docs/archive/libretro-shader.lyx
Winston Weinert 8a8f9b31d2 Delete trailing whitespace
In #526 I accidentally lost some of my edits trying to selectively
stage lines with typo fixes, while deleting hunks that were only
whitespace changes. In hopes nobody else falls into this trap, I ran
the following command to find all the files to edit, and apply emacs's
delete-trailing-whitespace function to each file.

```sh
find * -type f -print0 | xargs -0 -P$(nproc) -n1 -I{} sh -c 'if file -b "{}" | grep -qFi text; then emacs -batch "{}" -f delete-trailing-whitespace -f save-buffer; fi'
```

Note: `git add -u` will add only known paths to the stage (index),
even if `tidy.sh` exists in the git work directory.
2020-07-20 10:35:30 -05:00

2193 lines
36 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Cg/HLSL Libretro shader tutorial"
\pdf_author "Hans-Kristian Antzen, Daniel De Matteis"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Cg/HLSL libretro shader tutorial
\end_layout
\begin_layout Author
Hans-Kristian Arntzen, Daniel De Matteis
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Standard
This document is for a (fresh) shader developer that wants to develop shader
programs for use in various emulators/games.
Shader programs run on your GPU, and thus enables very sophisticated effects
to be performed on the picture which might not be possible in real-time
on the CPU.
Some introduction to shader programming in general is given, so more experience
d developers that only need reference for the specification may just skip
ahead.
\end_layout
\begin_layout Standard
Current emulators that support the specification explained here to a certain
degree are:
\end_layout
\begin_layout Itemize
\begin_inset Index idx
status open
\begin_layout Plain Layout
RetroArch
\end_layout
\end_inset
RetroArch
\end_layout
\begin_layout Itemize
\begin_inset Index idx
status open
\begin_layout Plain Layout
SNES9x
\end_layout
\end_inset
SNES9x Win32
\end_layout
\begin_layout Standard
There are three popular shader languages in use today:
\end_layout
\begin_layout Itemize
\begin_inset Index idx
status open
\begin_layout Plain Layout
HLSL
\end_layout
\end_inset
HLSL (High-Level Shading Language, Direct3D)
\end_layout
\begin_layout Itemize
\begin_inset Index idx
status open
\begin_layout Plain Layout
GLSL
\end_layout
\end_inset
GLSL (GL Shading Language, OpenGL)
\end_layout
\begin_layout Itemize
\begin_inset Index idx
status open
\begin_layout Plain Layout
Cg
\end_layout
\end_inset
Cg (HLSL/GLSL, nVidia)
\end_layout
\begin_layout Standard
The spec is for the
\begin_inset Index idx
status open
\begin_layout Plain Layout
Cg
\end_layout
\end_inset
Cg shading language developed by nVidia.
It
\begin_inset Quotes eld
\end_inset
wraps
\begin_inset Quotes erd
\end_inset
around
\begin_inset Index idx
status open
\begin_layout Plain Layout
OpenGL
\end_layout
\end_inset
OpenGL and
\begin_inset Index idx
status open
\begin_layout Plain Layout
HLSL
\end_layout
\end_inset
HLSL to make shaders written in Cg quite portable.
It is also the shading language implemented on the
\begin_inset Index idx
status open
\begin_layout Plain Layout
PlayStation3
\end_layout
\end_inset
PlayStation3, thus increasing the popularity of it.
\end_layout
\begin_layout Subsection
The rendering pipeline
\end_layout
\begin_layout Standard
With shaders you are able to take control over a large chunk of the GPUs
inner workings by writing your own programs that are uploaded and run on
the GPU.
In the old days, GPUs were a big black box that was highly configurable
using endless amount of API calls.
In more modern times, rather than giving you endless amounts of buttons,
you are expected to implement the few «buttons» you actually need, and
have a streamlined API.
\end_layout
\begin_layout Standard
The rendering pipeline is somewhat complex, but we can in general simplify
it to:
\end_layout
\begin_layout Itemize
Vertex processing
\end_layout
\begin_layout Itemize
Rasterization
\end_layout
\begin_layout Itemize
Fragment processing
\end_layout
\begin_layout Itemize
Framebuffer blend
\end_layout
\begin_layout Standard
We are allowed to take control of what happens during vertex processing,
and fragment processing.
\end_layout
\begin_layout Subsection
A Cg/HLSL program
\end_layout
\begin_layout Standard
If you were to process an image on a CPU, you would most likely do something
like this:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
for (unsigned y = 0; y < height; y++) {
\end_layout
\begin_layout Plain Layout
for (unsigned x = 0; x < width; x++)
\end_layout
\begin_layout Plain Layout
out_pixel[y][x] = process_pixel(in_pixel[y][x], y, x);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
We quickly realize that this is highly serial and slow.
We see that out_pixel[y][x] isn't dependent on out_pixel[y + k][x + k],
so we see that we can parallelize quite a bit.
\end_layout
\begin_layout Standard
Essentially, we only need to implement process_pixel() as a single function,
which is called thousands, even millions of time every frame.
The only purpose in life for process_pixel() is to process an input, and
produce an output.
No state is needed, thus, a
\begin_inset Quotes eld
\end_inset
pure
\begin_inset Quotes erd
\end_inset
function in computer science terms.
\end_layout
\begin_layout Standard
For the Cg program, we need to implement two different functions.
\end_layout
\begin_layout Standard
main_vertex() takes care of transforming every incoming vertex from camera
space down to clip space.
This essentially means projection of 3D (coordinates on GPU) down to 2D
(your screen)
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Since we're dealing with old school emulators here, which are already 2D,
the vertex shading is very trivial.
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
Vertex shaders get various coordinates as input, and uniforms.
Every vertex emitted by the emulator is run through main_vertex which calculate
s the final output position
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
For our emulators this is just 4 times, since we're rendering a quad on
the screen.
3D games would obviously have a lot more vertices.
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
While coordinates differ for each invocation, uniforms are constant throughout
every call.
Think of it as a global variable that you're not allowed to change.
\end_layout
\begin_layout Standard
Vertex shading can almost be ignored altogether, but since the vertex shader
is run only 4 times, and the fragment shader is run millions of times per
frame, it is a good idea to precalculate values in vertex shader that can
later be used in fragment shader.
There are some limitiations to this which will be mentioned later.
\end_layout
\begin_layout Standard
main_fragment() takes care of calculating a pixel color for every single
output pixel on the screen.
If you're playing at 1080p, the fragment shader will have to be run 1920
* 1080 times! This is obviously straining on the GPU unless the shader
is written efficiently.
\end_layout
\begin_layout Standard
Obviously, main_fragment is where the real action happens.
For many shaders we can stick with a
\begin_inset Quotes eld
\end_inset
dummy
\begin_inset Quotes erd
\end_inset
vertex shader which does some very simple stuff.
\end_layout
\begin_layout Standard
The fragment shader receives a handle to a texture (the game frame itself),
and the texture coordinate for the current pixel, and a bunch of uniforms.
\end_layout
\begin_layout Standard
A fragment shader's final output is a color, simple as that.
Processing ends here.
\end_layout
\begin_layout Section
Hello World
\end_layout
\begin_layout Standard
We'll start off with the basic vertex shader.
No fancy things are being done.
You'll see a similiar vertex shader in most of the Cg programs out there
in the wild.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
void main_vertex(
\end_layout
\begin_layout Plain Layout
float4 pos : POSITION,
\end_layout
\begin_layout Plain Layout
out float4 out_pos : POSITION,
\end_layout
\begin_layout Plain Layout
uniform float4x4 modelViewProj,
\end_layout
\begin_layout Plain Layout
float4 color : COLOR,
\end_layout
\begin_layout Plain Layout
out float4 out_color : COLOR,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD,
\end_layout
\begin_layout Plain Layout
out float2 out_tex : TEXCOORD
\end_layout
\begin_layout Plain Layout
)
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
out_pos = mul(modelViewProj, pos);
\end_layout
\begin_layout Plain Layout
out_color = color;
\end_layout
\begin_layout Plain Layout
out_tex = tex;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
This looks vaguely familiar to C, and it is.
\begin_inset Index idx
status open
\begin_layout Plain Layout
Cg
\end_layout
\end_inset
Cg stands for
\begin_inset Quotes eld
\end_inset
C for graphics
\begin_inset Quotes erd
\end_inset
after all.
We notice some things are happening, notable some new types.
\end_layout
\begin_layout Subsection
Cg types
\end_layout
\begin_layout Subsubsection
Float4
\end_layout
\begin_layout Standard
float4 is a vector type.
It contains 4 elements.
It could be colors, positions, whatever.
It's used for vector processing which the GPUs are extremely efficient
at.
\end_layout
\begin_layout Subsubsection
Semantics
\end_layout
\begin_layout Standard
We see various semantics.
The POSITION semantic means that the variable is tied to vertex coordinates.
We see that we have an input POSITION, and an output (out) POSITION.
We thus transform the input to the output with a matrix multiply with the
current model-view projection.
Since this matrix is the same for every vertex, it is a uniform.
Remember that the variable names DO matter.
modelViewProj has to be called exactly that, as the emulator will pass
the MVP to this uniform.
It is in the specification.
\end_layout
\begin_layout Standard
Since we have semantics for the POSITION, etc, we can call them whatever
we want, as the Cg environment figures out what the variables mean.
\end_layout
\begin_layout Standard
The transformation happens here:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
out_pos = mul(modelViewProj, pos);
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The COLOR semantic isn't very interesting for us, but the example code in
nVidias Cg documentation includes it, so we just follow along.
\end_layout
\begin_layout Standard
TEXCOORD is the texture coordinate we get from the emulator, and generally
we just pass it to the fragment shader directly.
The coordinate will then be
\begin_inset Quotes eld
\end_inset
linearly interpolated
\begin_inset Quotes erd
\end_inset
across the fragments.
More complex shaders can output (almost) as many variables they want, that
will be linearily interpolated for free to the fragment shader.
\end_layout
\begin_layout Standard
We also need a fragment shader to go along with the vertex shader, and here's
a basic shader that only outputs the pixel as-is.
This is pretty much the result you'd get if you didn't run any shader (fixed-fu
nction) at all.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
float4 main_fragment(uniform sampler2D s0 : TEXUNIT0,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD) : COLOR
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
return tex2D(s0, tex);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
This is arguably simpler than the vertex shader.
Important to notice are:
\end_layout
\begin_layout Standard
sampler2D is a handle to a texture in Cg.
The semantic here is TEXUNIT0, which means that it refers to the texture
in texture unit 0.
This is also part of the specification.
\end_layout
\begin_layout Standard
float2 tex : TEXCOORD is the interpolated coordinate we received from the
vertex shader.
\end_layout
\begin_layout Standard
tex2D(s0, tex); simply does texture lookup and returns a COLOR, which is
emitted to the framebuffer.
Simple enough.
Practically every fragment does more than one texture lookup.
For example, classic pixel shaders look at the neighbor pixels as well
to determine the output.
But where is the neighbor pixel? We'll revise the fragment shader and try
to make a really blurry shader to demonstrate.
We now need to pull up some uniforms.
We need to know how to modify our tex coordinates so that it points to
a neighbor pixel.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
struct input
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float2 video_size;
\end_layout
\begin_layout Plain Layout
float2 texture_size;
\end_layout
\begin_layout Plain Layout
float2 output_size;
\end_layout
\begin_layout Plain Layout
float frame_count;
\end_layout
\begin_layout Plain Layout
};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
float4 main_fragment(uniform sampler2D s0 : TEXUNIT0,
\end_layout
\begin_layout Plain Layout
uniform input IN, float2 tex : TEXCOORD) : COLOR
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float4 result = float4(0.0);
\end_layout
\begin_layout Plain Layout
float dx = 1.0 / IN.texture_size.x;
\end_layout
\begin_layout Plain Layout
float dy = 1.0 / IN.texture_size.y;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Grab some of the neighboring pixels and
\end_layout
\begin_layout Plain Layout
// blend together for a very mushy blur.
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(-dx, -dy));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(dx, -dy));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(0.0, 0.0));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(-dx, 0.0));
\end_layout
\begin_layout Plain Layout
return result / 4.0;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Here we use IN.texture_size to determine the the size of the texture.
Since GL maps the whole texture to the interval [0.0, 1.0], 1.0 / IN.texture_size
means we get the offset for a single pixel, simple enough.
Almost every shader uses this.
We can calculate these offsets in vertex shader to improve performance
since the coordinates are linearily interpolated anyways, but that is for
another time ...
;)
\end_layout
\begin_layout Subsection
Putting it together
\end_layout
\begin_layout Standard
The final runnable product is a single .cg file with the main_vertex and
main_fragment functions added together.
Not very complicated.
For the icing on the cake, you should add a license header.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
/* Stupid blur shader.
\end_layout
\begin_layout Plain Layout
Author: Your friendly neighbor.
\end_layout
\begin_layout Plain Layout
License: We don't have those things!
\end_layout
\begin_layout Plain Layout
*/
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
struct input
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float2 video_size;
\end_layout
\begin_layout Plain Layout
float2 texture_size;
\end_layout
\begin_layout Plain Layout
float2 output_size;
\end_layout
\begin_layout Plain Layout
float frame_count;
\end_layout
\begin_layout Plain Layout
};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
void main_vertex(
\end_layout
\begin_layout Plain Layout
float4 pos : POSITION,
\end_layout
\begin_layout Plain Layout
out float4 out_pos : POSITION,
\end_layout
\begin_layout Plain Layout
uniform float4x4 modelViewProj,
\end_layout
\begin_layout Plain Layout
float4 color : COLOR,
\end_layout
\begin_layout Plain Layout
out float4 out_color : COLOR,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD,
\end_layout
\begin_layout Plain Layout
out float2 out_tex : TEXCOORD
\end_layout
\begin_layout Plain Layout
)
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
out_pos = mul(modelViewProj, pos);
\end_layout
\begin_layout Plain Layout
out_color = color; out_tex = tex;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
float4 main_fragment(uniform sampler2D s0 : TEXUNIT0,
\end_layout
\begin_layout Plain Layout
uniform input IN, float2 tex : TEXCOORD) : COLOR
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float4 result = float4(0.0);
\end_layout
\begin_layout Plain Layout
float dx = 1.0 / IN.texture_size.x;
\end_layout
\begin_layout Plain Layout
float dy = 1.0 / IN.texture_size.y;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Grab some of the neighboring pixels and blend
\end_layout
\begin_layout Plain Layout
// together for a very mushy blur.
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(-dx, -dy));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(dx, -dy));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(0.0, 0.0));
\end_layout
\begin_layout Plain Layout
result += tex2D(s0, tex + float2(-dx, 0.0));
\end_layout
\begin_layout Plain Layout
return result / 4.0;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Result
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{figure}
\backslash
begin{centering}
\end_layout
\end_inset
\begin_inset Graphics
filename supermetroid.jpg
lyxscale 50
scale 30
clip
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
caption{The result of the shader code.}
\backslash
end{centering}
\backslash
end{figure}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
As you can see, it's not a practical shader, but it shows the blurring effect
to the extreme.
\end_layout
\begin_layout Section
Expanding further
\end_layout
\begin_layout Subsection
Lookup textures
\end_layout
\begin_layout Standard
We'll first mention a very popular feature among RetroArch users the ability
to access external textures.
This means we have several samplers available for use.
In the config file, we define the textures as so:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
textures = "foo;bar"
\end_layout
\begin_layout Plain Layout
foo = path_foo.png
\end_layout
\begin_layout Plain Layout
bar = bar_foo.png
\end_layout
\begin_layout Plain Layout
foo_linear = true # Linear filtering for foo.
\end_layout
\begin_layout Plain Layout
bar_linear = true # Linear filtering for bar.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
RetroArch PS3 uses PNG as the main format, RetroArch can use whatever if
Imlib2 support is compiled in.
If not, it's restricted to lop-left ordered, non-RLE TGA.
\end_layout
\begin_layout Standard
From here on,
\begin_inset Quotes eld
\end_inset
foo
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
bar
\begin_inset Quotes erd
\end_inset
can be found as uniforms in the shaders.
The texture coordinates for the lookup texture will be found in TEXCOORD1.
This can simply be passed along with TEXCOORD0 in the vertex shader as
we did with TEXCOORD0.
Here we make a fragment shader that blends in two background picture at
a reduced opacity.
Do NOT assign lookup textures to a certain TEXUNIT, Cg will assign a fitting
texture unit to the sampler.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
float4 main_fragment(uniform sampler2D s0 : TEXUNIT0,
\end_layout
\begin_layout Plain Layout
uniform sampler2D foo, uniform sampler2D bar,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD0, float2 tex_lut : TEXCOORD1) : COLOR
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float4 bg_sum = (tex2D(foo, tex_lut) + tex2D(bar, tex_lut)) * 0.15;
\end_layout
\begin_layout Plain Layout
return lerp(tex2D(s0, tex), bg_sum, bg_sum.a); // Alpha blending.
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
Here's an example of what can be achieved using borders (which are just
a simple lookup texture):
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{figure}
\backslash
begin{centering}
\end_layout
\end_inset
\begin_inset Graphics
filename shader-rarch-2.jpg
lyxscale 50
scale 50
clip
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
caption{A shader making use of a lookup texture for the purpose of drawing
a background border.}
\backslash
end{centering}
\backslash
end{figure}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Multipass
\end_layout
\begin_layout Standard
It is sometimes feasible to process an effect in several steps.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
shaders = 2
\end_layout
\begin_layout Plain Layout
shader0 = pass1.cg
\end_layout
\begin_layout Plain Layout
shader1 = pass2.cg
\end_layout
\begin_layout Plain Layout
scale_type0 = source
\end_layout
\begin_layout Plain Layout
scale0 = 2.0
\end_layout
\begin_layout Plain Layout
filter_linear0 = true
\end_layout
\begin_layout Plain Layout
filter_linear1 = false
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Game-aware shaders
\end_layout
\begin_layout Standard
This is a new and exciting feature.
It allows shaders to grab data from the emulator state itself, such as
RAM data.
This is only implemented for SNES so far, but the idea is quite extendable
and portable.
\end_layout
\begin_layout Standard
The basic idea is that we capture RAM data in a certain way (semantic if
you will) from the SNES, and pass it as a uniform to the shader.
The shader can thus act on game state in interesting ways.
\end_layout
\begin_layout Standard
As a tool to show this feature, we'll focus on replicating the simple tech
demo shown on YouTube:
\begin_inset CommandInset href
LatexCommand href
target "http://www.youtube.com/watch?v=4VzaE9q735k"
\end_inset
\end_layout
\begin_layout Standard
What happens is that when Mario jumps in the water, the screen gets a
\begin_inset Quotes eld
\end_inset
watery
\begin_inset Quotes erd
\end_inset
effect applied to it, with a rain lookup texture, and a wavy effect.
When he jumps out of the water, the water effect slowly fades away.
\end_layout
\begin_layout Standard
We thus need to know two things:
\end_layout
\begin_layout Itemize
Is Mario currently in water or not?
\end_layout
\begin_layout Itemize
If not, how long time was it since he jumped out?
\end_layout
\begin_layout Standard
Since shaders do not have state associated with it, we have to let the environme
nt provide the state we need in a certain way.
We'll call this concept a semantic.
\end_layout
\begin_layout Standard
To capture a RAM value directly, we can use the
\begin_inset Quotes eld
\end_inset
capture
\begin_inset Quotes erd
\end_inset
semantic.
To record the time when the RAM value last changed, we can use the
\begin_inset Quotes eld
\end_inset
transition
\begin_inset Quotes erd
\end_inset
semantic.
We obviously also need to know where in RAM we can find this information.
Luckily, the guys over at SMW Central know the answer:
\begin_inset CommandInset href
LatexCommand href
target "http://www.smwcentral.net/?p=map&type=ram"
\end_inset
\end_layout
\begin_layout Standard
We see:
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
$7E:0075, byte, Flag, Player is in water flag.
#$00 = No; #$01 = Yes.
\end_layout
\end_inset
Bank $7E and $7F are mapped to WRAM $0000-$FFFF and $10000-$1FFFF respectively.
Thus, our WRAM address is $0075.
\end_layout
\begin_layout Standard
In the config file, we can now set up the uniforms we'll want to be captured
in the config file.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
imports = "mario_water;mario_water_time"
\end_layout
\begin_layout Plain Layout
mario_water_semantic = capture
\end_layout
\begin_layout Plain Layout
# Capture the RAM value as-is.
\end_layout
\begin_layout Plain Layout
mario_water_wram = 0075
\end_layout
\begin_layout Plain Layout
# This value is hex!
\end_layout
\begin_layout Plain Layout
mario_water_time_semantic = transition
\end_layout
\begin_layout Plain Layout
# Capture the frame count when this variable last changed.
\end_layout
\begin_layout Plain Layout
# Use with IN.frame_count, to create a fade-out effect.
\end_layout
\begin_layout Plain Layout
mario_water_time_wram = 0075
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The amount of possible
\begin_inset Quotes eld
\end_inset
semantics
\begin_inset Quotes erd
\end_inset
are practically endless.
It might be worthwhile to attempt some possibility to run custom code that
keeps track of the shader uniforms in more sophisticated ways later on.
Do note that there is also a %s_mask value which will let you bitmask the
RAM value to check for bit-flags more easily.
\end_layout
\begin_layout Standard
Now that we got that part down, let's work on the shader design.
In the fragment shader we simply render both the full water effect, and
the «normal» texture, and let a
\begin_inset Quotes eld
\end_inset
blend
\begin_inset Quotes erd
\end_inset
variable decide.
We can say that 1.0 is full water effect, 0.0 is no effect.
We can start working on our vertex shader.
We will do something useful here for once.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
struct input
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float frame_count;
\end_layout
\begin_layout Plain Layout
};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
void main_vertex(
\end_layout
\begin_layout Plain Layout
float4 pos : POSITION,
\end_layout
\begin_layout Plain Layout
out float4 out_pos : POSITION,
\end_layout
\begin_layout Plain Layout
uniform float4x4 modelViewProj,
\end_layout
\begin_layout Plain Layout
float4 color : COLOR,
\end_layout
\begin_layout Plain Layout
out float4 out_color : COLOR,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD0,
\end_layout
\begin_layout Plain Layout
out float2 out_tex : TEXCOORD0,
\end_layout
\begin_layout Plain Layout
float2 tex1 : TEXCOORD1,
\end_layout
\begin_layout Plain Layout
out float2 out_tex1 : TEXCOORD1,
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Even if the data should have been int,
\end_layout
\begin_layout Plain Layout
// Cg doesn't seem to
\end_layout
\begin_layout Plain Layout
uniform float mario_water,
\end_layout
\begin_layout Plain Layout
// support integer uniforms
\end_layout
\begin_layout Plain Layout
uniform float mario_water_time,
\end_layout
\begin_layout Plain Layout
uniform input IN,
\end_layout
\begin_layout Plain Layout
// Blend factor is passed to fragment shader.
\end_layout
\begin_layout Plain Layout
// We'll output the same value in every vertex,
\end_layout
\begin_layout Plain Layout
// so every fragment will get the same value
\end_layout
\begin_layout Plain Layout
// for blend_factor since there is nothing to interpolate.
\end_layout
\begin_layout Plain Layout
out float blend_factor )
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
out_pos = mul(modelViewProj, pos);
\end_layout
\begin_layout Plain Layout
out_color = color;
\end_layout
\begin_layout Plain Layout
out_tex = tex;
\end_layout
\begin_layout Plain Layout
out_tex1 = tex1;
\end_layout
\begin_layout Plain Layout
float transition_time = 0.5 *
\end_layout
\begin_layout Plain Layout
(IN.frame_count mario_water_time) / 60.0;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// If Mario is in the water ($0075 != 0),
\end_layout
\begin_layout Plain Layout
// it's always 1 ...
\end_layout
\begin_layout Plain Layout
if (mario_water > 0.0)
\end_layout
\begin_layout Plain Layout
blend_factor = 1.0;
\end_layout
\begin_layout Plain Layout
// Fade out from 1.0 towards 0.0 as
\end_layout
\begin_layout Plain Layout
// transition_time grows larger.
\end_layout
\begin_layout Plain Layout
else
\end_layout
\begin_layout Plain Layout
blend_factor = exp(-transition_time);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
All fine and dandy so far, now we just need to use this blend_factor in
our fragment shader somehow ...
Let's move on to the fragment shader where we blend.
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
float apply_wave(float2 pos, float2 src, float cnt)
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float2 diff = pos - src;
\end_layout
\begin_layout Plain Layout
float dist = 300.0 * sqrt(dot(diff, diff));
\end_layout
\begin_layout Plain Layout
dist -= 0.15 * cnt;
\end_layout
\begin_layout Plain Layout
return sin(dist);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Fancy shizz to create a wave.
\end_layout
\begin_layout Plain Layout
float4 water_texture(float4 output, float2 scale, float cnt)
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float res = apply_wave(scale, src0, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src1, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src2, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src3, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src4, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src5, cnt);
\end_layout
\begin_layout Plain Layout
res += apply_wave(scale, src6, cnt);
\end_layout
\begin_layout Plain Layout
return output * (0.95 + 0.012 * res);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
float4 main_fragment
\end_layout
\begin_layout Plain Layout
(
\end_layout
\begin_layout Plain Layout
uniform input IN,
\end_layout
\begin_layout Plain Layout
float2 tex : TEXCOORD0, uniform sampler2D s0 : TEXUNIT0,
\end_layout
\begin_layout Plain Layout
uniform sampler2D rain, float2 tex1 : TEXCOORD1,
\end_layout
\begin_layout Plain Layout
in float blend_factor // Passed from vertex
\end_layout
\begin_layout Plain Layout
) : COLOR
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
float4 water_tex = water_texture(tex2D(s0, tex), tex1, IN.frame_count);
\end_layout
\begin_layout Plain Layout
float4 normal_tex = tex2D(s0, tex);
\end_layout
\begin_layout Plain Layout
float4 rain_tex = tex2D(rain, tex1);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// First, blend normal and water texture together,
\end_layout
\begin_layout Plain Layout
// then add the rain texture with alpha blending on top
\end_layout
\begin_layout Plain Layout
return lerp(lerp(normal_tex, water_tex, blend_factor),
\end_layout
\begin_layout Plain Layout
rain_tex, rain_tex.a * blend_factor * 0.5);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
RetroArch config file
\end_layout
\begin_layout Standard
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
shaders = 1
\end_layout
\begin_layout Plain Layout
shader0 = mario.cg
\end_layout
\begin_layout Plain Layout
filter_linear0 = true
\end_layout
\begin_layout Plain Layout
imports = "mario_water;mario_water_time"
\end_layout
\begin_layout Plain Layout
mario_water_semantic = capture
\end_layout
\begin_layout Plain Layout
mario_water_time_semantic = transition
\end_layout
\begin_layout Plain Layout
mario_water_wram = 0075
\end_layout
\begin_layout Plain Layout
mario_water_time_wram = 0075
\end_layout
\begin_layout Plain Layout
textures = rain
\end_layout
\begin_layout Plain Layout
rain = rain.tga
\end_layout
\begin_layout Plain Layout
rain_linear = true
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
How to test when developing for RetroArch?
\end_layout
\begin_layout Standard
To develop these kinds of shaders, I'd recommend using
\begin_inset Index idx
status open
\begin_layout Plain Layout
RetroArch
\end_layout
\end_inset
RetroArch w/
\begin_inset Index idx
status open
\begin_layout Plain Layout
Cg
\end_layout
\end_inset
Cg support, and a debugging tool for your emulator of choice to peek at
RAM values (build it for
\begin_inset Index idx
status open
\begin_layout Plain Layout
bSNES
\end_layout
\end_inset
bSNES yourself with options=debugger).
\end_layout
\begin_layout Standard
After written, the shader should translate nicely over to RetroArch with
some slight changes to the config.
\end_layout
\begin_layout Subsubsection
Results
\end_layout
\begin_layout Standard
Here are some screenshots of the mario effect (in Super Mario World SNES)
we developed.
Obviously this is a very simple example showing what can be done.
It's not confined to overlays.
The imagination is the limit here.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{figure}
\backslash
begin{centering}
\end_layout
\end_inset
\begin_inset Graphics
filename mario-water1.jpg
lyxscale 50
scale 50
clip
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
caption{Super Mario World prior to Mario jumping in water.}
\backslash
end{centering}
\backslash
end{figure}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{figure}
\backslash
begin{centering}
\end_layout
\end_inset
\begin_inset Graphics
filename mario-water2.jpg
lyxscale 50
scale 50
clip
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
caption{Super Mario World with a game aware shader applying a LUT texture
as soon as Mario jumps into the water.}
\backslash
end{centering}
\backslash
end{figure}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset index_print
LatexCommand printindex
type "idx"
\end_inset
\end_layout
\end_body
\end_document