beetle-psx-libretro/mednafen/mednafen-endian.h
2018-02-21 23:45:25 +01:00

559 lines
13 KiB
C++

/******************************************************************************/
/* Mednafen - Multi-system Emulator */
/******************************************************************************/
/* endian.h:
** Copyright (C) 2006-2017 Mednafen Team
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation; either version 2
** of the License, or (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software Foundation, Inc.,
** 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __MDFN_ENDIAN_H
#define __MDFN_ENDIAN_H
void Endian_A16_Swap(void *src, uint32 nelements);
void Endian_A32_Swap(void *src, uint32 nelements);
void Endian_A64_Swap(void *src, uint32 nelements);
void Endian_A16_NE_LE(void *src, uint32 nelements);
void Endian_A32_NE_LE(void *src, uint32 nelements);
void Endian_A64_NE_LE(void *src, uint32 nelements);
void Endian_A16_NE_BE(void *src, uint32 nelements);
void Endian_A32_NE_BE(void *src, uint32 nelements);
void Endian_A64_NE_BE(void *src, uint32 nelements);
void Endian_V_NE_LE(void* p, size_t len);
void Endian_V_NE_BE(void* p, size_t len);
// This is a hack to remove the dependency on C++11. This is *not*
// correct for structs and anything but base types, but it shoud be
// enough for our case.
#define alignof(T) sizeof(T)
//
//
//
static INLINE uint32 BitsExtract(const uint8* ptr, const size_t bit_offset, const size_t bit_count)
{
uint32 ret = 0;
for(size_t x = 0; x < bit_count; x++)
{
size_t co = bit_offset + x;
bool b = (ptr[co >> 3] >> (co & 7)) & 1;
ret |= (uint64)b << x;
}
return ret;
}
static INLINE void BitsIntract(uint8* ptr, const size_t bit_offset, const size_t bit_count, uint32 value)
{
for(size_t x = 0; x < bit_count; x++)
{
size_t co = bit_offset + x;
bool b = (value >> x) & 1;
uint8 tmp = ptr[co >> 3];
tmp &= ~(1 << (co & 7));
tmp |= b << (co & 7);
ptr[co >> 3] = tmp;
}
}
/*
Regarding safety of calling MDFN_*sb<true> on dynamically-allocated memory with new uint8[], see C++ standard 3.7.3.1(i.e. it should be
safe provided the offsets into the memory are aligned/multiples of the MDFN_*sb access type). malloc()'d and calloc()'d
memory should be safe as well.
Statically-allocated arrays/memory should be unioned with a big POD type or C++11 "alignas"'d. (May need to audit code to ensure
this is being done).
*/
static INLINE uint16 MDFN_bswap16(uint16 v)
{
#if defined(_MSC_VER)
return _byteswap_ushort(v);
#else
return (v << 8) | (v >> 8);
#endif
}
static INLINE uint32 MDFN_bswap32(uint32 v)
{
#if defined(_MSC_VER)
return _byteswap_ulong(v);
#else
return (v << 24) | ((v & 0xFF00) << 8) | ((v >> 8) & 0xFF00) | (v >> 24);
#endif
}
static INLINE uint64 MDFN_bswap64(uint64 v)
{
#if defined(_MSC_VER)
return _byteswap_uint64(v);
#else
return (v << 56) | (v >> 56) | ((v & 0xFF00) << 40) | ((v >> 40) & 0xFF00) | ((uint64)MDFN_bswap32(v >> 16) << 16);
#endif
}
//
// X endian.
//
template<int isbigendian, typename T, bool aligned>
static INLINE T MDFN_deXsb(const void* ptr)
{
T tmp;
memcpy(&tmp, MDFN_ASSUME_ALIGNED(ptr, (aligned ? alignof(T) : 1)), sizeof(T));
if(isbigendian != -1 && isbigendian != (int)MDFN_IS_BIGENDIAN)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Gummy penguins.");
#endif
if(sizeof(T) == 8)
return MDFN_bswap64(tmp);
else if(sizeof(T) == 4)
return MDFN_bswap32(tmp);
else if(sizeof(T) == 2)
return MDFN_bswap16(tmp);
}
return tmp;
}
//
// Native endian.
//
template<typename T, bool aligned>
static INLINE T MDFN_densb(const void* ptr)
{
return MDFN_deXsb<-1, T, aligned>(ptr);
}
//
// Little endian.
//
template<typename T, bool aligned>
static INLINE T MDFN_delsb(const void* ptr)
{
return MDFN_deXsb<0, T, aligned>(ptr);
}
template<bool aligned>
static INLINE uint16 MDFN_de16lsb(const void* ptr)
{
return MDFN_delsb<uint16, aligned>(ptr);
}
static INLINE uint32 MDFN_de24lsb(const void* ptr)
{
const uint8* ptr_u8 = (const uint8*)ptr;
return (ptr_u8[0] << 0) | (ptr_u8[1] << 8) | (ptr_u8[2] << 16);
}
template<bool aligned>
static INLINE uint32 MDFN_de32lsb(const void* ptr)
{
return MDFN_delsb<uint32, aligned>(ptr);
}
template<bool aligned>
static INLINE uint64 MDFN_de64lsb(const void* ptr)
{
return MDFN_delsb<uint64, aligned>(ptr);
}
//
// Big endian.
//
template<typename T, bool aligned>
static INLINE T MDFN_demsb(const void* ptr)
{
return MDFN_deXsb<1, T, aligned>(ptr);
}
template<bool aligned>
static INLINE uint16 MDFN_de16msb(const void* ptr)
{
return MDFN_demsb<uint16, aligned>(ptr);
}
static INLINE uint32 MDFN_de24msb(const void* ptr)
{
const uint8* ptr_u8 = (const uint8*)ptr;
return (ptr_u8[0] << 16) | (ptr_u8[1] << 8) | (ptr_u8[2] << 0);
}
template<bool aligned>
static INLINE uint32 MDFN_de32msb(const void* ptr)
{
return MDFN_demsb<uint32, aligned>(ptr);
}
template<bool aligned>
static INLINE uint64 MDFN_de64msb(const void* ptr)
{
return MDFN_demsb<uint64, aligned>(ptr);
}
//
//
//
//
//
//
//
//
//
// X endian.
//
template<int isbigendian, typename T, bool aligned>
static INLINE void MDFN_enXsb(void* ptr, T value)
{
T tmp = value;
if(isbigendian != -1 && isbigendian != (int)MDFN_IS_BIGENDIAN)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Gummy penguins.");
#endif
if(sizeof(T) == 8)
tmp = MDFN_bswap64(value);
else if(sizeof(T) == 4)
tmp = MDFN_bswap32(value);
else if(sizeof(T) == 2)
tmp = MDFN_bswap16(value);
}
memcpy(MDFN_ASSUME_ALIGNED(ptr, (aligned ? alignof(T) : 1)), &tmp, sizeof(T));
}
//
// Native endian.
//
template<typename T, bool aligned>
static INLINE void MDFN_ennsb(void* ptr, T value)
{
MDFN_enXsb<-1, T, aligned>(ptr, value);
}
//
// Little endian.
//
template<typename T, bool aligned>
static INLINE void MDFN_enlsb(void* ptr, T value)
{
MDFN_enXsb<0, T, aligned>(ptr, value);
}
template<bool aligned>
static INLINE void MDFN_en16lsb(void* ptr, uint16 value)
{
MDFN_enlsb<uint16, aligned>(ptr, value);
}
static INLINE void MDFN_en24lsb(void* ptr, uint32 value)
{
uint8* ptr_u8 = (uint8*)ptr;
ptr_u8[0] = value >> 0;
ptr_u8[1] = value >> 8;
ptr_u8[2] = value >> 16;
}
template<bool aligned>
static INLINE void MDFN_en32lsb(void* ptr, uint32 value)
{
MDFN_enlsb<uint32, aligned>(ptr, value);
}
template<bool aligned>
static INLINE void MDFN_en64lsb(void* ptr, uint64 value)
{
MDFN_enlsb<uint64, aligned>(ptr, value);
}
//
// Big endian.
//
template<typename T, bool aligned>
static INLINE void MDFN_enmsb(void* ptr, T value)
{
MDFN_enXsb<1, T, aligned>(ptr, value);
}
template<bool aligned>
static INLINE void MDFN_en16msb(void* ptr, uint16 value)
{
MDFN_enmsb<uint16, aligned>(ptr, value);
}
static INLINE void MDFN_en24msb(void* ptr, uint32 value)
{
uint8* ptr_u8 = (uint8*)ptr;
ptr_u8[0] = value >> 16;
ptr_u8[1] = value >> 8;
ptr_u8[2] = value >> 0;
}
template<bool aligned>
static INLINE void MDFN_en32msb(void* ptr, uint32 value)
{
MDFN_enmsb<uint32, aligned>(ptr, value);
}
template<bool aligned>
static INLINE void MDFN_en64msb(void* ptr, uint64 value)
{
MDFN_enmsb<uint64, aligned>(ptr, value);
}
//
//
//
//
//
//
template<typename T, typename X>
static INLINE uintptr_t neX_ptr_be(uintptr_t const base, const size_t byte_offset)
{
#ifdef MSB_FIRST
return base + (byte_offset &~ (sizeof(T) - 1));
#else
return base + (((byte_offset &~ (sizeof(T) - 1)) ^ (sizeof(X) - std::min<size_t>(sizeof(X), sizeof(T)))));
#endif
}
template<typename T, typename X>
static INLINE uintptr_t neX_ptr_le(uintptr_t const base, const size_t byte_offset)
{
#ifdef LSB_FIRST
return base + (byte_offset &~ (sizeof(T) - 1));
#else
return base + (((byte_offset &~ (sizeof(T) - 1)) ^ (sizeof(X) - std::min<size_t>(sizeof(X), sizeof(T)))));
#endif
}
template<typename T, typename BT>
static INLINE void ne16_wbo_be(BT base, const size_t byte_offset, const T value)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, uint16*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_be<T, uint16>((uintptr_t)base, byte_offset);
if(sizeof(T) == 4)
{
uint16* const ptr16 = (uint16*)ptr;
ptr16[0] = value >> 16;
ptr16[1] = value;
}
else
*(T*)ptr = value;
}
template<typename T, typename BT>
static INLINE T ne16_rbo_be(BT base, const size_t byte_offset)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, const uint16*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_be<T, uint16>((uintptr_t)base, byte_offset);
if(sizeof(T) == 4)
{
uint16* const ptr16 = (uint16*)ptr;
T tmp;
tmp = ptr16[0] << 16;
tmp |= ptr16[1];
return tmp;
}
else
return *(T*)ptr;
}
template<typename T, bool IsWrite, typename BT>
static INLINE void ne16_rwbo_be(BT base, const size_t byte_offset, T* value)
{
if(IsWrite)
ne16_wbo_be<T>(base, byte_offset, *value);
else
*value = ne16_rbo_be<T>(base, byte_offset);
}
//
//
//
template<typename T, typename BT>
static INLINE void ne16_wbo_le(BT base, const size_t byte_offset, const T value)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, uint16*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_le<T, uint16>((uintptr_t)base, byte_offset);
if(sizeof(T) == 4)
{
uint16* const ptr16 = (uint16*)ptr;
ptr16[0] = value;
ptr16[1] = value >> 16;
}
else
*(T*)ptr = value;
}
template<typename T, typename BT>
static INLINE T ne16_rbo_le(BT base, const size_t byte_offset)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, const uint16*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_le<T, uint16>((uintptr_t)base, byte_offset);
if(sizeof(T) == 4)
{
uint16* const ptr16 = (uint16*)ptr;
T tmp;
tmp = ptr16[0];
tmp |= ptr16[1] << 16;
return tmp;
}
else
return *(T*)ptr;
}
template<typename T, bool IsWrite, typename BT>
static INLINE void ne16_rwbo_le(BT base, const size_t byte_offset, T* value)
{
if(IsWrite)
ne16_wbo_le<T>(base, byte_offset, *value);
else
*value = ne16_rbo_le<T>(base, byte_offset);
}
//
//
//
template<typename T, typename BT>
static INLINE void ne64_wbo_be(BT base, const size_t byte_offset, const T value)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, uint64*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_be<T, uint64>((uintptr_t)base, byte_offset);
memcpy(MDFN_ASSUME_ALIGNED((void*)ptr, alignof(T)), &value, sizeof(T));
}
template<typename T, typename BT>
static INLINE T ne64_rbo_be(BT base, const size_t byte_offset)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, const uint64*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_be<T, uint64>((uintptr_t)base, byte_offset);
T ret;
memcpy(&ret, MDFN_ASSUME_ALIGNED((void*)ptr, alignof(T)), sizeof(T));
return ret;
}
template<typename T, bool IsWrite, typename BT>
static INLINE void ne64_rwbo_be(BT base, const size_t byte_offset, T* value)
{
if(IsWrite)
ne64_wbo_be<T>(base, byte_offset, *value);
else
*value = ne64_rbo_be<T>(base, byte_offset);
}
//
//
//
template<typename T, typename BT>
static INLINE void ne64_wbo_le(BT base, const size_t byte_offset, const T value)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, uint64*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_le<T, uint64>((uintptr_t)base, byte_offset);
memcpy(MDFN_ASSUME_ALIGNED((void*)ptr, alignof(T)), &value, sizeof(T));
}
template<typename T, typename BT>
static INLINE T ne64_rbo_le(BT base, const size_t byte_offset)
{
#ifdef HAS_CXX11
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, "Unsupported type size");
static_assert(std::is_same<BT, uintptr_t>::value || std::is_convertible<BT, const uint64*>::value, "Wrong base type");
#endif
uintptr_t const ptr = neX_ptr_le<T, uint64>((uintptr_t)base, byte_offset);
T ret;
memcpy(&ret, MDFN_ASSUME_ALIGNED((void*)ptr, alignof(T)), sizeof(T));
return ret;
}
template<typename T, bool IsWrite, typename BT>
static INLINE void ne64_rwbo_le(BT base, const size_t byte_offset, T* value)
{
if(IsWrite)
ne64_wbo_le<T>(base, byte_offset, *value);
else
*value = ne64_rbo_le<T>(base, byte_offset);
}
#endif