bsnes-libretro/nall/suffix-array.hpp
byuu 1e626e75ef v109.3
Fixed crash when idling with the snow effect enabled.
Added Android target to libretro port [rtretiakov]
Various nall library improvements.
2019-09-13 22:15:11 +09:00

387 lines
9.5 KiB
C++

#pragma once
#include <nall/array.hpp>
#include <nall/counting-sort.hpp>
#include <nall/induced-sort.hpp>
#include <nall/range.hpp>
#include <nall/view.hpp>
namespace nall {
/*
input:
data = "acaacatat"
0 "acaacatat"
1 "caacatat"
2 "aacatat"
3 "acatat"
4 "catat"
5 "atat"
6 "tat"
7 "at"
8 "t"
9 ""
suffix_array:
suffixes = [9,2,0,3,7,5,1,4,8,6] => input + suffixes:
9 ""
2 "aacatat"
0 "acaacatat"
3 "acatat"
7 "at"
5 "atat"
1 "caacatat"
4 "catat"
8 "t"
6 "tat"
[auxiliary data structures to represent information lost from suffix trees]
suffix_array_invert:
inverted = [2,6,1,3,7,5,9,4,8,0] => input + suffixes[inverted]:
2 "acaacatat"
6 "caacatat"
1 "aacatat"
3 "acatat"
7 "catat"
5 "atat"
9 "tat"
4 "at"
8 "t"
0 ""
suffix_array_phi:
phi = [2,5,9,0,1,7,8,3,4,0]
suffix_array_lcp:
prefixes = [0,0,1,3,1,2,0,2,0,1] => lcp[n] == lcp(n, n-1)
"" 0
"aacatat" 0
"acaacatat" 1 "a"
"acatat" 3 "aca"
"at" 1 "a"
"atat" 2 "at"
"caacatat" 0
"catat" 2 "ca"
"t" 0
"tat" 1 "t"
suffix_array_plcp:
plcp = [1,0,0,3,2,2,1,1,0,0]
suffix_array_lrcp:
llcp = [0,0,0,3,0,2,0,2,0,0] => llcp[m] == lcp(l, m)
rlcp = [0,1,1,1,0,0,0,0,0,0] => rlcp[m] == lcp(m, r)
suffix_array_lpf:
lengths = [0,0,1,3,2,1,0,2,1,0]
offsets = [0,0,0,0,1,3,4,5,6,2]
"acaacatat" (0,-)
"caacatat" (0,-)
"aacatat" (1,0) at 0, match "a"
"acatat" (3,0) at 0, match "aca"
"catat" (2,1) at 1, match "ca"
"atat" (1,3) at 3, match "a"
"tat" (0,-)
"at" (2,5) at 5, match "at"
"t" (1,6) at 6, match "t"
"" (0,-)
*/
// suffix array via induced sorting
// O(n)
inline auto suffix_array(array_view<uint8_t> input) -> vector<int> {
return induced_sort(input);
}
// inverse
// O(n)
inline auto suffix_array_invert(array_view<int> sa) -> vector<int> {
vector<int> isa;
isa.reallocate(sa.size());
for(int i : range(sa.size())) isa[sa[i]] = i;
return isa;
}
// auxiliary data structure for plcp and lpf computation
// O(n)
inline auto suffix_array_phi(array_view<int> sa) -> vector<int> {
vector<int> phi;
phi.reallocate(sa.size());
phi[sa[0]] = 0;
for(int i : range(1, sa.size())) phi[sa[i]] = sa[i - 1];
return phi;
}
// longest common prefix: lcp(l, r)
// O(n)
inline auto suffix_array_lcp(int l, int r, array_view<int> sa, array_view<uint8_t> input) -> int {
int i = sa[l], j = sa[r], k = 0, size = input.size();
while(i + k < size && j + k < size && input[i + k] == input[j + k]) k++;
return k;
}
// longest common prefix: lcp(i, j, k)
// O(n)
inline auto suffix_array_lcp(int i, int j, int k, array_view<uint8_t> input) -> int {
int size = input.size();
while(i + k < size && j + k < size && input[i + k] == input[j + k]) k++;
return k;
}
// longest common prefix: lcp[n] == lcp(n, n-1)
// O(n)
inline auto suffix_array_lcp(array_view<int> sa, array_view<int> isa, array_view<uint8_t> input) -> vector<int> {
int k = 0, size = input.size();
vector<int> lcp;
lcp.reallocate(size + 1);
for(int i : range(size)) {
if(isa[i] == size) { k = 0; continue; } //the next substring is empty; ignore it
int j = sa[isa[i] + 1];
while(i + k < size && j + k < size && input[i + k] == input[j + k]) k++;
lcp[1 + isa[i]] = k;
if(k) k--;
}
lcp[0] = 0;
return lcp;
}
// longest common prefix (from permuted longest common prefix)
// O(n)
inline auto suffix_array_lcp(array_view<int> plcp, array_view<int> sa) -> vector<int> {
vector<int> lcp;
lcp.reallocate(plcp.size());
for(int i : range(plcp.size())) lcp[i] = plcp[sa[i]];
return lcp;
}
// permuted longest common prefix
// O(n)
inline auto suffix_array_plcp(array_view<int> phi, array_view<uint8_t> input) -> vector<int> {
vector<int> plcp;
plcp.reallocate(phi.size());
int k = 0, size = input.size();
for(int i : range(size)) {
int j = phi[i];
while(i + k < size && j + k < size && input[i + k] == input[j + k]) k++;
plcp[i] = k;
if(k) k--;
}
return plcp;
}
// permuted longest common prefix (from longest common prefix)
// O(n)
inline auto suffix_array_plcp(array_view<int> lcp, array_view<int> sa) -> vector<int> {
vector<int> plcp;
plcp.reallocate(lcp.size());
for(int i : range(lcp.size())) plcp[sa[i]] = lcp[i];
return plcp;
}
// longest common prefixes - left + right
// llcp[m] == lcp(l, m)
// rlcp[m] == lcp(m, r)
// O(n)
// requires: lcp -or- plcp+sa
inline auto suffix_array_lrcp(vector<int>& llcp, vector<int>& rlcp, array_view<int> lcp, array_view<int> plcp, array_view<int> sa, array_view<uint8_t> input) -> void {
int size = input.size();
llcp.reset(), llcp.reallocate(size + 1);
rlcp.reset(), rlcp.reallocate(size + 1);
function<int (int, int)> recurse = [&](int l, int r) -> int {
if(l >= r - 1) {
if(l >= size) return 0;
if(lcp) return lcp[l];
return plcp[sa[l]];
}
int m = l + r >> 1;
llcp[m - 1] = recurse(l, m);
rlcp[m - 1] = recurse(m, r);
return min(llcp[m - 1], rlcp[m - 1]);
};
recurse(1, size + 1);
llcp[0] = 0;
rlcp[0] = 0;
}
// longest previous factor
// O(n)
// optional: plcp
inline auto suffix_array_lpf(vector<int>& lengths, vector<int>& offsets, array_view<int> phi, array_view<int> plcp, array_view<uint8_t> input) -> void {
int k = 0, size = input.size();
lengths.reset(), lengths.resize(size + 1, -1);
offsets.reset(), offsets.resize(size + 1, -1);
function<void (int, int, int)> recurse = [&](int i, int j, int k) -> void {
if(lengths[i] < 0) {
lengths[i] = k;
offsets[i] = j;
} else if(lengths[i] < k) {
if(offsets[i] > j) {
recurse(offsets[i], j, lengths[i]);
} else {
recurse(j, offsets[i], lengths[i]);
}
lengths[i] = k;
offsets[i] = j;
} else {
if(offsets[i] > j) {
recurse(offsets[i], j, k);
} else {
recurse(j, offsets[i], k);
}
}
};
for(int i : range(size)) {
int j = phi[i];
if(plcp) k = plcp[i];
else while(i + k < size && j + k < size && input[i + k] == input[j + k]) k++;
if(i > j) {
recurse(i, j, k);
} else {
recurse(j, i, k);
}
if(k) k--;
}
lengths[0] = 0;
offsets[0] = 0;
}
// O(n log m)
inline auto suffix_array_find(int& length, int& offset, array_view<int> sa, array_view<uint8_t> input, array_view<uint8_t> match) -> bool {
length = 0, offset = 0;
int l = 0, r = input.size();
while(l < r - 1) {
int m = l + r >> 1;
int s = sa[m];
int k = 0;
while(k < match.size() && s + k < input.size()) {
if(match[k] != input[s + k]) break;
k++;
}
if(k > length) {
length = k;
offset = s;
if(k == match.size()) return true;
}
if(k == match.size() || s + k == input.size()) k--;
if(match[k] < input[s + k]) {
r = m;
} else {
l = m;
}
}
return false;
}
// O(n + log m)
inline auto suffix_array_find(int& length, int& offset, array_view<int> llcp, array_view<int> rlcp, array_view<int> sa, array_view<uint8_t> input, array_view<uint8_t> match) -> bool {
length = 0, offset = 0;
int l = 0, r = input.size(), k = 0;
while(l < r - 1) {
int m = l + r >> 1;
int s = sa[m];
while(k < match.size() && s + k < input.size()) {
if(match[k] != input[s + k]) break;
k++;
}
if(k > length) {
length = k;
offset = s;
if(k == match.size()) return true;
}
if(k == match.size() || s + k == input.size()) k--;
if(match[k] < input[s + k]) {
r = m;
k = min(k, llcp[m]);
} else {
l = m;
k = min(k, rlcp[m]);
}
}
return false;
}
//
//there are multiple strategies for building the required auxiliary structures for suffix arrays
struct SuffixArray {
using type = SuffixArray;
//O(n)
inline SuffixArray(array_view<uint8_t> input) : input(input) {
sa = suffix_array(input);
}
//O(n)
inline auto lrcp() -> type& {
//if(!isa) isa = suffix_array_invert(sa);
//if(!lcp) lcp = suffix_array_lcp(sa, isa, input);
if(!phi) phi = suffix_array_phi(sa);
if(!plcp) plcp = suffix_array_plcp(phi, input);
//if(!lcp) lcp = suffix_array_lcp(plcp, sa);
if(!llcp || !rlcp) suffix_array_lrcp(llcp, rlcp, lcp, plcp, sa, input);
return *this;
}
//O(n)
inline auto lpf() -> type& {
if(!phi) phi = suffix_array_phi(sa);
//if(!plcp) plcp = suffix_array_plcp(phi, input);
if(!lengths || !offsets) suffix_array_lpf(lengths, offsets, phi, plcp, input);
return *this;
}
inline auto operator[](int offset) const -> int {
return sa[offset];
}
//O(n log m)
//O(n + log m) with lrcp()
inline auto find(int& length, int& offset, array_view<uint8_t> match) -> bool {
if(!llcp || !rlcp) return suffix_array_find(length, offset, sa, input, match); //O(n log m)
return suffix_array_find(length, offset, llcp, rlcp, sa, input, match); //O(n + log m)
}
//O(n) with lpf()
inline auto previous(int& length, int& offset, int address) -> void {
length = lengths[address];
offset = offsets[address];
}
//non-owning reference: SuffixArray is invalidated if memory is freed
array_view<uint8_t> input;
//suffix array and auxiliary data structures
vector<int> sa; //suffix array
vector<int> isa; //inverted suffix array
vector<int> phi; //phi
vector<int> plcp; //permuted longest common prefixes
vector<int> lcp; //longest common prefixes
vector<int> llcp; //longest common prefixes - left
vector<int> rlcp; //longest common prefixes - right
vector<int> lengths; //longest previous factors
vector<int> offsets; //longest previous factors
};
}