bsnes-libretro/nall/elliptic-curve/ed25519.hpp
Tim Allen 559a6585ef Update to v106r81 release.
byuu says:

First 32 instructions implemented in the TLCS900H disassembler. Only 992
to go!

I removed the use of anonymous namespaces in nall. It was something I
rarely used, because it rarely did what I wanted.

I updated all nested namespaces to use C++17-style namespace Foo::Bar {}
syntax instead of classic C++-style namespace Foo { namespace Bar {}}.

I updated ruby::Video::acquire() to return a struct, so we can use C++17
structured bindings. Long term, I want to get away from all functions
that take references for output only. Even though C++ botched structured
bindings by not allowing you to bind to existing variables, it's even
worse to have function calls that take arguments by reference and then
write to them. From the caller side, you can't tell the value is being
written, nor that the value passed in doesn't matter, which is terrible.
2019-01-16 13:02:24 +11:00

145 lines
4.2 KiB
C++

#pragma once
#include <nall/hash/sha512.hpp>
#if defined(EC_REFERENCE)
#include <nall/elliptic-curve/modulo25519-reference.hpp>
#else
#include <nall/elliptic-curve/modulo25519-optimized.hpp>
#endif
namespace nall::EllipticCurve {
static const uint256_t L = (1_u256 << 252) + 27742317777372353535851937790883648493_u256;
struct Ed25519 {
auto publicKey(uint256_t privateKey) const -> uint256_t {
return compress(scalarMultiply(B, clamp(hash(privateKey)) % L));
}
auto sign(array_view<uint8_t> message, uint256_t privateKey) const -> uint512_t {
uint512_t H = hash(privateKey);
uint256_t a = clamp(H) % L;
uint256_t A = compress(scalarMultiply(B, a));
uint512_t r = hash(upper(H), message) % L;
uint256_t R = compress(scalarMultiply(B, r));
uint512_t k = hash(R, A, message) % L;
uint256_t S = (k * a + r) % L;
return uint512_t(S) << 256 | R;
}
auto verify(array_view<uint8_t> message, uint512_t signature, uint256_t publicKey) const -> bool {
auto R = decompress(lower(signature));
auto A = decompress(publicKey);
if(!R || !A) return false;
uint256_t S = upper(signature) % L;
uint512_t r = hash(lower(signature), publicKey, message) % L;
auto p = scalarMultiply(B, S);
auto q = edwardsAdd(R(), scalarMultiply(A(), r));
if(!onCurve(p) || !onCurve(q)) return false;
if(p.x * q.z - q.x * p.z) return false;
if(p.y * q.z - q.y * p.z) return false;
return true;
}
private:
using field = Modulo25519;
struct point { field x, y, z, t; };
const field D = -field(121665) * reciprocal(field(121666));
const point B = *decompress((field(4) * reciprocal(field(5)))());
const BarrettReduction<256> L = BarrettReduction<256>{EllipticCurve::L};
inline auto input(Hash::SHA512&) const -> void {}
template<typename... P> inline auto input(Hash::SHA512& hash, uint256_t value, P&&... p) const -> void {
for(uint byte : range(32)) hash.input(uint8_t(value >> byte * 8));
input(hash, forward<P>(p)...);
}
template<typename... P> inline auto input(Hash::SHA512& hash, array_view<uint8_t> value, P&&... p) const -> void {
hash.input(value);
input(hash, forward<P>(p)...);
}
template<typename... P> inline auto hash(P&&... p) const -> uint512_t {
Hash::SHA512 hash;
input(hash, forward<P>(p)...);
uint512_t result;
for(auto byte : reverse(hash.output())) result = result << 8 | byte;
return result;
}
inline auto clamp(uint256_t p) const -> uint256_t {
p &= (1_u256 << 254) - 8;
p |= (1_u256 << 254);
return p;
}
inline auto onCurve(point p) const -> bool {
if(!p.z) return false;
if(p.x * p.y - p.z * p.t) return false;
if(square(p.y) - square(p.x) - square(p.z) - square(p.t) * D) return false;
return true;
}
inline auto decompress(uint256_t c) const -> maybe<point> {
field y = c & ~0_u256 >> 1;
field x = squareRoot((square(y) - 1) * reciprocal(D * square(y) + 1));
if(c >> 255) x = -x;
point p{x, y, 1, x * y};
if(!onCurve(p)) return nothing;
return p;
}
inline auto compress(point p) const -> uint256_t {
field r = reciprocal(p.z);
field x = p.x * r;
field y = p.y * r;
return (x & 1) << 255 | (y & ~0_u256 >> 1);
}
inline auto edwardsDouble(point p) const -> point {
field a = square(p.x);
field b = square(p.y);
field c = square(p.z);
field d = -a;
field e = square(p.x + p.y) - a - b;
field g = d + b;
field f = g - (c + c);
field h = d - b;
return {e * f, g * h, f * g, e * h};
}
inline auto edwardsAdd(point p, point q) const -> point {
field a = (p.y - p.x) * (q.y - q.x);
field b = (p.y + p.x) * (q.y + q.x);
field c = (p.t + p.t) * q.t * D;
field d = (p.z + p.z) * q.z;
field e = b - a;
field f = d - c;
field g = d + c;
field h = b + a;
return {e * f, g * h, f * g, e * h};
}
inline auto scalarMultiply(point q, uint256_t exponent) const -> point {
point p{0, 1, 1, 0}, c;
for(uint bit : reverse(range(253))) {
p = edwardsDouble(p);
c = edwardsAdd(p, q);
bool condition = exponent >> bit & 1;
cmove(condition, p.x, c.x);
cmove(condition, p.y, c.y);
cmove(condition, p.z, c.z);
cmove(condition, p.t, c.t);
}
return p;
}
};
}