
Implementing a Hardware Accelerated Libretro

Core

Hans-Kristian Arntzen

May 10, 2013

Abstract

Libretro API 1 recently received support for cores to use OpenGL
(GL2+ or GLES2) directly instead of software rendering to a buffer
which is subsequently used by the frontend. This article explains how
a core can take advantage of this, and which considerations must be
taken into account. This article assumes familiarity with the libretro
API.

Cores which use hardware rendering can still use known frontend
features, such as multi-pass shaders. This is accomplished by letting
cores render to frame buffer objects (FBOs) instead of the back buffer 2.

This addition to the libretro API is designed to be used with
hardware-accelerated emulator cores, as well as serving as a framework
for graphical demos and experiments.

Application model

Using OpenGL in a libretro context is somewhat different than when you
use libraries like SDL, GLFW or SFML. In libretro, the frontend owns the
OpenGL context. For an application using conventional libraries like SDL,
the application will do this:

• Initialize, create a window of specific size

• Initialize OpenGL resources

• Per frame, handle window events (resize), handle input, render as
desired, swap buffers

1http://libretro.org
2GL drivers must support render-to-texture extensions for this to work.

1



• Tear down context and window

Using libretro API, platform specifics like managing windows, rendering
surfaces and input are all handled by the frontend. The core will only
deal with rendering to a surface. The core renders to an FBO of fixed
size, determined by the core. The frontend takes this rendered data and
stretches to screen as desired by the user. It can apply shaders, change
aspect ratio, etc. This model is equivalent to software rendering where
retro video refresh t callback is called.

Using OpenGL in libretro

• Use RETRO ENVIRONMENT SET PIXEL FORMAT and request a 32-bit for-
mat. This is the format that the resulting framebuffer will have 3.

• Use RETRO ENVIRONMENT SET HW RENDER environment callback in
retro load game(), notifying frontend that core is using hardware
rendering. An OpenGL 2+ or GLES2 context can be specified here.
If this is not supported the callback will return false, and you can
fallback to software rendering or refuse to start.

• In retro get system av info(), as normal, max width and
max height fields specify the maximum resolution the core will render
to.

• When the frontend has created a context or reset the context,
retro hw context reset t is called. Here, OpenGL resources can be
initialized. The frontend can reset the context at will (e.g. when
changing from fullscreen to windowed mode and vice versa). The core
should take this into account. It will be notified when reinitialization
needs to happen.

• A callback to grab OpenGL symbols is exposed via
retro hw get proc address t. Use this to retrieve symbols and ex-
tensions.

• In retro run(), use retro hw get current framebuffer t callback
to get which FBO to render to 4. This is your ”backbuffer”. Do not

3In reality, RetroArch converts all 16-bit data (RETRO PIXEL FORMAT RGB565) to 32-bit
(XRGB8888) when running desktop GL for performance reasons. In GLES mode, this is
not done, however. Do not rely on this behavior, and be explicit about it.

4e.g. glBindFramebuffer(GL FRAMEBUFFER, get current framebuffer())

2



attempt to render to the real back buffer. You must call this every
frame as it can change every frame. The dimensions of this FBO are
at least as big as declared in max width and max height. If desired,
the FBO also has a depth buffer attached 5.

• When done rendering, call retro video refresh t with the macro
RETRO HW FRAME BUFFER VALID as argument for buffer. Width and
height should be specified as well, but pitch argument is irrelevant
and will be ignored. If the frame is duped 6, the buffer argument takes
NULL as normal.

Important considerations in the OpenGL code

The frontend and libretro core share OpenGL context state. Some consid-
erations have to be taken into account for this cooperation to work nicely.

• Don’t leave buffers and global objects bound when calling
retro video refresh t. Make sure to unbind everything, i.e. VAOs,
VBOs, shader programs, textures, etc. Failing to do this could poten-
tially hit strange bugs. The frontend will also follow this rule to avoid
clashes. Being tidy here is considered good practice anyway.

• The GL viewport will be modified by frontend as well as libretro core.
Set this every frame.

• glEnable() state like depth testing, etc, is likely to be disabled in
frontend as it’s just rendering a quad to screen. Enable this per-frame
if you use depth testing. There is no need to disable this before calling
retro video refresh t.

• Avoid VAOs. They tend to break on less-than-stellar drivers 7.

• Try to write code which is GLES2 as well as GL2+ (w/ extensions)
compliant. This ensures maximum target surface for the libretro core.

• Libretro treats top-left as origin. OpenGL treats bottom-left as ori-
gin. To be compatible with the libretro model, top-left semantics
are preserved. Rendering normally will cause the image to be flipped

5see RETRO ENVIRONMENT SET HW RENDER
6RETRO ENVIRONMENT CAN DUPE
7At least AMD drivers on Windows are known to break here.

3



vertically. To avoid this, simply scale the final projection matrix by
[1,−1, 1, 1].

Test implementations

A very basic test implementation of libretro GL interface is available in
RetroArch repository on GitHub 8. It displays two spinning quads. It runs
both as a GLES2 and GL2 core depending on GLES environment variable.

A slightly more involved test core is found on Bitbucket 9. It uses in-
stanced rendering of a textured cube, with FPS-style fly-by camera. It uses
libretro’s mouse API as well. It is valid GLES and GL2 at the same time.

Building a libretro core

Libretro is an interface, and not a utility library. Libretro cores are built
as standalone dynamic or static libraries, and as they use GL symbols here,
they must link against GL symbols themselves.

An example of how this can be done is shown in the test implementa-
tion 10.

8https://github.com/Themaister/RetroArch/tree/master/libretro-test-gl
9https://bitbucket.org/Themaister/libretro-gl

10https://github.com/Themaister/RetroArch/blob/master/libretro-test-gl/Makefile

4


