4;
if(((source & 0xe000000) == 0) ||
((source + ((header >> 8) & 0x1fffff)) & 0xe000000) == 0)
return;
int len = header >> 8;
while(len > 0) {
uint8 d = CPUReadByte(source++);
int l = d & 0x7F;
if(d & 0x80) {
uint8 data = CPUReadByte(source++);
l += 3;
for(int i = 0;i < l; i++) {
CPUWriteByte(dest++, data);
len--;
if(len == 0)
return;
}
} else {
l++;
for(int i = 0; i < l; i++) {
CPUWriteByte(dest++, CPUReadByte(source++));
len--;
if(len == 0)
return;
}
}
}
}
void BIOS_SoftReset()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("SoftReset: (VCOUNT=%d)\n", VCOUNT);
}
#endif
armState = true;
armMode = 0x1F;
armIrqEnable = false;
C_FLAG = V_FLAG = Z_FLAG = false;
N_FLAG = 0;
reg[13].I = 0x03007F00;
reg[14].I = 0x00000000;
reg[16].I = 0x00000000;
reg[R13_IRQ].I = 0x03007FA0;
reg[R14_IRQ].I = 0x00000000;
reg[SPSR_IRQ].I = 0x00000000;
reg[R13_SVC].I = 0x03007FE0;
reg[R14_SVC].I = 0x00000000;
reg[SPSR_SVC].I = 0x00000000;
uint8 b = internalRAM[0x7ffa];
memset(&internalRAM[0x7e00], 0, 0x200);
if(b) {
armNextPC = 0x02000000;
reg[15].I = 0x02000004;
} else {
armNextPC = 0x08000000;
reg[15].I = 0x08000004;
}
}
void BIOS_Sqrt()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Sqrt: %08x (VCOUNT=%2d)\n",
reg[0].I,
VCOUNT);
}
#endif
reg[0].I = (uint32)sqrt((double)reg[0].I);
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("Sqrt: return=%08x\n",
reg[0].I);
}
#endif
}
void BIOS_MidiKey2Freq()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("MidiKey2Freq: WaveData=%08x mk=%08x fp=%08x\n",
reg[0].I,
reg[1].I,
reg[2].I);
}
#endif
int freq = CPUReadMemory(reg[0].I+4);
double tmp;
tmp = ((double)(180 - reg[1].I)) - ((double)reg[2].I / 256.f);
tmp = pow((double)2.f, tmp / 12.f);
reg[0].I = (int)((double)freq / tmp);
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("MidiKey2Freq: return %08x\n",
reg[0].I);
}
#endif
}
void BIOS_SndDriverJmpTableCopy()
{
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_SWI) {
log("SndDriverJmpTableCopy: dest=%08x\n",
reg[0].I);
}
#endif
for(int i = 0; i < 0x24; i++) {
CPUWriteMemory(reg[0].I, 0x9c);
reg[0].I += 4;
}
}
}