bsnes-libretro/nall/range.hpp

52 lines
1.5 KiB
C++
Raw Normal View History

#pragma once
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
namespace nall {
struct range_t {
struct iterator {
iterator(int64_t position, int64_t step = 0) : position(position), step(step) {}
auto operator*() const -> int64_t { return position; }
auto operator!=(const iterator& source) const -> bool { return step > 0 ? position < source.position : position > source.position; }
auto operator++() -> iterator& { position += step; return *this; }
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
private:
int64_t position;
const int64_t step;
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
};
Update to v106r47 release. byuu says: This is probably the largest code-change diff I've done in years. I spent four days working 10-16 hours a day reworking layouts in hiro completely. The result is we now have TableLayout, which will allow for better horizontal+vertical combined alignment. Windows, GTK2, and now GTK3 are fully supported. Windows is getting the initial window geometry wrong by a bit. GTK2 and GTK3 work perfectly. I basically abandoned trying to detect resize signals, and instead keep a list of all hiro windows that are allocated, and every time the main loop runs, it will query all of them to see if they've been resized. I'm disgusted that I have to do this, but after fighting with GTK for years, I'm about sick of it. GTK was doing this crazy thing where it would trigger another size-allocate inside of a previous size-allocate, and so my layouts would be halfway through resizing all the widgets, and then the size-allocate would kick off another one. That would end up leaving the rest of the first layout loop with bad widget sizes. And if I detected a second re-entry and blocked it, then the entire window would end up with the older geometry. I started trying to build a message queue system to allow the second layout resize to occur after the first one completed, but this was just too much madness, so I went with the simpler solution. Qt4 has some geometry problems, and doesn't show tab frame layouts properly yet. Qt5 causes an ICE error and tanks my entire Xorg display server, so ... something is seriously wrong there, and it's not hiro's fault. Creating a dummy Qt5 application without even using hiro, just int main() { TestObject object; } with object performing a dynamic\_cast to a derived type segfaults. Memory is getting corrupted where GCC allocates the vtables for classes, just by linking in Qt. Could be somehow related to the -fPIC requirement that only Qt5 has ... could just be that FreeBSD 10.1 has a buggy implementation of Qt5. I don't know. It's beyond my ability to debug, so this one's going to stay broken. The Cocoa port is busted. I'll fix it up to compile again, but that's about all I'm going to do. Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both resize windows very quickly now. higan crashes when you load a game, so that's not good. bsnes works though. bsnes also has the start of a localization engine now. Still a long way to go. The makefiles received a rather substantial restructuring. Including the ruby and hiro makefiles will add the necessary compilation rules for you, which also means that moc will run for the qt4 and qt5 targets, and windres will run for the Windows targets.
2018-07-14 03:59:29 +00:00
struct reverse_iterator {
reverse_iterator(int64_t position, int64_t step = 0) : position(position), step(step) {}
auto operator*() const -> int64_t { return position; }
Update to v106r47 release. byuu says: This is probably the largest code-change diff I've done in years. I spent four days working 10-16 hours a day reworking layouts in hiro completely. The result is we now have TableLayout, which will allow for better horizontal+vertical combined alignment. Windows, GTK2, and now GTK3 are fully supported. Windows is getting the initial window geometry wrong by a bit. GTK2 and GTK3 work perfectly. I basically abandoned trying to detect resize signals, and instead keep a list of all hiro windows that are allocated, and every time the main loop runs, it will query all of them to see if they've been resized. I'm disgusted that I have to do this, but after fighting with GTK for years, I'm about sick of it. GTK was doing this crazy thing where it would trigger another size-allocate inside of a previous size-allocate, and so my layouts would be halfway through resizing all the widgets, and then the size-allocate would kick off another one. That would end up leaving the rest of the first layout loop with bad widget sizes. And if I detected a second re-entry and blocked it, then the entire window would end up with the older geometry. I started trying to build a message queue system to allow the second layout resize to occur after the first one completed, but this was just too much madness, so I went with the simpler solution. Qt4 has some geometry problems, and doesn't show tab frame layouts properly yet. Qt5 causes an ICE error and tanks my entire Xorg display server, so ... something is seriously wrong there, and it's not hiro's fault. Creating a dummy Qt5 application without even using hiro, just int main() { TestObject object; } with object performing a dynamic\_cast to a derived type segfaults. Memory is getting corrupted where GCC allocates the vtables for classes, just by linking in Qt. Could be somehow related to the -fPIC requirement that only Qt5 has ... could just be that FreeBSD 10.1 has a buggy implementation of Qt5. I don't know. It's beyond my ability to debug, so this one's going to stay broken. The Cocoa port is busted. I'll fix it up to compile again, but that's about all I'm going to do. Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both resize windows very quickly now. higan crashes when you load a game, so that's not good. bsnes works though. bsnes also has the start of a localization engine now. Still a long way to go. The makefiles received a rather substantial restructuring. Including the ruby and hiro makefiles will add the necessary compilation rules for you, which also means that moc will run for the qt4 and qt5 targets, and windres will run for the Windows targets.
2018-07-14 03:59:29 +00:00
auto operator!=(const reverse_iterator& source) const -> bool { return step > 0 ? position > source.position : position < source.position; }
auto operator++() -> reverse_iterator& { position -= step; return *this; }
private:
int64_t position;
const int64_t step;
Update to v106r47 release. byuu says: This is probably the largest code-change diff I've done in years. I spent four days working 10-16 hours a day reworking layouts in hiro completely. The result is we now have TableLayout, which will allow for better horizontal+vertical combined alignment. Windows, GTK2, and now GTK3 are fully supported. Windows is getting the initial window geometry wrong by a bit. GTK2 and GTK3 work perfectly. I basically abandoned trying to detect resize signals, and instead keep a list of all hiro windows that are allocated, and every time the main loop runs, it will query all of them to see if they've been resized. I'm disgusted that I have to do this, but after fighting with GTK for years, I'm about sick of it. GTK was doing this crazy thing where it would trigger another size-allocate inside of a previous size-allocate, and so my layouts would be halfway through resizing all the widgets, and then the size-allocate would kick off another one. That would end up leaving the rest of the first layout loop with bad widget sizes. And if I detected a second re-entry and blocked it, then the entire window would end up with the older geometry. I started trying to build a message queue system to allow the second layout resize to occur after the first one completed, but this was just too much madness, so I went with the simpler solution. Qt4 has some geometry problems, and doesn't show tab frame layouts properly yet. Qt5 causes an ICE error and tanks my entire Xorg display server, so ... something is seriously wrong there, and it's not hiro's fault. Creating a dummy Qt5 application without even using hiro, just int main() { TestObject object; } with object performing a dynamic\_cast to a derived type segfaults. Memory is getting corrupted where GCC allocates the vtables for classes, just by linking in Qt. Could be somehow related to the -fPIC requirement that only Qt5 has ... could just be that FreeBSD 10.1 has a buggy implementation of Qt5. I don't know. It's beyond my ability to debug, so this one's going to stay broken. The Cocoa port is busted. I'll fix it up to compile again, but that's about all I'm going to do. Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both resize windows very quickly now. higan crashes when you load a game, so that's not good. bsnes works though. bsnes also has the start of a localization engine now. Still a long way to go. The makefiles received a rather substantial restructuring. Including the ruby and hiro makefiles will add the necessary compilation rules for you, which also means that moc will run for the qt4 and qt5 targets, and windres will run for the Windows targets.
2018-07-14 03:59:29 +00:00
};
auto begin() const -> iterator { return {origin, stride}; }
auto end() const -> iterator { return {target}; }
auto rbegin() const -> reverse_iterator { return {target - stride, stride}; }
auto rend() const -> reverse_iterator { return {origin - stride}; }
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
int64_t origin;
int64_t target;
int64_t stride;
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
};
inline auto range(int64_t size) {
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
return range_t{0, size, 1};
}
inline auto range(int64_t offset, int64_t size) {
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
return range_t{offset, size, 1};
}
inline auto range(int64_t offset, int64_t size, int64_t step) {
Update to v094r09 release. byuu says: This will easily be the biggest diff in the history of higan. And not in a good way. * target-higan and target-loki have been blown away completely * nall and ruby massively updated * phoenix replaced with hiro (pretty near a total rewrite) * target-higan restarted using hiro (just a window for now) * all emulation cores updated to compile again * installation changed to not require root privileges (installs locally) For the foreseeable future (maybe even permanently?), the new higan UI will only build under Linux/BSD with GTK+ 2.20+. Probably the most likely route for Windows/OS X will be to try and figure out how to build hiro/GTK on those platforms, as awful as that would be. The other alternative would be to produce new UIs for those platforms ... which would actually be a good opportunity to make something much more user friendly. Being that I just started on this a few hours ago, that means that for at least a few weeks, don't expect to be able to actually play any games. Right now, you can pretty much just compile the binary and that's it. It's quite possible that some nall changes didn't produce compilation errors, but will produce runtime errors. So until the UI can actually load games, we won't know if anything is broken. But we should mostly be okay. It was mostly just trim<1> -> trim changes, moving to Hash::SHA256 (much cleaner), and patching some reckless memory copy functions enough to compile. Progress isn't going to be like it was before: I'm now dividing my time much thinner between studying and other hobbies. My aim this time is not to produce a binary for everyone to play games on. Rather, it's to keep the emulator alive. I want to be able to apply critical patches again. And I would also like the base of the emulator to live on, for use in other emulator frontends that utilize higan.
2015-02-26 10:10:46 +00:00
return range_t{offset, size, step};
}
}