From 3645c67ce75716b6bfeaf10910f21fc6443922ed Mon Sep 17 00:00:00 2001 From: hunterk Date: Fri, 27 Sep 2019 16:12:24 -0500 Subject: [PATCH] fix no-aa mode in royale --- ...royale-geometry-aa-last-pass-passthru.glsl | 3235 ---------- .../src/crt-royale-geometry-aa-last-pass.glsl | 3 +- .../src/crt-royale-last-pass-no-geom.glsl | 5531 ----------------- presets/crt-royale-kurozumi.glslp | 2 +- 4 files changed, 3 insertions(+), 8768 deletions(-) delete mode 100644 crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-passthru.glsl delete mode 100644 crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.glsl diff --git a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-passthru.glsl b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-passthru.glsl deleted file mode 100644 index 9419b0b..0000000 --- a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-passthru.glsl +++ /dev/null @@ -1,3235 +0,0 @@ -#version 130 - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - -#pragma parameter crt_gamma "Simulated CRT Gamma" 2.5 1.0 5.0 0.025 -#pragma parameter lcd_gamma "Your Display Gamma" 2.2 1.0 5.0 0.025 -#pragma parameter levels_contrast "Contrast" 1.0 0.0 4.0 0.015625 -#pragma parameter halation_weight "Halation Weight" 0.0 0.0 1.0 0.005 -#pragma parameter diffusion_weight "Diffusion Weight" 0.075 0.0 1.0 0.005 -#pragma parameter bloom_underestimate_levels "Bloom - Underestimate Levels" 0.8 0.0 5.0 0.01 -#pragma parameter bloom_excess "Bloom - Excess" 0.0 0.0 1.0 0.005 -#pragma parameter beam_min_sigma "Beam - Min Sigma" 0.02 0.005 1.0 0.005 -#pragma parameter beam_max_sigma "Beam - Max Sigma" 0.3 0.005 1.0 0.005 -#pragma parameter beam_spot_power "Beam - Spot Power" 0.33 0.01 16.0 0.01 -#pragma parameter beam_min_shape "Beam - Min Shape" 2.0 2.0 32.0 0.1 -#pragma parameter beam_max_shape "Beam - Max Shape" 4.0 2.0 32.0 0.1 -#pragma parameter beam_shape_power "Beam - Shape Power" 0.25 0.01 16.0 0.01 -#pragma parameter beam_horiz_filter "Beam - Horiz Filter" 0.0 0.0 2.0 1.0 -#pragma parameter beam_horiz_sigma "Beam - Horiz Sigma" 0.35 0.0 0.67 0.005 -#pragma parameter beam_horiz_linear_rgb_weight "Beam - Horiz Linear RGB Weight" 1.0 0.0 1.0 0.01 -#pragma parameter convergence_offset_x_r "Convergence - Offset X Red" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_x_g "Convergence - Offset X Green" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_x_b "Convergence - Offset X Blue" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_y_r "Convergence - Offset Y Red" 0.0 -2.0 2.0 0.05 -#pragma parameter convergence_offset_y_g "Convergence - Offset Y Green" 0.0 -2.0 2.0 0.05 -#pragma parameter convergence_offset_y_b "Convergence - Offset Y Blue" 0.0 -2.0 2.0 0.05 -#pragma parameter mask_type "Mask - Type" 1.0 0.0 2.0 1.0 -#pragma parameter mask_sample_mode_desired "Mask - Sample Mode" 0.0 0.0 2.0 1.0 // Consider blocking mode 2. -#pragma parameter mask_specify_num_triads "Mask - Specify Number of Triads" 0.0 0.0 1.0 1.0 -#pragma parameter mask_triad_size_desired "Mask - Triad Size Desired" 3.0 1.0 18.0 0.125 -#pragma parameter mask_num_triads_desired "Mask - Number of Triads Desired" 480.0 342.0 1920.0 1.0 -#pragma parameter aa_subpixel_r_offset_y_runtime "AA - Subpixel R Offset Y" 0.0 -0.333333333 0.333333333 0.333333333 -#pragma parameter aa_cubic_c "AA - Cubic Sharpness" 0.5 0.0 4.0 0.015625 -#pragma parameter aa_gauss_sigma "AA - Gaussian Sigma" 0.5 0.0625 1.0 0.015625 -#pragma parameter geom_mode_runtime "Geometry - Mode" 0.0 0.0 3.0 1.0 -#pragma parameter geom_radius "Geometry - Radius" 2.0 0.16 1024.0 0.1 -#pragma parameter geom_view_dist "Geometry - View Distance" 2.0 0.5 1024.0 0.25 -#pragma parameter geom_tilt_angle_x "Geometry - Tilt Angle X" 0.0 -3.14159265 3.14159265 0.017453292519943295 -#pragma parameter geom_tilt_angle_y "Geometry - Tilt Angle Y" 0.0 -3.14159265 3.14159265 0.017453292519943295 -#pragma parameter geom_aspect_ratio_x "Geometry - Aspect Ratio X" 432.0 1.0 512.0 1.0 -#pragma parameter geom_aspect_ratio_y "Geometry - Aspect Ratio Y" 329.0 1.0 512.0 1.0 -#pragma parameter geom_overscan_x "Geometry - Overscan X" 1.0 0.00390625 4.0 0.00390625 -#pragma parameter geom_overscan_y "Geometry - Overscan Y" 1.0 0.00390625 4.0 0.00390625 -#pragma parameter border_size "Border - Size" 0.015 0.0000001 0.5 0.005 -#pragma parameter border_darkness "Border - Darkness" 2.0 0.0 16.0 0.0625 -#pragma parameter border_compress "Border - Compression" 2.5 1.0 64.0 0.0625 -#pragma parameter interlace_bff "Interlacing - Bottom Field First" 0.0 0.0 1.0 1.0 -#pragma parameter interlace_1080i "Interlace - Detect 1080i" 0.0 0.0 1.0 1.0 - -// compatibility macros for transparently converting HLSLisms into GLSLisms -#define mul(a,b) (b*a) -#define lerp(a,b,c) mix(a,b,c) -#define saturate(c) clamp(c, 0.0, 1.0) -#define frac(x) (fract(x)) -#define float2 vec2 -#define float3 vec3 -#define float4 vec4 -#define bool2 bvec2 -#define bool3 bvec3 -#define bool4 bvec4 -#define float2x2 mat2x2 -#define float3x3 mat3x3 -#define float4x4 mat4x4 -#define float4x3 mat4x3 -#define float2x4 mat2x4 -#define IN params -#define texture_size TextureSize.xy -#define video_size InputSize.xy -#define output_size OutputSize.xy -#define frame_count FrameCount -#define static -#define inline -#define const -#define fmod(x,y) mod(x,y) -#define ddx(c) dFdx(c) -#define ddy(c) dFdy(c) -#define atan2(x,y) atan(x,y) -#define rsqrt(c) inversesqrt(c) - -#if defined(GL_ES) - #define COMPAT_PRECISION mediump -#else - #define COMPAT_PRECISION -#endif - -#if __VERSION__ >= 130 - #define COMPAT_TEXTURE texture -#else - #define COMPAT_TEXTURE texture2D -#endif - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -//////////////////////////// END USER-SETTINGS ////////////////////////// - -///////////////////////////// BEGIN BIND-SHADER-PARAMS //////////////////////////// - -#ifndef BIND_SHADER_PARAMS_H -#define BIND_SHADER_PARAMS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "derived-settings-and-constants.h" - -///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// - -#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H -#define DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// These macros and constants can be used across the whole codebase. -// Unlike the values in user-settings.cgh, end users shouldn't modify these. - - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "user-cgp-constants.h" - -///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// - -#ifndef USER_CGP_CONSTANTS_H -#define USER_CGP_CONSTANTS_H - -// IMPORTANT: -// These constants MUST be set appropriately for the settings in crt-royale.cgp -// (or whatever related .cgp file you're using). If they aren't, you're likely -// to get artifacts, the wrong phosphor mask size, etc. I wish these could be -// set directly in the .cgp file to make things easier, but...they can't. - -// PASS SCALES AND RELATED CONSTANTS: -// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of -// this shader: One does a viewport-scale bloom, and the other skips it. The -// latter benefits from a higher bloom_approx_scale_x, so save both separately: -static const float bloom_approx_size_x = 320.0; -static const float bloom_approx_size_x_for_fake = 400.0; -// Copy the viewport-relative scales of the phosphor mask resize passes -// (MASK_RESIZE and the pass immediately preceding it): -static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); -// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: -static const float geom_max_aspect_ratio = 4.0/3.0; - -// PHOSPHOR MASK TEXTURE CONSTANTS: -// Set the following constants to reflect the properties of the phosphor mask -// texture named in crt-royale.cgp. The shader optionally resizes a mask tile -// based on user settings, then repeats a single tile until filling the screen. -// The shader must know the input texture size (default 64x64), and to manually -// resize, it must also know the horizontal triads per tile (default 8). -static const float2 mask_texture_small_size = float2(64.0, 64.0); -static const float2 mask_texture_large_size = float2(512.0, 512.0); -static const float mask_triads_per_tile = 8.0; -// We need the average brightness of the phosphor mask to compensate for the -// dimming it causes. The following four values are roughly correct for the -// masks included with the shader. Update the value for any LUT texture you -// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether -// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). -//#define PHOSPHOR_MASK_GRILLE14 -static const float mask_grille14_avg_color = 50.6666666/255.0; - // TileableLinearApertureGrille14Wide7d33Spacing*.png - // TileableLinearApertureGrille14Wide10And6Spacing*.png -static const float mask_grille15_avg_color = 53.0/255.0; - // TileableLinearApertureGrille15Wide6d33Spacing*.png - // TileableLinearApertureGrille15Wide8And5d5Spacing*.png -static const float mask_slot_avg_color = 46.0/255.0; - // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png - // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png -static const float mask_shadow_avg_color = 41.0/255.0; - // TileableLinearShadowMask*.png - // TileableLinearShadowMaskEDP*.png - -#ifdef PHOSPHOR_MASK_GRILLE14 - static const float mask_grille_avg_color = mask_grille14_avg_color; -#else - static const float mask_grille_avg_color = mask_grille15_avg_color; -#endif - - -#endif // USER_CGP_CONSTANTS_H - -////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -/////////////////////////////// FIXED SETTINGS /////////////////////////////// - -// Avoid dividing by zero; using a macro overloads for float, float2, etc.: -#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 - -// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. -#ifndef SIMULATE_CRT_ON_LCD - #define SIMULATE_CRT_ON_LCD -#endif - -// Manually tiling a manually resized texture creates texture coord derivative -// discontinuities and confuses anisotropic filtering, causing discolored tile -// seams in the phosphor mask. Workarounds: -// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's -// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and -// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. -// b.) "Tile flat twice" requires drawing two full tiles without border padding -// to the resized mask FBO, and it's incompatible with same-pass curvature. -// (Same-pass curvature isn't used but could be in the future...maybe.) -// c.) "Fix discontinuities" requires derivatives and drawing one tile with -// border padding to the resized mask FBO, but it works with same-pass -// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. -// Precedence: a, then, b, then c (if multiple strategies are #defined). - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen -// Also, manually resampling the phosphor mask is slightly blurrier with -// anisotropic filtering. (Resampling with mipmapping is even worse: It -// creates artifacts, but only with the fully bloomed shader.) The difference -// is subtle with small triads, but you can fix it for a small cost. - //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - - -////////////////////////////// DERIVED SETTINGS ////////////////////////////// - -// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the -// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable -// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be -// #defined by either user-settings.h or a wrapper .cg that #includes the -// current .cg pass.) -#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - #undef PHOSPHOR_MASK_MANUALLY_RESIZE - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is - // inferior in most cases, so replace 2.0 with 0.0: - static const float bloom_approx_filter = - bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; -#else - static const float bloom_approx_filter = bloom_approx_filter_static; -#endif - -// Disable slow runtime paths if static parameters are used. Most of these -// won't be a problem anyway once the params are disabled, but some will. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #endif - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #undef RUNTIME_ANTIALIAS_WEIGHTS - #endif - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #endif - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #endif - #ifdef RUNTIME_GEOMETRY_TILT - #undef RUNTIME_GEOMETRY_TILT - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// Make tex2Dbias a backup for tex2Dlod for wider compatibility. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS -#endif -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS -#endif -// Rule out unavailable anisotropic compatibility strategies: -#ifndef DRIVERS_ALLOW_DERIVATIVES - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #endif - #ifdef ANTIALIAS_DISABLE_ANISOTROPIC - #undef ANTIALIAS_DISABLE_ANISOTROPIC - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif -// Prioritize anisotropic tiling compatibility strategies by performance and -// disable unused strategies. This concentrates all the nesting in one place. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#else - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #else - // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with - // flat texture coords in the same pass, but that's all we use. - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #endif - #endif -#endif -// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can -// reduce some #ifdef nesting in the next section by essentially OR'ing them: -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -// Prioritize anisotropic resampling compatibility strategies the same way: -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif - - -/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// - -// If we can use the large mipmapped LUT without mipmapping artifacts, we -// should: It gives us more options for using fewer samples. -#ifdef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - // TODO: Take advantage of this! - #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT - static const float2 mask_resize_src_lut_size = mask_texture_large_size; - #else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; - #endif -#else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; -#endif - - -// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to -// main_fragment, or a static alias of one of the above. This makes it hard -// to select the phosphor mask at runtime: We can't even assign to a uniform -// global in the vertex shader or select a sampler2D in the vertex shader and -// pass it to the fragment shader (even with explicit TEXUNIT# bindings), -// because it just gives us the input texture or a black screen. However, we -// can get around these limitations by calling tex2D three times with different -// uniform samplers (or resizing the phosphor mask three times altogether). -// With dynamic branches, we can process only one of these branches on top of -// quickly discarding fragments we don't need (cgc seems able to overcome -// limigations around dependent texture fetches inside of branches). Without -// dynamic branches, we have to process every branch for every fragment...which -// is slower. Runtime sampling mode selection is slower without dynamic -// branches as well. Let the user's static #defines decide if it's worth it. -#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT -#else - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// We need to render some minimum number of tiles in the resize passes. -// We need at least 1.0 just to repeat a single tile, and we need extra -// padding beyond that for anisotropic filtering, discontinuitity fixing, -// antialiasing, same-pass curvature (not currently used), etc. First -// determine how many border texels and tiles we need, based on how the result -// will be sampled: -#ifdef GEOMETRY_EARLY - static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; - // Most antialiasing filters have a base radius of 4.0 pixels: - static const float max_aa_base_pixel_border = 4.0 + - max_subpixel_offset; -#else - static const float max_aa_base_pixel_border = 0.0; -#endif -// Anisotropic filtering adds about 0.5 to the pixel border: -#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY - static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; -#else - static const float max_aniso_pixel_border = max_aa_base_pixel_border; -#endif -// Fixing discontinuities adds 1.0 more to the pixel border: -#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; -#else - static const float max_tiled_pixel_border = max_aniso_pixel_border; -#endif -// Convert the pixel border to an integer texel border. Assume same-pass -// curvature about triples the texel frequency: -#ifdef GEOMETRY_EARLY - static const float max_mask_texel_border = - ceil(max_tiled_pixel_border * 3.0); -#else - static const float max_mask_texel_border = ceil(max_tiled_pixel_border); -#endif -// Convert the texel border to a tile border using worst-case assumptions: -static const float max_mask_tile_border = max_mask_texel_border/ - (mask_min_allowed_triad_size * mask_triads_per_tile); - -// Finally, set the number of resized tiles to render to MASK_RESIZE, and set -// the starting texel (inside borders) for sampling it. -#ifndef GEOMETRY_EARLY - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - // Special case: Render two tiles without borders. Anisotropic - // filtering doesn't seem to be a problem here. - static const float mask_resize_num_tiles = 1.0 + 1.0; - static const float mask_start_texels = 0.0; - #else - static const float mask_resize_num_tiles = 1.0 + - 2.0 * max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; - #endif -#else - static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; -#endif - -// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of -// mask_resize_viewport_scale. This limits the maximum final triad size. -// Estimate the minimum number of triads we can split the screen into in each -// dimension (we'll be as correct as mask_resize_viewport_scale is): -static const float mask_resize_num_triads = - mask_resize_num_tiles * mask_triads_per_tile; -static const float2 min_allowed_viewport_triads = - float2(mask_resize_num_triads) / mask_resize_viewport_scale; - - -//////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// - -static const float pi = 3.141592653589; -// We often want to find the location of the previous texel, e.g.: -// const float2 curr_texel = uv * texture_size; -// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); -// const float2 prev_texel_uv = prev_texel / texture_size; -// However, many GPU drivers round incorrectly around exact texel locations. -// We need to subtract a little less than 0.5 before flooring, and some GPU's -// require this value to be farther from 0.5 than others; define it here. -// const float2 prev_texel = -// floor(curr_texel - float2(under_half)) + float2(0.5); -static const float under_half = 0.4995; - - -#endif // DERIVED_SETTINGS_AND_CONSTANTS_H - -//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ///////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -// Override some parameters for gamma-management.h and tex2Dantialias.h: -#define OVERRIDE_DEVICE_GAMMA -static const float gba_gamma = 3.5; // Irrelevant but necessary to define. -#define ANTIALIAS_OVERRIDE_BASICS -#define ANTIALIAS_OVERRIDE_PARAMETERS - -// Disable runtime shader params if the user doesn't explicitly want them. -// Static constants will be defined in place of uniforms of the same name. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #undef PARAMETER_UNIFORM -#endif - -#ifdef PARAMETER_UNIFORM - uniform COMPAT_PRECISION float crt_gamma; - uniform COMPAT_PRECISION float lcd_gamma; - uniform COMPAT_PRECISION float levels_contrast; - uniform COMPAT_PRECISION float halation_weight; - uniform COMPAT_PRECISION float diffusion_weight; - uniform COMPAT_PRECISION float bloom_underestimate_levels; - uniform COMPAT_PRECISION float bloom_excess; - uniform COMPAT_PRECISION float beam_min_sigma; - uniform COMPAT_PRECISION float beam_max_sigma; - uniform COMPAT_PRECISION float beam_spot_power; - uniform COMPAT_PRECISION float beam_min_shape; - uniform COMPAT_PRECISION float beam_max_shape; - uniform COMPAT_PRECISION float beam_shape_power; - uniform COMPAT_PRECISION float beam_horiz_sigma; - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - uniform COMPAT_PRECISION float beam_horiz_filter; - uniform COMPAT_PRECISION float beam_horiz_linear_rgb_weight; - #else - COMPAT_PRECISION float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0); - COMPAT_PRECISION float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0); - #endif - uniform COMPAT_PRECISION float convergence_offset_x_r; - uniform COMPAT_PRECISION float convergence_offset_x_g; - uniform COMPAT_PRECISION float convergence_offset_x_b; - uniform COMPAT_PRECISION float convergence_offset_y_r; - uniform COMPAT_PRECISION float convergence_offset_y_g; - uniform COMPAT_PRECISION float convergence_offset_y_b; - #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - uniform COMPAT_PRECISION float mask_type; - #else - COMPAT_PRECISION float mask_type = clamp(mask_type_static, 0.0, 2.0); - #endif - uniform COMPAT_PRECISION float mask_specify_num_triads; - uniform COMPAT_PRECISION float mask_triad_size_desired; - uniform COMPAT_PRECISION float mask_sample_mode_desired; - uniform COMPAT_PRECISION float mask_num_triads_desired; - uniform COMPAT_PRECISION float aa_subpixel_r_offset_x_runtime; - uniform COMPAT_PRECISION float aa_subpixel_r_offset_y_runtime; - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - uniform COMPAT_PRECISION float aa_cubic_c; - uniform COMPAT_PRECISION float aa_gauss_sigma; - #else - COMPAT_PRECISION float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]? - COMPAT_PRECISION float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]? - #endif - uniform COMPAT_PRECISION float geom_mode_runtime; - uniform COMPAT_PRECISION float geom_radius; - uniform COMPAT_PRECISION float geom_view_dist; - uniform COMPAT_PRECISION float geom_tilt_angle_x; - uniform COMPAT_PRECISION float geom_tilt_angle_y; - uniform COMPAT_PRECISION float geom_aspect_ratio_x; - uniform COMPAT_PRECISION float geom_aspect_ratio_y; - uniform COMPAT_PRECISION float geom_overscan_x; - uniform COMPAT_PRECISION float geom_overscan_y; - uniform COMPAT_PRECISION float border_size; - uniform COMPAT_PRECISION float border_darkness; - uniform COMPAT_PRECISION float border_compress; - uniform COMPAT_PRECISION float interlace_bff; - uniform COMPAT_PRECISION float interlace_1080i; -#else - // Use constants from user-settings.h, and limit ranges appropriately: - COMPAT_PRECISION float crt_gamma = max(0.0, crt_gamma_static); - COMPAT_PRECISION float lcd_gamma = max(0.0, lcd_gamma_static); - COMPAT_PRECISION float levels_contrast = clamp(levels_contrast_static, 0.0, 4.0); - COMPAT_PRECISION float halation_weight = clamp(halation_weight_static, 0.0, 1.0); - COMPAT_PRECISION float diffusion_weight = clamp(diffusion_weight_static, 0.0, 1.0); - COMPAT_PRECISION float bloom_underestimate_levels = max(FIX_ZERO(0.0), bloom_underestimate_levels_static); - COMPAT_PRECISION float bloom_excess = clamp(bloom_excess_static, 0.0, 1.0); - COMPAT_PRECISION float beam_min_sigma = max(FIX_ZERO(0.0), beam_min_sigma_static); - COMPAT_PRECISION float beam_max_sigma = max(beam_min_sigma, beam_max_sigma_static); - COMPAT_PRECISION float beam_spot_power = max(beam_spot_power_static, 0.0); - COMPAT_PRECISION float beam_min_shape = max(2.0, beam_min_shape_static); - COMPAT_PRECISION float beam_max_shape = max(beam_min_shape, beam_max_shape_static); - COMPAT_PRECISION float beam_shape_power = max(0.0, beam_shape_power_static); - COMPAT_PRECISION float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0); - COMPAT_PRECISION float beam_horiz_sigma = max(FIX_ZERO(0.0), beam_horiz_sigma_static); - COMPAT_PRECISION float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0); - // Unpack static vector elements to match scalar uniforms: - COMPAT_PRECISION float convergence_offset_x_r = clamp(convergence_offsets_r_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_x_g = clamp(convergence_offsets_g_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_x_b = clamp(convergence_offsets_b_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_r = clamp(convergence_offsets_r_static.y, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_g = clamp(convergence_offsets_g_static.y, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_b = clamp(convergence_offsets_b_static.y, -4.0, 4.0); - COMPAT_PRECISION float mask_type = clamp(mask_type_static, 0.0, 2.0); - COMPAT_PRECISION float mask_sample_mode_desired = clamp(mask_sample_mode_static, 0.0, 2.0); - COMPAT_PRECISION float mask_specify_num_triads = clamp(mask_specify_num_triads_static, 0.0, 1.0); - COMPAT_PRECISION float mask_triad_size_desired = clamp(mask_triad_size_desired_static, 1.0, 18.0); - COMPAT_PRECISION float mask_num_triads_desired = clamp(mask_num_triads_desired_static, 342.0, 1920.0); - COMPAT_PRECISION float aa_subpixel_r_offset_x_runtime = clamp(aa_subpixel_r_offset_static.x, -0.5, 0.5); - COMPAT_PRECISION float aa_subpixel_r_offset_y_runtime = clamp(aa_subpixel_r_offset_static.y, -0.5, 0.5); - COMPAT_PRECISION float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]? - COMPAT_PRECISION float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]? - COMPAT_PRECISION float geom_mode_runtime = clamp(geom_mode_static, 0.0, 3.0); - COMPAT_PRECISION float geom_radius = max(1.0/(2.0*pi), geom_radius_static); // Clamp to [1/(2*pi), 1024]? - COMPAT_PRECISION float geom_view_dist = max(0.5, geom_view_dist_static); // Clamp to [0.5, 1024]? - COMPAT_PRECISION float geom_tilt_angle_x = clamp(geom_tilt_angle_static.x, -pi, pi); - COMPAT_PRECISION float geom_tilt_angle_y = clamp(geom_tilt_angle_static.y, -pi, pi); - COMPAT_PRECISION float geom_aspect_ratio_x = geom_aspect_ratio_static; // Force >= 1? - COMPAT_PRECISION float geom_aspect_ratio_y = 1.0; - COMPAT_PRECISION float geom_overscan_x = max(FIX_ZERO(0.0), geom_overscan_static.x); - COMPAT_PRECISION float geom_overscan_y = max(FIX_ZERO(0.0), geom_overscan_static.y); - COMPAT_PRECISION float border_size = clamp(border_size_static, 0.0, 0.5); // 0.5 reaches to image center - COMPAT_PRECISION float border_darkness = max(0.0, border_darkness_static); - COMPAT_PRECISION float border_compress = max(1.0, border_compress_static); // < 1.0 darkens whole image - COMPAT_PRECISION float interlace_bff = float(interlace_bff_static); - COMPAT_PRECISION float interlace_1080i = float(interlace_1080i_static); -#endif - -// Provide accessors for vector constants that pack scalar uniforms: -inline float2 get_aspect_vector(const float geom_aspect_ratio) -{ - // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent - // the absolute scale from affecting the uv-mapping for curvature: - const float geom_clamped_aspect_ratio = - min(geom_aspect_ratio, geom_max_aspect_ratio); - const float2 geom_aspect = - normalize(float2(geom_clamped_aspect_ratio, 1.0)); - return geom_aspect; -} - -inline float2 get_geom_overscan_vector() -{ - return float2(geom_overscan_x, geom_overscan_y); -} - -inline float2 get_geom_tilt_angle_vector() -{ - return float2(geom_tilt_angle_x, geom_tilt_angle_y); -} - -inline float3 get_convergence_offsets_x_vector() -{ - return float3(convergence_offset_x_r, convergence_offset_x_g, - convergence_offset_x_b); -} - -inline float3 get_convergence_offsets_y_vector() -{ - return float3(convergence_offset_y_r, convergence_offset_y_g, - convergence_offset_y_b); -} - -inline float2 get_convergence_offsets_r_vector() -{ - return float2(convergence_offset_x_r, convergence_offset_y_r); -} - -inline float2 get_convergence_offsets_g_vector() -{ - return float2(convergence_offset_x_g, convergence_offset_y_g); -} - -inline float2 get_convergence_offsets_b_vector() -{ - return float2(convergence_offset_x_b, convergence_offset_y_b); -} - -inline float2 get_aa_subpixel_r_offset() -{ - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - // WARNING: THIS IS EXTREMELY EXPENSIVE. - return float2(aa_subpixel_r_offset_x_runtime, - aa_subpixel_r_offset_y_runtime); - #else - return aa_subpixel_r_offset_static; - #endif - #else - return aa_subpixel_r_offset_static; - #endif -} - -// Provide accessors settings which still need "cooking:" -inline float get_mask_amplify() -{ - static const float mask_grille_amplify = 1.0/mask_grille_avg_color; - static const float mask_slot_amplify = 1.0/mask_slot_avg_color; - static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color; - return mask_type < 0.5 ? mask_grille_amplify : - mask_type < 1.5 ? mask_slot_amplify : - mask_shadow_amplify; -} - -inline float get_mask_sample_mode() -{ - #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - return mask_sample_mode_desired; - #else - return clamp(mask_sample_mode_desired, 1.0, 2.0); - #endif - #else - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - return mask_sample_mode_static; - #else - return clamp(mask_sample_mode_static, 1.0, 2.0); - #endif - #endif -} - -#endif // BIND_SHADER_PARAMS_H - -//////////////////////////// END BIND-SHADER-PARAMS /////////////////////////// - -//////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// - -#ifndef GAMMA_MANAGEMENT_H -#define GAMMA_MANAGEMENT_H - -///////////////////////////////// MIT LICENSE //////////////////////////////// - -// Copyright (C) 2014 TroggleMonkey -// -// Permission is hereby granted, free of charge, to any person obtaining a copy -// of this software and associated documentation files (the "Software"), to -// deal in the Software without restriction, including without limitation the -// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or -// sell copies of the Software, and to permit persons to whom the Software is -// furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS -// IN THE SOFTWARE. - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// This file provides gamma-aware tex*D*() and encode_output() functions. -// Requires: Before #include-ing this file, the including file must #define -// the following macros when applicable and follow their rules: -// 1.) #define FIRST_PASS if this is the first pass. -// 2.) #define LAST_PASS if this is the last pass. -// 3.) If sRGB is available, set srgb_framebufferN = "true" for -// every pass except the last in your .cgp preset. -// 4.) If sRGB isn't available but you want gamma-correctness with -// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. -// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) -// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) -// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) -// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) -// If an option in [5, 8] is #defined in the first or last pass, it -// should be #defined for both. It shouldn't make a difference -// whether it's #defined for intermediate passes or not. -// Optional: The including file (or an earlier included file) may optionally -// #define a number of macros indicating it will override certain -// macros and associated constants are as follows: -// static constants with either static or uniform constants. The -// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: -// static const float ntsc_gamma -// static const float pal_gamma -// static const float crt_reference_gamma_high -// static const float crt_reference_gamma_low -// static const float lcd_reference_gamma -// static const float crt_office_gamma -// static const float lcd_office_gamma -// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: -// static const float crt_gamma -// static const float gba_gamma -// static const float lcd_gamma -// 3.) OVERRIDE_FINAL_GAMMA: The user must first define: -// static const float input_gamma -// static const float intermediate_gamma -// static const float output_gamma -// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) -// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: -// static const bool assume_opaque_alpha -// The gamma constant overrides must be used in every pass or none, -// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. -// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. -// Usage: After setting macros appropriately, ignore gamma correction and -// replace all tex*D*() calls with equivalent gamma-aware -// tex*D*_linearize calls, except: -// 1.) When you read an LUT, use regular tex*D or a gamma-specified -// function, depending on its gamma encoding: -// tex*D*_linearize_gamma (takes a runtime gamma parameter) -// 2.) If you must read pass0's original input in a later pass, use -// tex2D_linearize_ntsc_gamma. If you want to read pass0's -// input with gamma-corrected bilinear filtering, consider -// creating a first linearizing pass and reading from the input -// of pass1 later. -// Then, return encode_output(color) from every fragment shader. -// Finally, use the global gamma_aware_bilinear boolean if you want -// to statically branch based on whether bilinear filtering is -// gamma-correct or not (e.g. for placing Gaussian blur samples). -// -// Detailed Policy: -// tex*D*_linearize() functions enforce a consistent gamma-management policy -// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume -// their input texture has the same encoding characteristics as the input for -// the current pass (which doesn't apply to the exceptions listed above). -// Similarly, encode_output() enforces a policy based on the LAST_PASS and -// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the -// following two pipelines. -// Typical pipeline with intermediate sRGB framebuffers: -// linear_color = pow(pass0_encoded_color, input_gamma); -// intermediate_output = linear_color; // Automatic sRGB encoding -// linear_color = intermediate_output; // Automatic sRGB decoding -// final_output = pow(intermediate_output, 1.0/output_gamma); -// Typical pipeline without intermediate sRGB framebuffers: -// linear_color = pow(pass0_encoded_color, input_gamma); -// intermediate_output = pow(linear_color, 1.0/intermediate_gamma); -// linear_color = pow(intermediate_output, intermediate_gamma); -// final_output = pow(intermediate_output, 1.0/output_gamma); -// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to -// easily get gamma-correctness without banding on devices where sRGB isn't -// supported. -// -// Use This Header to Maximize Code Reuse: -// The purpose of this header is to provide a consistent interface for texture -// reads and output gamma-encoding that localizes and abstracts away all the -// annoying details. This greatly reduces the amount of code in each shader -// pass that depends on the pass number in the .cgp preset or whether sRGB -// FBO's are being used: You can trivially change the gamma behavior of your -// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same -// code in your first, Nth, and last passes, you can even put it all in another -// header file and #include it from skeleton .cg files that #define the -// appropriate pass-specific settings. -// -// Rationale for Using Three Macros: -// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like -// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes -// a lower maintenance burden on each pass. At first glance it seems we could -// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. -// This works for simple use cases where input_gamma == output_gamma, but it -// breaks down for more complex scenarios like CRT simulation, where the pass -// number determines the gamma encoding of the input and output. - - -/////////////////////////////// BASE CONSTANTS /////////////////////////////// - -// Set standard gamma constants, but allow users to override them: -#ifndef OVERRIDE_STANDARD_GAMMA - // Standard encoding gammas: - static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? - static const float pal_gamma = 2.8; // Never actually 2.8 in practice - // Typical device decoding gammas (only use for emulating devices): - // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard - // gammas: The standards purposely undercorrected for an analog CRT's - // assumed 2.5 reference display gamma to maintain contrast in assumed - // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf - // These unstated assumptions about display gamma and perceptual rendering - // intent caused a lot of confusion, and more modern CRT's seemed to target - // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit - // (they struggle near black with 2.5 gamma anyway), especially PC/laptop - // displays designed to view sRGB in bright environments. (Standards are - // also in flux again with BT.1886, but it's underspecified for displays.) - static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) - static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) - static const float lcd_reference_gamma = 2.5; // To match CRT - static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC - static const float lcd_office_gamma = 2.2; // Approximates sRGB -#endif // OVERRIDE_STANDARD_GAMMA - -// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, -// but only if they're aware of it. -#ifndef OVERRIDE_ALPHA_ASSUMPTIONS - static const bool assume_opaque_alpha = false; -#endif - - -/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// - -// gamma-management.h should be compatible with overriding gamma values with -// runtime user parameters, but we can only define other global constants in -// terms of static constants, not uniform user parameters. To get around this -// limitation, we need to define derived constants using functions. - -// Set device gamma constants, but allow users to override them: -#ifdef OVERRIDE_DEVICE_GAMMA - // The user promises to globally define the appropriate constants: - inline float get_crt_gamma() { return crt_gamma; } - inline float get_gba_gamma() { return gba_gamma; } - inline float get_lcd_gamma() { return lcd_gamma; } -#else - inline float get_crt_gamma() { return crt_reference_gamma_high; } - inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) - inline float get_lcd_gamma() { return lcd_office_gamma; } -#endif // OVERRIDE_DEVICE_GAMMA - -// Set decoding/encoding gammas for the first/lass passes, but allow overrides: -#ifdef OVERRIDE_FINAL_GAMMA - // The user promises to globally define the appropriate constants: - inline float get_intermediate_gamma() { return intermediate_gamma; } - inline float get_input_gamma() { return input_gamma; } - inline float get_output_gamma() { return output_gamma; } -#else - // If we gamma-correct every pass, always use ntsc_gamma between passes to - // ensure middle passes don't need to care if anything is being simulated: - inline float get_intermediate_gamma() { return ntsc_gamma; } - #ifdef SIMULATE_CRT_ON_LCD - inline float get_input_gamma() { return get_crt_gamma(); } - inline float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_LCD - inline float get_input_gamma() { return get_gba_gamma(); } - inline float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_LCD_ON_CRT - inline float get_input_gamma() { return get_lcd_gamma(); } - inline float get_output_gamma() { return get_crt_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_CRT - inline float get_input_gamma() { return get_gba_gamma(); } - inline float get_output_gamma() { return get_crt_gamma(); } - #else // Don't simulate anything: - inline float get_input_gamma() { return ntsc_gamma; } - inline float get_output_gamma() { return ntsc_gamma; } - #endif // SIMULATE_GBA_ON_CRT - #endif // SIMULATE_LCD_ON_CRT - #endif // SIMULATE_GBA_ON_LCD - #endif // SIMULATE_CRT_ON_LCD -#endif // OVERRIDE_FINAL_GAMMA - -// Set decoding/encoding gammas for the current pass. Use static constants for -// linearize_input and gamma_encode_output, because they aren't derived, and -// they let the compiler do dead-code elimination. -#ifndef GAMMA_ENCODE_EVERY_FBO - #ifdef FIRST_PASS - static const bool linearize_input = true; - inline float get_pass_input_gamma() { return get_input_gamma(); } - #else - static const bool linearize_input = false; - inline float get_pass_input_gamma() { return 1.0; } - #endif - #ifdef LAST_PASS - static const bool gamma_encode_output = true; - inline float get_pass_output_gamma() { return get_output_gamma(); } - #else - static const bool gamma_encode_output = false; - inline float get_pass_output_gamma() { return 1.0; } - #endif -#else - static const bool linearize_input = true; - static const bool gamma_encode_output = true; - #ifdef FIRST_PASS - inline float get_pass_input_gamma() { return get_input_gamma(); } - #else - inline float get_pass_input_gamma() { return get_intermediate_gamma(); } - #endif - #ifdef LAST_PASS - inline float get_pass_output_gamma() { return get_output_gamma(); } - #else - inline float get_pass_output_gamma() { return get_intermediate_gamma(); } - #endif -#endif - -// Users might want to know if bilinear filtering will be gamma-correct: -static const bool gamma_aware_bilinear = !linearize_input; - - -////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// - -inline float4 encode_output(const float4 color) -{ - if(gamma_encode_output) - { - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); - } - else - { - return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); - } - } - else - { - return color; - } -} - -inline float4 decode_input(const float4 color) -{ - if(linearize_input) - { - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); - } - else - { - return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); - } - } - else - { - return color; - } -} - -inline float4 decode_gamma_input(const float4 color, const float3 gamma) -{ - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, gamma), 1.0); - } - else - { - return float4(pow(color.rgb, gamma), color.a); - } -} - -//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ -//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D))) -// EDIT: it's the 'const' in front of the coords that's doing it - -/////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// - -// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// Provide a wide array of linearizing texture lookup wrapper functions. The -// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D -// lookups are provided for completeness in case that changes someday. Nobody -// is likely to use the *fetch and *proj functions, but they're included just -// in case. The only tex*D texture sampling functions omitted are: -// - tex*Dcmpbias -// - tex*Dcmplod -// - tex*DARRAY* -// - tex*DMS* -// - Variants returning integers -// Standard line length restrictions are ignored below for vertical brevity. -/* -// tex1D: -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) -{ return decode_input(tex1D(tex, tex_coords)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) -{ return decode_input(tex1D(tex, tex_coords)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) -{ return decode_input(tex1D(tex, tex_coords, dx, dy)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) -{ return decode_input(tex1D(tex, tex_coords, dx, dy)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } - -// tex1Dbias: -inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) -{ return decode_input(tex1Dbias(tex, tex_coords)); } - -inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } - -// tex1Dfetch: -inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) -{ return decode_input(tex1Dfetch(tex, tex_coords)); } - -inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) -{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } - -// tex1Dlod: -inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) -{ return decode_input(tex1Dlod(tex, tex_coords)); } - -inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } - -// tex1Dproj: -inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) -{ return decode_input(tex1Dproj(tex, tex_coords)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) -{ return decode_input(tex1Dproj(tex, tex_coords)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) -{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } -*/ -// tex2D: -inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) -{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } - -inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) -{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } - -inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords, texel_off)); } - -inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } - -// tex2Dbias: -//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) -//{ return decode_input(tex2Dbias(tex, tex_coords)); } - -//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) -//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } - -// tex2Dfetch: -//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) -//{ return decode_input(tex2Dfetch(tex, tex_coords)); } - -//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) -//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } - -// tex2Dlod: -inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) -{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } - -inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } -/* -// tex2Dproj: -inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) -{ return decode_input(tex2Dproj(tex, tex_coords)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) -{ return decode_input(tex2Dproj(tex, tex_coords)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } -*/ -/* -// tex3D: -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) -{ return decode_input(tex3D(tex, tex_coords)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex3D(tex, tex_coords, texel_off)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) -{ return decode_input(tex3D(tex, tex_coords, dx, dy)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) -{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } - -// tex3Dbias: -inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dbias(tex, tex_coords)); } - -inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } - -// tex3Dfetch: -inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) -{ return decode_input(tex3Dfetch(tex, tex_coords)); } - -inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) -{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } - -// tex3Dlod: -inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dlod(tex, tex_coords)); } - -inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } - -// tex3Dproj: -inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dproj(tex, tex_coords)); } - -inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } -/////////* - -// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// This narrow selection of nonstandard tex2D* functions can be useful: - -// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. -//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) -//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } - -//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) -//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } - - -// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// Provide a narrower selection of tex2D* wrapper functions that decode an -// input sample with a specified gamma value. These are useful for reading -// LUT's and for reading the input of pass0 in a later pass. - -// tex2D: -inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) -{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } - -inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) -{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } -/* -// tex2Dbias: -inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) -{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } - -inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) -{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } - -// tex2Dfetch: -inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) -{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } - -inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) -{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } -*/ -// tex2Dlod: -inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) -{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } - -inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) -{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } - - -#endif // GAMMA_MANAGEMENT_H - -//////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// - -//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// - -#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H -#define DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// These macros and constants can be used across the whole codebase. -// Unlike the values in user-settings.cgh, end users shouldn't modify these. - - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "user-cgp-constants.h" - -///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// - -#ifndef USER_CGP_CONSTANTS_H -#define USER_CGP_CONSTANTS_H - -// IMPORTANT: -// These constants MUST be set appropriately for the settings in crt-royale.cgp -// (or whatever related .cgp file you're using). If they aren't, you're likely -// to get artifacts, the wrong phosphor mask size, etc. I wish these could be -// set directly in the .cgp file to make things easier, but...they can't. - -// PASS SCALES AND RELATED CONSTANTS: -// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of -// this shader: One does a viewport-scale bloom, and the other skips it. The -// latter benefits from a higher bloom_approx_scale_x, so save both separately: -static const float bloom_approx_size_x = 320.0; -static const float bloom_approx_size_x_for_fake = 400.0; -// Copy the viewport-relative scales of the phosphor mask resize passes -// (MASK_RESIZE and the pass immediately preceding it): -static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); -// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: -static const float geom_max_aspect_ratio = 4.0/3.0; - -// PHOSPHOR MASK TEXTURE CONSTANTS: -// Set the following constants to reflect the properties of the phosphor mask -// texture named in crt-royale.cgp. The shader optionally resizes a mask tile -// based on user settings, then repeats a single tile until filling the screen. -// The shader must know the input texture size (default 64x64), and to manually -// resize, it must also know the horizontal triads per tile (default 8). -static const float2 mask_texture_small_size = float2(64.0, 64.0); -static const float2 mask_texture_large_size = float2(512.0, 512.0); -static const float mask_triads_per_tile = 8.0; -// We need the average brightness of the phosphor mask to compensate for the -// dimming it causes. The following four values are roughly correct for the -// masks included with the shader. Update the value for any LUT texture you -// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether -// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). -//#define PHOSPHOR_MASK_GRILLE14 -static const float mask_grille14_avg_color = 50.6666666/255.0; - // TileableLinearApertureGrille14Wide7d33Spacing*.png - // TileableLinearApertureGrille14Wide10And6Spacing*.png -static const float mask_grille15_avg_color = 53.0/255.0; - // TileableLinearApertureGrille15Wide6d33Spacing*.png - // TileableLinearApertureGrille15Wide8And5d5Spacing*.png -static const float mask_slot_avg_color = 46.0/255.0; - // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png - // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png -static const float mask_shadow_avg_color = 41.0/255.0; - // TileableLinearShadowMask*.png - // TileableLinearShadowMaskEDP*.png - -#ifdef PHOSPHOR_MASK_GRILLE14 - static const float mask_grille_avg_color = mask_grille14_avg_color; -#else - static const float mask_grille_avg_color = mask_grille15_avg_color; -#endif - - -#endif // USER_CGP_CONSTANTS_H - -////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -/////////////////////////////// FIXED SETTINGS /////////////////////////////// - -// Avoid dividing by zero; using a macro overloads for float, float2, etc.: -#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 - -// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. -#ifndef SIMULATE_CRT_ON_LCD - #define SIMULATE_CRT_ON_LCD -#endif - -// Manually tiling a manually resized texture creates texture coord derivative -// discontinuities and confuses anisotropic filtering, causing discolored tile -// seams in the phosphor mask. Workarounds: -// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's -// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and -// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. -// b.) "Tile flat twice" requires drawing two full tiles without border padding -// to the resized mask FBO, and it's incompatible with same-pass curvature. -// (Same-pass curvature isn't used but could be in the future...maybe.) -// c.) "Fix discontinuities" requires derivatives and drawing one tile with -// border padding to the resized mask FBO, but it works with same-pass -// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. -// Precedence: a, then, b, then c (if multiple strategies are #defined). - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen -// Also, manually resampling the phosphor mask is slightly blurrier with -// anisotropic filtering. (Resampling with mipmapping is even worse: It -// creates artifacts, but only with the fully bloomed shader.) The difference -// is subtle with small triads, but you can fix it for a small cost. - //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - - -////////////////////////////// DERIVED SETTINGS ////////////////////////////// - -// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the -// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable -// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be -// #defined by either user-settings.h or a wrapper .cg that #includes the -// current .cg pass.) -#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - #undef PHOSPHOR_MASK_MANUALLY_RESIZE - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is - // inferior in most cases, so replace 2.0 with 0.0: - static const float bloom_approx_filter = - bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; -#else - static const float bloom_approx_filter = bloom_approx_filter_static; -#endif - -// Disable slow runtime paths if static parameters are used. Most of these -// won't be a problem anyway once the params are disabled, but some will. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #endif - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #undef RUNTIME_ANTIALIAS_WEIGHTS - #endif - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #endif - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #endif - #ifdef RUNTIME_GEOMETRY_TILT - #undef RUNTIME_GEOMETRY_TILT - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// Make tex2Dbias a backup for tex2Dlod for wider compatibility. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS -#endif -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS -#endif -// Rule out unavailable anisotropic compatibility strategies: -#ifndef DRIVERS_ALLOW_DERIVATIVES - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #endif - #ifdef ANTIALIAS_DISABLE_ANISOTROPIC - #undef ANTIALIAS_DISABLE_ANISOTROPIC - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif -// Prioritize anisotropic tiling compatibility strategies by performance and -// disable unused strategies. This concentrates all the nesting in one place. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#else - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #else - // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with - // flat texture coords in the same pass, but that's all we use. - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #endif - #endif -#endif -// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can -// reduce some #ifdef nesting in the next section by essentially OR'ing them: -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -// Prioritize anisotropic resampling compatibility strategies the same way: -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif - - -/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// - -// If we can use the large mipmapped LUT without mipmapping artifacts, we -// should: It gives us more options for using fewer samples. -#ifdef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - // TODO: Take advantage of this! - #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT - static const float2 mask_resize_src_lut_size = mask_texture_large_size; - #else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; - #endif -#else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; -#endif - - -// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to -// main_fragment, or a static alias of one of the above. This makes it hard -// to select the phosphor mask at runtime: We can't even assign to a uniform -// global in the vertex shader or select a sampler2D in the vertex shader and -// pass it to the fragment shader (even with explicit TEXUNIT# bindings), -// because it just gives us the input texture or a black screen. However, we -// can get around these limitations by calling tex2D three times with different -// uniform samplers (or resizing the phosphor mask three times altogether). -// With dynamic branches, we can process only one of these branches on top of -// quickly discarding fragments we don't need (cgc seems able to overcome -// limigations around dependent texture fetches inside of branches). Without -// dynamic branches, we have to process every branch for every fragment...which -// is slower. Runtime sampling mode selection is slower without dynamic -// branches as well. Let the user's static #defines decide if it's worth it. -#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT -#else - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// We need to render some minimum number of tiles in the resize passes. -// We need at least 1.0 just to repeat a single tile, and we need extra -// padding beyond that for anisotropic filtering, discontinuitity fixing, -// antialiasing, same-pass curvature (not currently used), etc. First -// determine how many border texels and tiles we need, based on how the result -// will be sampled: -#ifdef GEOMETRY_EARLY - static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; - // Most antialiasing filters have a base radius of 4.0 pixels: - static const float max_aa_base_pixel_border = 4.0 + - max_subpixel_offset; -#else - static const float max_aa_base_pixel_border = 0.0; -#endif -// Anisotropic filtering adds about 0.5 to the pixel border: -#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY - static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; -#else - static const float max_aniso_pixel_border = max_aa_base_pixel_border; -#endif -// Fixing discontinuities adds 1.0 more to the pixel border: -#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; -#else - static const float max_tiled_pixel_border = max_aniso_pixel_border; -#endif -// Convert the pixel border to an integer texel border. Assume same-pass -// curvature about triples the texel frequency: -#ifdef GEOMETRY_EARLY - static const float max_mask_texel_border = - ceil(max_tiled_pixel_border * 3.0); -#else - static const float max_mask_texel_border = ceil(max_tiled_pixel_border); -#endif -// Convert the texel border to a tile border using worst-case assumptions: -static const float max_mask_tile_border = max_mask_texel_border/ - (mask_min_allowed_triad_size * mask_triads_per_tile); - -// Finally, set the number of resized tiles to render to MASK_RESIZE, and set -// the starting texel (inside borders) for sampling it. -#ifndef GEOMETRY_EARLY - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - // Special case: Render two tiles without borders. Anisotropic - // filtering doesn't seem to be a problem here. - static const float mask_resize_num_tiles = 1.0 + 1.0; - static const float mask_start_texels = 0.0; - #else - static const float mask_resize_num_tiles = 1.0 + - 2.0 * max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; - #endif -#else - static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; -#endif - -// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of -// mask_resize_viewport_scale. This limits the maximum final triad size. -// Estimate the minimum number of triads we can split the screen into in each -// dimension (we'll be as correct as mask_resize_viewport_scale is): -static const float mask_resize_num_triads = - mask_resize_num_tiles * mask_triads_per_tile; -static const float2 min_allowed_viewport_triads = - float2(mask_resize_num_triads) / mask_resize_viewport_scale; - - -//////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// - -static const float pi = 3.141592653589; -// We often want to find the location of the previous texel, e.g.: -// const float2 curr_texel = uv * texture_size; -// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); -// const float2 prev_texel_uv = prev_texel / texture_size; -// However, many GPU drivers round incorrectly around exact texel locations. -// We need to subtract a little less than 0.5 before flooring, and some GPU's -// require this value to be farther from 0.5 than others; define it here. -// const float2 prev_texel = -// floor(curr_texel - float2(under_half)) + float2(0.5); -static const float under_half = 0.4995; - - -#endif // DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// - -#undef COMPAT_PRECISION -#undef COMPAT_TEXTURE - -#if defined(VERTEX) - -#if __VERSION__ >= 130 -#define COMPAT_VARYING out -#define COMPAT_ATTRIBUTE in -#define COMPAT_TEXTURE texture -#else -#define COMPAT_VARYING varying -#define COMPAT_ATTRIBUTE attribute -#define COMPAT_TEXTURE texture2D -#endif - -#ifdef GL_ES -#define COMPAT_PRECISION mediump -#else -#define COMPAT_PRECISION -#endif - -COMPAT_ATTRIBUTE vec4 VertexCoord; -COMPAT_ATTRIBUTE vec4 COLOR; -COMPAT_ATTRIBUTE vec4 TexCoord; -COMPAT_VARYING vec4 COL0; -COMPAT_VARYING vec4 TEX0; - -vec4 _oPosition1; -uniform mat4 MVPMatrix; -uniform COMPAT_PRECISION int FrameDirection; -uniform COMPAT_PRECISION int FrameCount; -uniform COMPAT_PRECISION vec2 OutputSize; -uniform COMPAT_PRECISION vec2 TextureSize; -uniform COMPAT_PRECISION vec2 InputSize; - -// compatibility #defines -#define vTexCoord TEX0.xy -#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize -#define OutSize vec4(OutputSize, 1.0 / OutputSize) - -void main() -{ - gl_Position = MVPMatrix * VertexCoord; - TEX0.xy = TexCoord.xy; -} - -#elif defined(FRAGMENT) - -#ifdef GL_ES -#ifdef GL_FRAGMENT_PRECISION_HIGH -precision highp float; -#else -precision mediump float; -#endif -#define COMPAT_PRECISION mediump -#else -#define COMPAT_PRECISION -#endif - -#if __VERSION__ >= 130 -#define COMPAT_VARYING in -#define COMPAT_TEXTURE texture -out COMPAT_PRECISION vec4 FragColor; -#else -#define COMPAT_VARYING varying -#define FragColor gl_FragColor -#define COMPAT_TEXTURE texture2D -#endif - -uniform COMPAT_PRECISION int FrameDirection; -uniform COMPAT_PRECISION int FrameCount; -uniform COMPAT_PRECISION vec2 OutputSize; -uniform COMPAT_PRECISION vec2 TextureSize; -uniform COMPAT_PRECISION vec2 InputSize; -uniform sampler2D Texture; -COMPAT_VARYING vec4 TEX0; - -// compatibility #defines -#define Source Texture -#define vTexCoord TEX0.xy - -#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize -#define OutSize vec4(OutputSize, 1.0 / OutputSize) - -void main() -{ -// Paste fragment contents here: - - FragColor = encode_output(vec4(COMPAT_TEXTURE(Source, vTexCoord).rgb, 1.0)); -} -#endif diff --git a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.glsl b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.glsl index 1be6abc..a855ace 100644 --- a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.glsl +++ b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.glsl @@ -5503,7 +5503,8 @@ void main() // 2.) Overscan == float2(1.0, 1.0) // Skipping AA is sharper, but it's only faster with dynamic branches. const float2 abs_aa_r_offset = abs(get_aa_subpixel_r_offset()); - const bool need_subpixel_aa = abs_aa_r_offset.x + abs_aa_r_offset.y > 0.0; + // this next check seems to always return true, even when it shouldn't so disabling it for now + const bool need_subpixel_aa = false;//abs_aa_r_offset.x + abs_aa_r_offset.y > 0.0; float3 color; if(aa_level > 0.5 && (geom_mode > 0.5 || any(bool2((geom_overscan.x != 1.0), (geom_overscan.y != 1.0))))) { diff --git a/crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.glsl b/crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.glsl deleted file mode 100644 index 729683f..0000000 --- a/crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.glsl +++ /dev/null @@ -1,5531 +0,0 @@ -#version 130 - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - -#pragma parameter crt_gamma "Simulated CRT Gamma" 2.5 1.0 5.0 0.025 -#pragma parameter lcd_gamma "Your Display Gamma" 2.2 1.0 5.0 0.025 -#pragma parameter levels_contrast "Contrast" 1.0 0.0 4.0 0.015625 -#pragma parameter halation_weight "Halation Weight" 0.0 0.0 1.0 0.005 -#pragma parameter diffusion_weight "Diffusion Weight" 0.075 0.0 1.0 0.005 -#pragma parameter bloom_underestimate_levels "Bloom - Underestimate Levels" 0.8 0.0 5.0 0.01 -#pragma parameter bloom_excess "Bloom - Excess" 0.0 0.0 1.0 0.005 -#pragma parameter beam_min_sigma "Beam - Min Sigma" 0.02 0.005 1.0 0.005 -#pragma parameter beam_max_sigma "Beam - Max Sigma" 0.3 0.005 1.0 0.005 -#pragma parameter beam_spot_power "Beam - Spot Power" 0.33 0.01 16.0 0.01 -#pragma parameter beam_min_shape "Beam - Min Shape" 2.0 2.0 32.0 0.1 -#pragma parameter beam_max_shape "Beam - Max Shape" 4.0 2.0 32.0 0.1 -#pragma parameter beam_shape_power "Beam - Shape Power" 0.25 0.01 16.0 0.01 -#pragma parameter beam_horiz_filter "Beam - Horiz Filter" 0.0 0.0 2.0 1.0 -#pragma parameter beam_horiz_sigma "Beam - Horiz Sigma" 0.35 0.0 0.67 0.005 -#pragma parameter beam_horiz_linear_rgb_weight "Beam - Horiz Linear RGB Weight" 1.0 0.0 1.0 0.01 -#pragma parameter convergence_offset_x_r "Convergence - Offset X Red" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_x_g "Convergence - Offset X Green" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_x_b "Convergence - Offset X Blue" 0.0 -4.0 4.0 0.05 -#pragma parameter convergence_offset_y_r "Convergence - Offset Y Red" 0.0 -2.0 2.0 0.05 -#pragma parameter convergence_offset_y_g "Convergence - Offset Y Green" 0.0 -2.0 2.0 0.05 -#pragma parameter convergence_offset_y_b "Convergence - Offset Y Blue" 0.0 -2.0 2.0 0.05 -#pragma parameter mask_type "Mask - Type" 1.0 0.0 2.0 1.0 -#pragma parameter mask_sample_mode_desired "Mask - Sample Mode" 0.0 0.0 2.0 1.0 // Consider blocking mode 2. -#pragma parameter mask_specify_num_triads "Mask - Specify Number of Triads" 0.0 0.0 1.0 1.0 -#pragma parameter mask_triad_size_desired "Mask - Triad Size Desired" 3.0 1.0 18.0 0.125 -#pragma parameter mask_num_triads_desired "Mask - Number of Triads Desired" 480.0 342.0 1920.0 1.0 -#pragma parameter aa_subpixel_r_offset_y_runtime "AA - Subpixel R Offset Y" 0.0 -0.333333333 0.333333333 0.333333333 -#pragma parameter aa_cubic_c "AA - Cubic Sharpness" 0.5 0.0 4.0 0.015625 -#pragma parameter aa_gauss_sigma "AA - Gaussian Sigma" 0.5 0.0625 1.0 0.015625 -#pragma parameter geom_mode_runtime "Geometry - Mode" 0.0 0.0 3.0 1.0 -#pragma parameter geom_radius "Geometry - Radius" 2.0 0.16 1024.0 0.1 -#pragma parameter geom_view_dist "Geometry - View Distance" 2.0 0.5 1024.0 0.25 -#pragma parameter geom_tilt_angle_x "Geometry - Tilt Angle X" 0.0 -3.14159265 3.14159265 0.017453292519943295 -#pragma parameter geom_tilt_angle_y "Geometry - Tilt Angle Y" 0.0 -3.14159265 3.14159265 0.017453292519943295 -#pragma parameter geom_aspect_ratio_x "Geometry - Aspect Ratio X" 432.0 1.0 512.0 1.0 -#pragma parameter geom_aspect_ratio_y "Geometry - Aspect Ratio Y" 329.0 1.0 512.0 1.0 -#pragma parameter geom_overscan_x "Geometry - Overscan X" 1.0 0.00390625 4.0 0.00390625 -#pragma parameter geom_overscan_y "Geometry - Overscan Y" 1.0 0.00390625 4.0 0.00390625 -#pragma parameter border_size "Border - Size" 0.015 0.0000001 0.5 0.005 -#pragma parameter border_darkness "Border - Darkness" 2.0 0.0 16.0 0.0625 -#pragma parameter border_compress "Border - Compression" 2.5 1.0 64.0 0.0625 -#pragma parameter interlace_bff "Interlacing - Bottom Field First" 0.0 0.0 1.0 1.0 -#pragma parameter interlace_1080i "Interlace - Detect 1080i" 0.0 0.0 1.0 1.0 - -// compatibility macros for transparently converting HLSLisms into GLSLisms -#define mul(a,b) (b*a) -#define lerp(a,b,c) mix(a,b,c) -#define saturate(c) clamp(c, 0.0, 1.0) -#define frac(x) (fract(x)) -#define float2 vec2 -#define float3 vec3 -#define float4 vec4 -#define bool2 bvec2 -#define bool3 bvec3 -#define bool4 bvec4 -#define float2x2 mat2x2 -#define float3x3 mat3x3 -#define float4x4 mat4x4 -#define float4x3 mat4x3 -#define float2x4 mat2x4 -#define IN params -#define texture_size TextureSize.xy -#define video_size InputSize.xy -#define output_size OutputSize.xy -#define frame_count FrameCount -#define static -#define inline -#define const -#define fmod(x,y) mod(x,y) -#define ddx(c) dFdx(c) -#define ddy(c) dFdy(c) -#define atan2(x,y) atan(x,y) -#define rsqrt(c) inversesqrt(c) - -#if defined(GL_ES) - #define COMPAT_PRECISION mediump -#else - #define COMPAT_PRECISION -#endif - -#if __VERSION__ >= 130 - #define COMPAT_TEXTURE texture -#else - #define COMPAT_TEXTURE texture2D -#endif - -///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// - -#define LAST_PASS -#define SIMULATE_CRT_ON_LCD - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -//////////////////////////// END USER-SETTINGS ////////////////////////// - -//#include "derived-settings-and-constants.h" - -//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// - -#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H -#define DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// These macros and constants can be used across the whole codebase. -// Unlike the values in user-settings.cgh, end users shouldn't modify these. - - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "user-cgp-constants.h" - -///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// - -#ifndef USER_CGP_CONSTANTS_H -#define USER_CGP_CONSTANTS_H - -// IMPORTANT: -// These constants MUST be set appropriately for the settings in crt-royale.cgp -// (or whatever related .cgp file you're using). If they aren't, you're likely -// to get artifacts, the wrong phosphor mask size, etc. I wish these could be -// set directly in the .cgp file to make things easier, but...they can't. - -// PASS SCALES AND RELATED CONSTANTS: -// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of -// this shader: One does a viewport-scale bloom, and the other skips it. The -// latter benefits from a higher bloom_approx_scale_x, so save both separately: -static const float bloom_approx_size_x = 320.0; -static const float bloom_approx_size_x_for_fake = 400.0; -// Copy the viewport-relative scales of the phosphor mask resize passes -// (MASK_RESIZE and the pass immediately preceding it): -static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); -// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: -static const float geom_max_aspect_ratio = 4.0/3.0; - -// PHOSPHOR MASK TEXTURE CONSTANTS: -// Set the following constants to reflect the properties of the phosphor mask -// texture named in crt-royale.cgp. The shader optionally resizes a mask tile -// based on user settings, then repeats a single tile until filling the screen. -// The shader must know the input texture size (default 64x64), and to manually -// resize, it must also know the horizontal triads per tile (default 8). -static const float2 mask_texture_small_size = float2(64.0, 64.0); -static const float2 mask_texture_large_size = float2(512.0, 512.0); -static const float mask_triads_per_tile = 8.0; -// We need the average brightness of the phosphor mask to compensate for the -// dimming it causes. The following four values are roughly correct for the -// masks included with the shader. Update the value for any LUT texture you -// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether -// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). -//#define PHOSPHOR_MASK_GRILLE14 -static const float mask_grille14_avg_color = 50.6666666/255.0; - // TileableLinearApertureGrille14Wide7d33Spacing*.png - // TileableLinearApertureGrille14Wide10And6Spacing*.png -static const float mask_grille15_avg_color = 53.0/255.0; - // TileableLinearApertureGrille15Wide6d33Spacing*.png - // TileableLinearApertureGrille15Wide8And5d5Spacing*.png -static const float mask_slot_avg_color = 46.0/255.0; - // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png - // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png -static const float mask_shadow_avg_color = 41.0/255.0; - // TileableLinearShadowMask*.png - // TileableLinearShadowMaskEDP*.png - -#ifdef PHOSPHOR_MASK_GRILLE14 - static const float mask_grille_avg_color = mask_grille14_avg_color; -#else - static const float mask_grille_avg_color = mask_grille15_avg_color; -#endif - - -#endif // USER_CGP_CONSTANTS_H - -////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -/////////////////////////////// FIXED SETTINGS /////////////////////////////// - -// Avoid dividing by zero; using a macro overloads for float, float2, etc.: -#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 - -// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. -#ifndef SIMULATE_CRT_ON_LCD - #define SIMULATE_CRT_ON_LCD -#endif - -// Manually tiling a manually resized texture creates texture coord derivative -// discontinuities and confuses anisotropic filtering, causing discolored tile -// seams in the phosphor mask. Workarounds: -// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's -// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and -// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. -// b.) "Tile flat twice" requires drawing two full tiles without border padding -// to the resized mask FBO, and it's incompatible with same-pass curvature. -// (Same-pass curvature isn't used but could be in the future...maybe.) -// c.) "Fix discontinuities" requires derivatives and drawing one tile with -// border padding to the resized mask FBO, but it works with same-pass -// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. -// Precedence: a, then, b, then c (if multiple strategies are #defined). - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen -// Also, manually resampling the phosphor mask is slightly blurrier with -// anisotropic filtering. (Resampling with mipmapping is even worse: It -// creates artifacts, but only with the fully bloomed shader.) The difference -// is subtle with small triads, but you can fix it for a small cost. - //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - - -////////////////////////////// DERIVED SETTINGS ////////////////////////////// - -// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the -// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable -// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be -// #defined by either user-settings.h or a wrapper .cg that #includes the -// current .cg pass.) -#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - #undef PHOSPHOR_MASK_MANUALLY_RESIZE - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is - // inferior in most cases, so replace 2.0 with 0.0: - static const float bloom_approx_filter = - bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; -#else - static const float bloom_approx_filter = bloom_approx_filter_static; -#endif - -// Disable slow runtime paths if static parameters are used. Most of these -// won't be a problem anyway once the params are disabled, but some will. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #endif - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #undef RUNTIME_ANTIALIAS_WEIGHTS - #endif - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #endif - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #endif - #ifdef RUNTIME_GEOMETRY_TILT - #undef RUNTIME_GEOMETRY_TILT - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// Make tex2Dbias a backup for tex2Dlod for wider compatibility. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS -#endif -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS -#endif -// Rule out unavailable anisotropic compatibility strategies: -#ifndef DRIVERS_ALLOW_DERIVATIVES - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #endif - #ifdef ANTIALIAS_DISABLE_ANISOTROPIC - #undef ANTIALIAS_DISABLE_ANISOTROPIC - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif -// Prioritize anisotropic tiling compatibility strategies by performance and -// disable unused strategies. This concentrates all the nesting in one place. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#else - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #else - // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with - // flat texture coords in the same pass, but that's all we use. - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #endif - #endif -#endif -// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can -// reduce some #ifdef nesting in the next section by essentially OR'ing them: -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -// Prioritize anisotropic resampling compatibility strategies the same way: -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif - - -/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// - -// If we can use the large mipmapped LUT without mipmapping artifacts, we -// should: It gives us more options for using fewer samples. -#ifdef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - // TODO: Take advantage of this! - #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT - static const float2 mask_resize_src_lut_size = mask_texture_large_size; - #else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; - #endif -#else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; -#endif - - -// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to -// main_fragment, or a static alias of one of the above. This makes it hard -// to select the phosphor mask at runtime: We can't even assign to a uniform -// global in the vertex shader or select a sampler2D in the vertex shader and -// pass it to the fragment shader (even with explicit TEXUNIT# bindings), -// because it just gives us the input texture or a black screen. However, we -// can get around these limitations by calling tex2D three times with different -// uniform samplers (or resizing the phosphor mask three times altogether). -// With dynamic branches, we can process only one of these branches on top of -// quickly discarding fragments we don't need (cgc seems able to overcome -// limigations around dependent texture fetches inside of branches). Without -// dynamic branches, we have to process every branch for every fragment...which -// is slower. Runtime sampling mode selection is slower without dynamic -// branches as well. Let the user's static #defines decide if it's worth it. -#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT -#else - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// We need to render some minimum number of tiles in the resize passes. -// We need at least 1.0 just to repeat a single tile, and we need extra -// padding beyond that for anisotropic filtering, discontinuitity fixing, -// antialiasing, same-pass curvature (not currently used), etc. First -// determine how many border texels and tiles we need, based on how the result -// will be sampled: -#ifdef GEOMETRY_EARLY - static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; - // Most antialiasing filters have a base radius of 4.0 pixels: - static const float max_aa_base_pixel_border = 4.0 + - max_subpixel_offset; -#else - static const float max_aa_base_pixel_border = 0.0; -#endif -// Anisotropic filtering adds about 0.5 to the pixel border: -#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY - static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; -#else - static const float max_aniso_pixel_border = max_aa_base_pixel_border; -#endif -// Fixing discontinuities adds 1.0 more to the pixel border: -#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; -#else - static const float max_tiled_pixel_border = max_aniso_pixel_border; -#endif -// Convert the pixel border to an integer texel border. Assume same-pass -// curvature about triples the texel frequency: -#ifdef GEOMETRY_EARLY - static const float max_mask_texel_border = - ceil(max_tiled_pixel_border * 3.0); -#else - static const float max_mask_texel_border = ceil(max_tiled_pixel_border); -#endif -// Convert the texel border to a tile border using worst-case assumptions: -static const float max_mask_tile_border = max_mask_texel_border/ - (mask_min_allowed_triad_size * mask_triads_per_tile); - -// Finally, set the number of resized tiles to render to MASK_RESIZE, and set -// the starting texel (inside borders) for sampling it. -#ifndef GEOMETRY_EARLY - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - // Special case: Render two tiles without borders. Anisotropic - // filtering doesn't seem to be a problem here. - static const float mask_resize_num_tiles = 1.0 + 1.0; - static const float mask_start_texels = 0.0; - #else - static const float mask_resize_num_tiles = 1.0 + - 2.0 * max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; - #endif -#else - static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; -#endif - -// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of -// mask_resize_viewport_scale. This limits the maximum final triad size. -// Estimate the minimum number of triads we can split the screen into in each -// dimension (we'll be as correct as mask_resize_viewport_scale is): -static const float mask_resize_num_triads = - mask_resize_num_tiles * mask_triads_per_tile; -static const float2 min_allowed_viewport_triads = - float2(mask_resize_num_triads) / mask_resize_viewport_scale; - - -//////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// - -static const float pi = 3.141592653589; -// We often want to find the location of the previous texel, e.g.: -// const float2 curr_texel = uv * texture_size; -// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); -// const float2 prev_texel_uv = prev_texel / texture_size; -// However, many GPU drivers round incorrectly around exact texel locations. -// We need to subtract a little less than 0.5 before flooring, and some GPU's -// require this value to be farther from 0.5 than others; define it here. -// const float2 prev_texel = -// floor(curr_texel - float2(under_half)) + float2(0.5); -static const float under_half = 0.4995; - - -#endif // DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS //////////////////////////// - -//#include "bind-shader-h" - -///////////////////////////// BEGIN BIND-SHADER-PARAMS //////////////////////////// - -#ifndef BIND_SHADER_PARAMS_H -#define BIND_SHADER_PARAMS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "derived-settings-and-constants.h" - -///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS //////////////////// - -#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H -#define DERIVED_SETTINGS_AND_CONSTANTS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// These macros and constants can be used across the whole codebase. -// Unlike the values in user-settings.cgh, end users shouldn't modify these. - - -/////////////////////////////// BEGIN INCLUDES /////////////////////////////// - -//#include "../user-settings.h" - -///////////////////////////// BEGIN USER-SETTINGS //////////////////////////// - -#ifndef USER_SETTINGS_H -#define USER_SETTINGS_H - -///////////////////////////// DRIVER CAPABILITIES //////////////////////////// - -// The Cg compiler uses different "profiles" with different capabilities. -// This shader requires a Cg compilation profile >= arbfp1, but a few options -// require higher profiles like fp30 or fp40. The shader can't detect profile -// or driver capabilities, so instead you must comment or uncomment the lines -// below with "//" before "#define." Disable an option if you get compilation -// errors resembling those listed. Generally speaking, all of these options -// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is -// likely to run on ATI/AMD, due to the Cg compiler's profile limitations. - -// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1. -// Among other things, derivatives help us fix anisotropic filtering artifacts -// with curved manually tiled phosphor mask coords. Related errors: -// error C3004: function "float2 ddx(float2);" not supported in this profile -// error C3004: function "float2 ddy(float2);" not supported in this profile - //#define DRIVERS_ALLOW_DERIVATIVES - -// Fine derivatives: Unsupported on older ATI cards. -// Fine derivatives enable 2x2 fragment block communication, letting us perform -// fast single-pass blur operations. If your card uses coarse derivatives and -// these are enabled, blurs could look broken. Derivatives are a prerequisite. - #ifdef DRIVERS_ALLOW_DERIVATIVES - #define DRIVERS_ALLOW_FINE_DERIVATIVES - #endif - -// Dynamic looping: Requires an fp30 or newer profile. -// This makes phosphor mask resampling faster in some cases. Related errors: -// error C5013: profile does not support "for" statements and "for" could not -// be unrolled - //#define DRIVERS_ALLOW_DYNAMIC_BRANCHES - -// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops. -// Using one static loop avoids overhead if the user is right, but if the user -// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a -// binary search can potentially save some iterations. However, it may fail: -// error C6001: Temporary register limit of 32 exceeded; 35 registers -// needed to compile program - //#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS - -// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable -// anisotropic filtering, thereby fixing related artifacts. Related errors: -// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in -// this profile - //#define DRIVERS_ALLOW_TEX2DLOD - -// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate -// artifacts from anisotropic filtering and mipmapping. Related errors: -// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported -// in this profile - //#define DRIVERS_ALLOW_TEX2DBIAS - -// Integrated graphics compatibility: Integrated graphics like Intel HD 4000 -// impose stricter limitations on register counts and instructions. Enable -// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or: -// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed -// to compile program. -// Enabling integrated graphics compatibility mode will automatically disable: -// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer. -// (This may be reenabled in a later release.) -// 2.) RUNTIME_GEOMETRY_MODE -// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation - //#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - - -//////////////////////////// USER CODEPATH OPTIONS /////////////////////////// - -// To disable a #define option, turn its line into a comment with "//." - -// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications): -// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override -// many of the options in this file and allow real-time tuning, but many of -// them are slower. Disabling them and using this text file will boost FPS. -#define RUNTIME_SHADER_PARAMS_ENABLE -// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but -// it's the only way to do a wide-enough full bloom with a runtime dot pitch. -#define RUNTIME_PHOSPHOR_BLOOM_SIGMA -// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics) -#define RUNTIME_ANTIALIAS_WEIGHTS -// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!) -//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS -// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader -// parameters? This will require more math or dynamic branching. -#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE -// Specify the tilt at runtime? This makes things about 3% slower. -#define RUNTIME_GEOMETRY_TILT -// Specify the geometry mode at runtime? -#define RUNTIME_GEOMETRY_MODE -// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and -// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without -// dynamic branches? This is cheap if mask_resize_viewport_scale is small. -#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - -// PHOSPHOR MASK: -// Manually resize the phosphor mask for best results (slower)? Disabling this -// removes the option to do so, but it may be faster without dynamic branches. - #define PHOSPHOR_MASK_MANUALLY_RESIZE -// If we sinc-resize the mask, should we Lanczos-window it (slower but better)? - #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW -// Larger blurs are expensive, but we need them to blur larger triads. We can -// detect the right blur if the triad size is static or our profile allows -// dynamic branches, but otherwise we use the largest blur the user indicates -// they might need: - #define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS - //#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS - // Here's a helpful chart: - // MaxTriadSize BlurSize MinTriadCountsByResolution - // 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - // 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect - - -/////////////////////////////// USER PARAMETERS ////////////////////////////// - -// Note: Many of these static parameters are overridden by runtime shader -// parameters when those are enabled. However, many others are static codepath -// options that were cleaner or more convert to code as static constants. - -// GAMMA: - static const float crt_gamma_static = 2.5; // range [1, 5] - static const float lcd_gamma_static = 2.2; // range [1, 5] - -// LEVELS MANAGEMENT: - // Control the final multiplicative image contrast: - static const float levels_contrast_static = 1.0; // range [0, 4) - // We auto-dim to avoid clipping between passes and restore brightness - // later. Control the dim factor here: Lower values clip less but crush - // blacks more (static only for now). - static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0 - -// HALATION/DIFFUSION/BLOOM: - // Halation weight: How much energy should be lost to electrons bounding - // around under the CRT glass and exciting random phosphors? - static const float halation_weight_static = 0.0; // range [0, 1] - // Refractive diffusion weight: How much light should spread/diffuse from - // refracting through the CRT glass? - static const float diffusion_weight_static = 0.075; // range [0, 1] - // Underestimate brightness: Bright areas bloom more, but we can base the - // bloom brightpass on a lower brightness to sharpen phosphors, or a higher - // brightness to soften them. Low values clip, but >= 0.8 looks okay. - static const float bloom_underestimate_levels_static = 0.8; // range [0, 5] - // Blur all colors more than necessary for a softer phosphor bloom? - static const float bloom_excess_static = 0.0; // range [0, 1] - // The BLOOM_APPROX pass approximates a phosphor blur early on with a small - // blurred resize of the input (convergence offsets are applied as well). - // There are three filter options (static option only for now): - // 0.) Bilinear resize: A fast, close approximation to a 4x4 resize - // if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane - // and beam_max_sigma is low. - // 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring, - // always uses a static sigma regardless of beam_max_sigma or - // mask_num_triads_desired. - // 2.) True 4x4 Gaussian resize: Slowest, technically correct. - // These options are more pronounced for the fast, unbloomed shader version. -#ifndef RADEON_FIX - static const float bloom_approx_filter_static = 2.0; -#else - static const float bloom_approx_filter_static = 1.0; -#endif - -// ELECTRON BEAM SCANLINE DISTRIBUTION: - // How many scanlines should contribute light to each pixel? Using more - // scanlines is slower (especially for a generalized Gaussian) but less - // distorted with larger beam sigmas (especially for a pure Gaussian). The - // max_beam_sigma at which the closest unused weight is guaranteed < - // 1.0/255.0 (for a 3x antialiased pure Gaussian) is: - // 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized - // 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized - // 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized - // 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized - // 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized - static const float beam_num_scanlines = 3.0; // range [2, 6] - // A generalized Gaussian beam varies shape with color too, now just width. - // It's slower but more flexible (static option only for now). - static const bool beam_generalized_gaussian = true; - // What kind of scanline antialiasing do you want? - // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral - // Integrals are slow (especially for generalized Gaussians) and rarely any - // better than 3x antialiasing (static option only for now). - static const float beam_antialias_level = 1.0; // range [0, 2] - // Min/max standard deviations for scanline beams: Higher values widen and - // soften scanlines. Depending on other options, low min sigmas can alias. - static const float beam_min_sigma_static = 0.02; // range (0, 1] - static const float beam_max_sigma_static = 0.3; // range (0, 1] - // Beam width varies as a function of color: A power function (0) is more - // configurable, but a spherical function (1) gives the widest beam - // variability without aliasing (static option only for now). - static const float beam_spot_shape_function = 0.0; - // Spot shape power: Powers <= 1 give smoother spot shapes but lower - // sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close. - static const float beam_spot_power_static = 1.0/3.0; // range (0, 16] - // Generalized Gaussian max shape parameters: Higher values give flatter - // scanline plateaus and steeper dropoffs, simultaneously widening and - // sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and - // values > ~40.0 cause artifacts with integrals. - static const float beam_min_shape_static = 2.0; // range [2, 32] - static const float beam_max_shape_static = 4.0; // range [2, 32] - // Generalized Gaussian shape power: Affects how quickly the distribution - // changes shape from Gaussian to steep/plateaued as color increases from 0 - // to 1.0. Higher powers appear softer for most colors, and lower powers - // appear sharper for most colors. - static const float beam_shape_power_static = 1.0/4.0; // range (0, 16] - // What filter should be used to sample scanlines horizontally? - // 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp) - static const float beam_horiz_filter_static = 0.0; - // Standard deviation for horizontal Gaussian resampling: - static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3] - // Do horizontal scanline sampling in linear RGB (correct light mixing), - // gamma-encoded RGB (darker, hard spot shape, may better match bandwidth- - // limiting circuitry in some CRT's), or a weighted avg.? - static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1] - // Simulate scanline misconvergence? This needs 3x horizontal texture - // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in - // later passes (static option only for now). - static const bool beam_misconvergence = true; - // Convergence offsets in x/y directions for R/G/B scanline beams in units - // of scanlines. Positive offsets go right/down; ranges [-2, 2] - static const float2 convergence_offsets_r_static = float2(0.1, 0.2); - static const float2 convergence_offsets_g_static = float2(0.3, 0.4); - static const float2 convergence_offsets_b_static = float2(0.5, 0.6); - // Detect interlacing (static option only for now)? - static const bool interlace_detect = true; - // Assume 1080-line sources are interlaced? - static const bool interlace_1080i_static = false; - // For interlaced sources, assume TFF (top-field first) or BFF order? - // (Whether this matters depends on the nature of the interlaced input.) - static const bool interlace_bff_static = false; - -// ANTIALIASING: - // What AA level do you want for curvature/overscan/subpixels? Options: - // 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x - // (Static option only for now) - static const float aa_level = 12.0; // range [0, 24] - // What antialiasing filter do you want (static option only)? Options: - // 0: Box (separable), 1: Box (cylindrical), - // 2: Tent (separable), 3: Tent (cylindrical), - // 4: Gaussian (separable), 5: Gaussian (cylindrical), - // 6: Cubic* (separable), 7: Cubic* (cylindrical, poor) - // 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor) - // * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS - static const float aa_filter = 6.0; // range [0, 9] - // Flip the sample grid on odd/even frames (static option only for now)? - static const bool aa_temporal = false; - // Use RGB subpixel offsets for antialiasing? The pixel is at green, and - // the blue offset is the negative r offset; range [0, 0.5] - static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0); - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c_static = 0.5; // range [0, 4] - // Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter. - static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0] - -// PHOSPHOR MASK: - // Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask - static const float mask_type_static = 1.0; // range [0, 2] - // We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible. - // 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible). - // This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined. - // 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This - // is halfway decent with LUT mipmapping but atrocious without it. - // 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords - // (pretty/fast/inflexible). Each input LUT has a fixed dot pitch. - // This mode reuses the same masks, so triads will be enormous unless - // you change the mask LUT filenames in your .cgp file. - static const float mask_sample_mode_static = 0.0; // range [0, 2] - // Prefer setting the triad size (0.0) or number on the screen (1.0)? - // If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size - // will always be used to calculate the full bloom sigma statically. - static const float mask_specify_num_triads_static = 0.0; // range [0, 1] - // Specify the phosphor triad size, in pixels. Each tile (usually with 8 - // triads) will be rounded to the nearest integer tile size and clamped to - // obey minimum size constraints (imposed to reduce downsize taps) and - // maximum size constraints (imposed to have a sane MASK_RESIZE FBO size). - // To increase the size limit, double the viewport-relative scales for the - // two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h. - // range [1, mask_texture_small_size/mask_triads_per_tile] - static const float mask_triad_size_desired_static = 24.0 / 8.0; - // If mask_specify_num_triads is 1.0/true, we'll go by this instead (the - // final size will be rounded and constrained as above); default 480.0 - static const float mask_num_triads_desired_static = 480.0; - // How many lobes should the sinc/Lanczos resizer use? More lobes require - // more samples and avoid moire a bit better, but some is unavoidable - // depending on the destination size (static option for now). - static const float mask_sinc_lobes = 3.0; // range [2, 4] - // The mask is resized using a variable number of taps in each dimension, - // but some Cg profiles always fetch a constant number of taps no matter - // what (no dynamic branching). We can limit the maximum number of taps if - // we statically limit the minimum phosphor triad size. Larger values are - // faster, but the limit IS enforced (static option only, forever); - // range [1, mask_texture_small_size/mask_triads_per_tile] - // TODO: Make this 1.0 and compensate with smarter sampling! - static const float mask_min_allowed_triad_size = 2.0; - -// GEOMETRY: - // Geometry mode: - // 0: Off (default), 1: Spherical mapping (like cgwg's), - // 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron - static const float geom_mode_static = 0.0; // range [0, 3] - // Radius of curvature: Measured in units of your viewport's diagonal size. - static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024] - // View dist is the distance from the player to their physical screen, in - // units of the viewport's diagonal size. It controls the field of view. - static const float geom_view_dist_static = 2.0; // range [0.5, 1024] - // Tilt angle in radians (clockwise around up and right vectors): - static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi] - // Aspect ratio: When the true viewport size is unknown, this value is used - // to help convert between the phosphor triad size and count, along with - // the mask_resize_viewport_scale constant from user-cgp-constants.h. Set - // this equal to Retroarch's display aspect ratio (DAR) for best results; - // range [1, geom_max_aspect_ratio from user-cgp-constants.h]; - // default (256/224)*(54/47) = 1.313069909 (see below) - static const float geom_aspect_ratio_static = 1.313069909; - // Before getting into overscan, here's some general aspect ratio info: - // - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting - // - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR - // - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping - // Geometry processing has to "undo" the screen-space 2D DAR to calculate - // 3D view vectors, then reapplies the aspect ratio to the simulated CRT in - // uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either: - // a.) Enable Retroarch's "Crop Overscan" - // b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0) - // Real consoles use horizontal black padding in the signal, but emulators - // often crop this without cropping the vertical padding; a 256x224 [S]NES - // frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not. - // The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun: - // http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50 - // http://forums.nesdev.com/viewtopic.php?p=24815#p24815 - // For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR - // without doing a. or b., but horizontal image borders will be tighter - // than vertical ones, messing up curvature and overscan. Fixing the - // padding first corrects this. - // Overscan: Amount to "zoom in" before cropping. You can zoom uniformly - // or adjust x/y independently to e.g. readd horizontal padding, as noted - // above: Values < 1.0 zoom out; range (0, inf) - static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0) - // Compute a proper pixel-space to texture-space matrix even without ddx()/ - // ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering - // with strong curvature (static option only for now). - static const bool geom_force_correct_tangent_matrix = true; - -// BORDERS: - // Rounded border size in texture uv coords: - static const float border_size_static = 0.015; // range [0, 0.5] - // Border darkness: Moderate values darken the border smoothly, and high - // values make the image very dark just inside the border: - static const float border_darkness_static = 2.0; // range [0, inf) - // Border compression: High numbers compress border transitions, narrowing - // the dark border area. - static const float border_compress_static = 2.5; // range [1, inf) - - -#endif // USER_SETTINGS_H - -///////////////////////////// END USER-SETTINGS //////////////////////////// - -//#include "user-cgp-constants.h" - -///////////////////////// BEGIN USER-CGP-CONSTANTS ///////////////////////// - -#ifndef USER_CGP_CONSTANTS_H -#define USER_CGP_CONSTANTS_H - -// IMPORTANT: -// These constants MUST be set appropriately for the settings in crt-royale.cgp -// (or whatever related .cgp file you're using). If they aren't, you're likely -// to get artifacts, the wrong phosphor mask size, etc. I wish these could be -// set directly in the .cgp file to make things easier, but...they can't. - -// PASS SCALES AND RELATED CONSTANTS: -// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of -// this shader: One does a viewport-scale bloom, and the other skips it. The -// latter benefits from a higher bloom_approx_scale_x, so save both separately: -static const float bloom_approx_size_x = 320.0; -static const float bloom_approx_size_x_for_fake = 400.0; -// Copy the viewport-relative scales of the phosphor mask resize passes -// (MASK_RESIZE and the pass immediately preceding it): -static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625); -// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.: -static const float geom_max_aspect_ratio = 4.0/3.0; - -// PHOSPHOR MASK TEXTURE CONSTANTS: -// Set the following constants to reflect the properties of the phosphor mask -// texture named in crt-royale.cgp. The shader optionally resizes a mask tile -// based on user settings, then repeats a single tile until filling the screen. -// The shader must know the input texture size (default 64x64), and to manually -// resize, it must also know the horizontal triads per tile (default 8). -static const float2 mask_texture_small_size = float2(64.0, 64.0); -static const float2 mask_texture_large_size = float2(512.0, 512.0); -static const float mask_triads_per_tile = 8.0; -// We need the average brightness of the phosphor mask to compensate for the -// dimming it causes. The following four values are roughly correct for the -// masks included with the shader. Update the value for any LUT texture you -// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether -// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15). -//#define PHOSPHOR_MASK_GRILLE14 -static const float mask_grille14_avg_color = 50.6666666/255.0; - // TileableLinearApertureGrille14Wide7d33Spacing*.png - // TileableLinearApertureGrille14Wide10And6Spacing*.png -static const float mask_grille15_avg_color = 53.0/255.0; - // TileableLinearApertureGrille15Wide6d33Spacing*.png - // TileableLinearApertureGrille15Wide8And5d5Spacing*.png -static const float mask_slot_avg_color = 46.0/255.0; - // TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png - // TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png -static const float mask_shadow_avg_color = 41.0/255.0; - // TileableLinearShadowMask*.png - // TileableLinearShadowMaskEDP*.png - -#ifdef PHOSPHOR_MASK_GRILLE14 - static const float mask_grille_avg_color = mask_grille14_avg_color; -#else - static const float mask_grille_avg_color = mask_grille15_avg_color; -#endif - - -#endif // USER_CGP_CONSTANTS_H - -////////////////////////// END USER-CGP-CONSTANTS ////////////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -/////////////////////////////// FIXED SETTINGS /////////////////////////////// - -// Avoid dividing by zero; using a macro overloads for float, float2, etc.: -#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16 - -// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma. -#ifndef SIMULATE_CRT_ON_LCD - #define SIMULATE_CRT_ON_LCD -#endif - -// Manually tiling a manually resized texture creates texture coord derivative -// discontinuities and confuses anisotropic filtering, causing discolored tile -// seams in the phosphor mask. Workarounds: -// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's -// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and -// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either. -// b.) "Tile flat twice" requires drawing two full tiles without border padding -// to the resized mask FBO, and it's incompatible with same-pass curvature. -// (Same-pass curvature isn't used but could be in the future...maybe.) -// c.) "Fix discontinuities" requires derivatives and drawing one tile with -// border padding to the resized mask FBO, but it works with same-pass -// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined. -// Precedence: a, then, b, then c (if multiple strategies are #defined). - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen - #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen -// Also, manually resampling the phosphor mask is slightly blurrier with -// anisotropic filtering. (Resampling with mipmapping is even worse: It -// creates artifacts, but only with the fully bloomed shader.) The difference -// is subtle with small triads, but you can fix it for a small cost. - //#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - - -////////////////////////////// DERIVED SETTINGS ////////////////////////////// - -// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the -// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable -// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be -// #defined by either user-settings.h or a wrapper .cg that #includes the -// current .cg pass.) -#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - #undef PHOSPHOR_MASK_MANUALLY_RESIZE - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - // Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is - // inferior in most cases, so replace 2.0 with 0.0: - static const float bloom_approx_filter = - bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static; -#else - static const float bloom_approx_filter = bloom_approx_filter_static; -#endif - -// Disable slow runtime paths if static parameters are used. Most of these -// won't be a problem anyway once the params are disabled, but some will. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #undef RUNTIME_PHOSPHOR_BLOOM_SIGMA - #endif - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #undef RUNTIME_ANTIALIAS_WEIGHTS - #endif - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - #endif - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #endif - #ifdef RUNTIME_GEOMETRY_TILT - #undef RUNTIME_GEOMETRY_TILT - #endif - #ifdef RUNTIME_GEOMETRY_MODE - #undef RUNTIME_GEOMETRY_MODE - #endif - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// Make tex2Dbias a backup for tex2Dlod for wider compatibility. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS -#endif -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS -#endif -// Rule out unavailable anisotropic compatibility strategies: -#ifndef DRIVERS_ALLOW_DERIVATIVES - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #endif - #ifdef ANTIALIAS_DISABLE_ANISOTROPIC - #undef ANTIALIAS_DISABLE_ANISOTROPIC - #endif -#endif -#ifndef DRIVERS_ALLOW_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif -// Prioritize anisotropic tiling compatibility strategies by performance and -// disable unused strategies. This concentrates all the nesting in one place. -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif -#else - #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #endif - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #else - // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with - // flat texture coords in the same pass, but that's all we use. - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - #ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - #endif - #endif - #endif -#endif -// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can -// reduce some #ifdef nesting in the next section by essentially OR'ing them: -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS - #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY -#endif -// Prioritize anisotropic resampling compatibility strategies the same way: -#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS - #endif -#endif - - -/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS ////////////////////// - -// If we can use the large mipmapped LUT without mipmapping artifacts, we -// should: It gives us more options for using fewer samples. -#ifdef DRIVERS_ALLOW_TEX2DLOD - #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD - // TODO: Take advantage of this! - #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT - static const float2 mask_resize_src_lut_size = mask_texture_large_size; - #else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; - #endif -#else - static const float2 mask_resize_src_lut_size = mask_texture_small_size; -#endif - - -// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to -// main_fragment, or a static alias of one of the above. This makes it hard -// to select the phosphor mask at runtime: We can't even assign to a uniform -// global in the vertex shader or select a sampler2D in the vertex shader and -// pass it to the fragment shader (even with explicit TEXUNIT# bindings), -// because it just gives us the input texture or a black screen. However, we -// can get around these limitations by calling tex2D three times with different -// uniform samplers (or resizing the phosphor mask three times altogether). -// With dynamic branches, we can process only one of these branches on top of -// quickly discarding fragments we don't need (cgc seems able to overcome -// limigations around dependent texture fetches inside of branches). Without -// dynamic branches, we have to process every branch for every fragment...which -// is slower. Runtime sampling mode selection is slower without dynamic -// branches as well. Let the user's static #defines decide if it's worth it. -#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT -#else - #ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #endif -#endif - -// We need to render some minimum number of tiles in the resize passes. -// We need at least 1.0 just to repeat a single tile, and we need extra -// padding beyond that for anisotropic filtering, discontinuitity fixing, -// antialiasing, same-pass curvature (not currently used), etc. First -// determine how many border texels and tiles we need, based on how the result -// will be sampled: -#ifdef GEOMETRY_EARLY - static const float max_subpixel_offset = aa_subpixel_r_offset_static.x; - // Most antialiasing filters have a base radius of 4.0 pixels: - static const float max_aa_base_pixel_border = 4.0 + - max_subpixel_offset; -#else - static const float max_aa_base_pixel_border = 0.0; -#endif -// Anisotropic filtering adds about 0.5 to the pixel border: -#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY - static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5; -#else - static const float max_aniso_pixel_border = max_aa_base_pixel_border; -#endif -// Fixing discontinuities adds 1.0 more to the pixel border: -#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES - static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0; -#else - static const float max_tiled_pixel_border = max_aniso_pixel_border; -#endif -// Convert the pixel border to an integer texel border. Assume same-pass -// curvature about triples the texel frequency: -#ifdef GEOMETRY_EARLY - static const float max_mask_texel_border = - ceil(max_tiled_pixel_border * 3.0); -#else - static const float max_mask_texel_border = ceil(max_tiled_pixel_border); -#endif -// Convert the texel border to a tile border using worst-case assumptions: -static const float max_mask_tile_border = max_mask_texel_border/ - (mask_min_allowed_triad_size * mask_triads_per_tile); - -// Finally, set the number of resized tiles to render to MASK_RESIZE, and set -// the starting texel (inside borders) for sampling it. -#ifndef GEOMETRY_EARLY - #ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE - // Special case: Render two tiles without borders. Anisotropic - // filtering doesn't seem to be a problem here. - static const float mask_resize_num_tiles = 1.0 + 1.0; - static const float mask_start_texels = 0.0; - #else - static const float mask_resize_num_tiles = 1.0 + - 2.0 * max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; - #endif -#else - static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border; - static const float mask_start_texels = max_mask_texel_border; -#endif - -// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of -// mask_resize_viewport_scale. This limits the maximum final triad size. -// Estimate the minimum number of triads we can split the screen into in each -// dimension (we'll be as correct as mask_resize_viewport_scale is): -static const float mask_resize_num_triads = - mask_resize_num_tiles * mask_triads_per_tile; -static const float2 min_allowed_viewport_triads = - float2(mask_resize_num_triads) / mask_resize_viewport_scale; - - -//////////////////////// COMMON MATHEMATICAL CONSTANTS /////////////////////// - -static const float pi = 3.141592653589; -// We often want to find the location of the previous texel, e.g.: -// const float2 curr_texel = uv * texture_size; -// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5); -// const float2 prev_texel_uv = prev_texel / texture_size; -// However, many GPU drivers round incorrectly around exact texel locations. -// We need to subtract a little less than 0.5 before flooring, and some GPU's -// require this value to be farther from 0.5 than others; define it here. -// const float2 prev_texel = -// floor(curr_texel - float2(under_half)) + float2(0.5); -static const float under_half = 0.4995; - - -#endif // DERIVED_SETTINGS_AND_CONSTANTS_H - -//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ///////////////////// - -//////////////////////////////// END INCLUDES //////////////////////////////// - -// Override some parameters for gamma-management.h and tex2Dantialias.h: -#define OVERRIDE_DEVICE_GAMMA -static const float gba_gamma = 3.5; // Irrelevant but necessary to define. -#define ANTIALIAS_OVERRIDE_BASICS -#define ANTIALIAS_OVERRIDE_PARAMETERS - -// Disable runtime shader params if the user doesn't explicitly want them. -// Static constants will be defined in place of uniforms of the same name. -#ifndef RUNTIME_SHADER_PARAMS_ENABLE - #undef PARAMETER_UNIFORM -#endif - -#ifdef PARAMETER_UNIFORM - uniform COMPAT_PRECISION float crt_gamma; - uniform COMPAT_PRECISION float lcd_gamma; - uniform COMPAT_PRECISION float levels_contrast; - uniform COMPAT_PRECISION float halation_weight; - uniform COMPAT_PRECISION float diffusion_weight; - uniform COMPAT_PRECISION float bloom_underestimate_levels; - uniform COMPAT_PRECISION float bloom_excess; - uniform COMPAT_PRECISION float beam_min_sigma; - uniform COMPAT_PRECISION float beam_max_sigma; - uniform COMPAT_PRECISION float beam_spot_power; - uniform COMPAT_PRECISION float beam_min_shape; - uniform COMPAT_PRECISION float beam_max_shape; - uniform COMPAT_PRECISION float beam_shape_power; - uniform COMPAT_PRECISION float beam_horiz_sigma; - #ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - uniform COMPAT_PRECISION float beam_horiz_filter; - uniform COMPAT_PRECISION float beam_horiz_linear_rgb_weight; - #else - COMPAT_PRECISION float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0); - COMPAT_PRECISION float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0); - #endif - uniform COMPAT_PRECISION float convergence_offset_x_r; - uniform COMPAT_PRECISION float convergence_offset_x_g; - uniform COMPAT_PRECISION float convergence_offset_x_b; - uniform COMPAT_PRECISION float convergence_offset_y_r; - uniform COMPAT_PRECISION float convergence_offset_y_g; - uniform COMPAT_PRECISION float convergence_offset_y_b; - #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - uniform COMPAT_PRECISION float mask_type; - #else - COMPAT_PRECISION float mask_type = clamp(mask_type_static, 0.0, 2.0); - #endif - uniform COMPAT_PRECISION float mask_specify_num_triads; - uniform COMPAT_PRECISION float mask_triad_size_desired; - uniform COMPAT_PRECISION float mask_sample_mode_desired; - uniform COMPAT_PRECISION float mask_num_triads_desired; - uniform COMPAT_PRECISION float aa_subpixel_r_offset_x_runtime; - uniform COMPAT_PRECISION float aa_subpixel_r_offset_y_runtime; - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - uniform COMPAT_PRECISION float aa_cubic_c; - uniform COMPAT_PRECISION float aa_gauss_sigma; - #else - COMPAT_PRECISION float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]? - COMPAT_PRECISION float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]? - #endif - uniform COMPAT_PRECISION float geom_mode_runtime; - uniform COMPAT_PRECISION float geom_radius; - uniform COMPAT_PRECISION float geom_view_dist; - uniform COMPAT_PRECISION float geom_tilt_angle_x; - uniform COMPAT_PRECISION float geom_tilt_angle_y; - uniform COMPAT_PRECISION float geom_aspect_ratio_x; - uniform COMPAT_PRECISION float geom_aspect_ratio_y; - uniform COMPAT_PRECISION float geom_overscan_x; - uniform COMPAT_PRECISION float geom_overscan_y; - uniform COMPAT_PRECISION float border_size; - uniform COMPAT_PRECISION float border_darkness; - uniform COMPAT_PRECISION float border_compress; - uniform COMPAT_PRECISION float interlace_bff; - uniform COMPAT_PRECISION float interlace_1080i; -#else - // Use constants from user-settings.h, and limit ranges appropriately: - COMPAT_PRECISION float crt_gamma = max(0.0, crt_gamma_static); - COMPAT_PRECISION float lcd_gamma = max(0.0, lcd_gamma_static); - COMPAT_PRECISION float levels_contrast = clamp(levels_contrast_static, 0.0, 4.0); - COMPAT_PRECISION float halation_weight = clamp(halation_weight_static, 0.0, 1.0); - COMPAT_PRECISION float diffusion_weight = clamp(diffusion_weight_static, 0.0, 1.0); - COMPAT_PRECISION float bloom_underestimate_levels = max(FIX_ZERO(0.0), bloom_underestimate_levels_static); - COMPAT_PRECISION float bloom_excess = clamp(bloom_excess_static, 0.0, 1.0); - COMPAT_PRECISION float beam_min_sigma = max(FIX_ZERO(0.0), beam_min_sigma_static); - COMPAT_PRECISION float beam_max_sigma = max(beam_min_sigma, beam_max_sigma_static); - COMPAT_PRECISION float beam_spot_power = max(beam_spot_power_static, 0.0); - COMPAT_PRECISION float beam_min_shape = max(2.0, beam_min_shape_static); - COMPAT_PRECISION float beam_max_shape = max(beam_min_shape, beam_max_shape_static); - COMPAT_PRECISION float beam_shape_power = max(0.0, beam_shape_power_static); - COMPAT_PRECISION float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0); - COMPAT_PRECISION float beam_horiz_sigma = max(FIX_ZERO(0.0), beam_horiz_sigma_static); - COMPAT_PRECISION float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0); - // Unpack static vector elements to match scalar uniforms: - COMPAT_PRECISION float convergence_offset_x_r = clamp(convergence_offsets_r_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_x_g = clamp(convergence_offsets_g_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_x_b = clamp(convergence_offsets_b_static.x, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_r = clamp(convergence_offsets_r_static.y, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_g = clamp(convergence_offsets_g_static.y, -4.0, 4.0); - COMPAT_PRECISION float convergence_offset_y_b = clamp(convergence_offsets_b_static.y, -4.0, 4.0); - COMPAT_PRECISION float mask_type = clamp(mask_type_static, 0.0, 2.0); - COMPAT_PRECISION float mask_sample_mode_desired = clamp(mask_sample_mode_static, 0.0, 2.0); - COMPAT_PRECISION float mask_specify_num_triads = clamp(mask_specify_num_triads_static, 0.0, 1.0); - COMPAT_PRECISION float mask_triad_size_desired = clamp(mask_triad_size_desired_static, 1.0, 18.0); - COMPAT_PRECISION float mask_num_triads_desired = clamp(mask_num_triads_desired_static, 342.0, 1920.0); - COMPAT_PRECISION float aa_subpixel_r_offset_x_runtime = clamp(aa_subpixel_r_offset_static.x, -0.5, 0.5); - COMPAT_PRECISION float aa_subpixel_r_offset_y_runtime = clamp(aa_subpixel_r_offset_static.y, -0.5, 0.5); - COMPAT_PRECISION float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]? - COMPAT_PRECISION float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]? - COMPAT_PRECISION float geom_mode_runtime = clamp(geom_mode_static, 0.0, 3.0); - COMPAT_PRECISION float geom_radius = max(1.0/(2.0*pi), geom_radius_static); // Clamp to [1/(2*pi), 1024]? - COMPAT_PRECISION float geom_view_dist = max(0.5, geom_view_dist_static); // Clamp to [0.5, 1024]? - COMPAT_PRECISION float geom_tilt_angle_x = clamp(geom_tilt_angle_static.x, -pi, pi); - COMPAT_PRECISION float geom_tilt_angle_y = clamp(geom_tilt_angle_static.y, -pi, pi); - COMPAT_PRECISION float geom_aspect_ratio_x = geom_aspect_ratio_static; // Force >= 1? - COMPAT_PRECISION float geom_aspect_ratio_y = 1.0; - COMPAT_PRECISION float geom_overscan_x = max(FIX_ZERO(0.0), geom_overscan_static.x); - COMPAT_PRECISION float geom_overscan_y = max(FIX_ZERO(0.0), geom_overscan_static.y); - COMPAT_PRECISION float border_size = clamp(border_size_static, 0.0, 0.5); // 0.5 reaches to image center - COMPAT_PRECISION float border_darkness = max(0.0, border_darkness_static); - COMPAT_PRECISION float border_compress = max(1.0, border_compress_static); // < 1.0 darkens whole image - COMPAT_PRECISION float interlace_bff = float(interlace_bff_static); - COMPAT_PRECISION float interlace_1080i = float(interlace_1080i_static); -#endif - -// Provide accessors for vector constants that pack scalar uniforms: -inline float2 get_aspect_vector(const float geom_aspect_ratio) -{ - // Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent - // the absolute scale from affecting the uv-mapping for curvature: - const float geom_clamped_aspect_ratio = - min(geom_aspect_ratio, geom_max_aspect_ratio); - const float2 geom_aspect = - normalize(float2(geom_clamped_aspect_ratio, 1.0)); - return geom_aspect; -} - -inline float2 get_geom_overscan_vector() -{ - return float2(geom_overscan_x, geom_overscan_y); -} - -inline float2 get_geom_tilt_angle_vector() -{ - return float2(geom_tilt_angle_x, geom_tilt_angle_y); -} - -inline float3 get_convergence_offsets_x_vector() -{ - return float3(convergence_offset_x_r, convergence_offset_x_g, - convergence_offset_x_b); -} - -inline float3 get_convergence_offsets_y_vector() -{ - return float3(convergence_offset_y_r, convergence_offset_y_g, - convergence_offset_y_b); -} - -inline float2 get_convergence_offsets_r_vector() -{ - return float2(convergence_offset_x_r, convergence_offset_y_r); -} - -inline float2 get_convergence_offsets_g_vector() -{ - return float2(convergence_offset_x_g, convergence_offset_y_g); -} - -inline float2 get_convergence_offsets_b_vector() -{ - return float2(convergence_offset_x_b, convergence_offset_y_b); -} - -inline float2 get_aa_subpixel_r_offset() -{ - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - #ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS - // WARNING: THIS IS EXTREMELY EXPENSIVE. - return float2(aa_subpixel_r_offset_x_runtime, - aa_subpixel_r_offset_y_runtime); - #else - return aa_subpixel_r_offset_static; - #endif - #else - return aa_subpixel_r_offset_static; - #endif -} - -// Provide accessors settings which still need "cooking:" -inline float get_mask_amplify() -{ - static const float mask_grille_amplify = 1.0/mask_grille_avg_color; - static const float mask_slot_amplify = 1.0/mask_slot_avg_color; - static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color; - return mask_type < 0.5 ? mask_grille_amplify : - mask_type < 1.5 ? mask_slot_amplify : - mask_shadow_amplify; -} - -inline float get_mask_sample_mode() -{ - #ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - return mask_sample_mode_desired; - #else - return clamp(mask_sample_mode_desired, 1.0, 2.0); - #endif - #else - #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - return mask_sample_mode_static; - #else - return clamp(mask_sample_mode_static, 1.0, 2.0); - #endif - #endif -} - -#endif // BIND_SHADER_PARAMS_H - -//////////////////////////// END BIND-SHADER-PARAMS /////////////////////////// - -#ifndef RUNTIME_GEOMETRY_TILT - // Create a local-to-global rotation matrix for the CRT's coordinate frame - // and its global-to-local inverse. See the vertex shader for details. - // It's faster to compute these statically if possible. - static const float2 sin_tilt = sin(geom_tilt_angle_static); - static const float2 cos_tilt = cos(geom_tilt_angle_static); - static const float3x3 geom_local_to_global_static = float3x3( - cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, - 0.0, cos_tilt.y, -sin_tilt.y, - -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); - static const float3x3 geom_global_to_local_static = float3x3( - cos_tilt.x, 0.0, -sin_tilt.x, - sin_tilt.y*sin_tilt.x, cos_tilt.y, sin_tilt.y*cos_tilt.x, - cos_tilt.y*sin_tilt.x, -sin_tilt.y, cos_tilt.y*cos_tilt.x); -#endif - -////////////////////////////////// INCLUDES ////////////////////////////////// - -//#include "../../../../include/gamma-management.h" - -//////////////////////////// BEGIN GAMMA-MANAGEMENT ////////////////////////// - -#ifndef GAMMA_MANAGEMENT_H -#define GAMMA_MANAGEMENT_H - -///////////////////////////////// MIT LICENSE //////////////////////////////// - -// Copyright (C) 2014 TroggleMonkey -// -// Permission is hereby granted, free of charge, to any person obtaining a copy -// of this software and associated documentation files (the "Software"), to -// deal in the Software without restriction, including without limitation the -// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or -// sell copies of the Software, and to permit persons to whom the Software is -// furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS -// IN THE SOFTWARE. - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// This file provides gamma-aware tex*D*() and encode_output() functions. -// Requires: Before #include-ing this file, the including file must #define -// the following macros when applicable and follow their rules: -// 1.) #define FIRST_PASS if this is the first pass. -// 2.) #define LAST_PASS if this is the last pass. -// 3.) If sRGB is available, set srgb_framebufferN = "true" for -// every pass except the last in your .cgp preset. -// 4.) If sRGB isn't available but you want gamma-correctness with -// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. -// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) -// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) -// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) -// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) -// If an option in [5, 8] is #defined in the first or last pass, it -// should be #defined for both. It shouldn't make a difference -// whether it's #defined for intermediate passes or not. -// Optional: The including file (or an earlier included file) may optionally -// #define a number of macros indicating it will override certain -// macros and associated constants are as follows: -// static constants with either static or uniform constants. The -// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: -// static const float ntsc_gamma -// static const float pal_gamma -// static const float crt_reference_gamma_high -// static const float crt_reference_gamma_low -// static const float lcd_reference_gamma -// static const float crt_office_gamma -// static const float lcd_office_gamma -// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: -// static const float crt_gamma -// static const float gba_gamma -// static const float lcd_gamma -// 3.) OVERRIDE_FINAL_GAMMA: The user must first define: -// static const float input_gamma -// static const float intermediate_gamma -// static const float output_gamma -// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) -// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: -// static const bool assume_opaque_alpha -// The gamma constant overrides must be used in every pass or none, -// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. -// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. -// Usage: After setting macros appropriately, ignore gamma correction and -// replace all tex*D*() calls with equivalent gamma-aware -// tex*D*_linearize calls, except: -// 1.) When you read an LUT, use regular tex*D or a gamma-specified -// function, depending on its gamma encoding: -// tex*D*_linearize_gamma (takes a runtime gamma parameter) -// 2.) If you must read pass0's original input in a later pass, use -// tex2D_linearize_ntsc_gamma. If you want to read pass0's -// input with gamma-corrected bilinear filtering, consider -// creating a first linearizing pass and reading from the input -// of pass1 later. -// Then, return encode_output(color) from every fragment shader. -// Finally, use the global gamma_aware_bilinear boolean if you want -// to statically branch based on whether bilinear filtering is -// gamma-correct or not (e.g. for placing Gaussian blur samples). -// -// Detailed Policy: -// tex*D*_linearize() functions enforce a consistent gamma-management policy -// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume -// their input texture has the same encoding characteristics as the input for -// the current pass (which doesn't apply to the exceptions listed above). -// Similarly, encode_output() enforces a policy based on the LAST_PASS and -// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the -// following two pipelines. -// Typical pipeline with intermediate sRGB framebuffers: -// linear_color = pow(pass0_encoded_color, input_gamma); -// intermediate_output = linear_color; // Automatic sRGB encoding -// linear_color = intermediate_output; // Automatic sRGB decoding -// final_output = pow(intermediate_output, 1.0/output_gamma); -// Typical pipeline without intermediate sRGB framebuffers: -// linear_color = pow(pass0_encoded_color, input_gamma); -// intermediate_output = pow(linear_color, 1.0/intermediate_gamma); -// linear_color = pow(intermediate_output, intermediate_gamma); -// final_output = pow(intermediate_output, 1.0/output_gamma); -// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to -// easily get gamma-correctness without banding on devices where sRGB isn't -// supported. -// -// Use This Header to Maximize Code Reuse: -// The purpose of this header is to provide a consistent interface for texture -// reads and output gamma-encoding that localizes and abstracts away all the -// annoying details. This greatly reduces the amount of code in each shader -// pass that depends on the pass number in the .cgp preset or whether sRGB -// FBO's are being used: You can trivially change the gamma behavior of your -// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same -// code in your first, Nth, and last passes, you can even put it all in another -// header file and #include it from skeleton .cg files that #define the -// appropriate pass-specific settings. -// -// Rationale for Using Three Macros: -// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like -// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes -// a lower maintenance burden on each pass. At first glance it seems we could -// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. -// This works for simple use cases where input_gamma == output_gamma, but it -// breaks down for more complex scenarios like CRT simulation, where the pass -// number determines the gamma encoding of the input and output. - - -/////////////////////////////// BASE CONSTANTS /////////////////////////////// - -// Set standard gamma constants, but allow users to override them: -#ifndef OVERRIDE_STANDARD_GAMMA - // Standard encoding gammas: - static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? - static const float pal_gamma = 2.8; // Never actually 2.8 in practice - // Typical device decoding gammas (only use for emulating devices): - // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard - // gammas: The standards purposely undercorrected for an analog CRT's - // assumed 2.5 reference display gamma to maintain contrast in assumed - // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf - // These unstated assumptions about display gamma and perceptual rendering - // intent caused a lot of confusion, and more modern CRT's seemed to target - // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit - // (they struggle near black with 2.5 gamma anyway), especially PC/laptop - // displays designed to view sRGB in bright environments. (Standards are - // also in flux again with BT.1886, but it's underspecified for displays.) - static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) - static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) - static const float lcd_reference_gamma = 2.5; // To match CRT - static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC - static const float lcd_office_gamma = 2.2; // Approximates sRGB -#endif // OVERRIDE_STANDARD_GAMMA - -// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, -// but only if they're aware of it. -#ifndef OVERRIDE_ALPHA_ASSUMPTIONS - static const bool assume_opaque_alpha = false; -#endif - - -/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// - -// gamma-management.h should be compatible with overriding gamma values with -// runtime user parameters, but we can only define other global constants in -// terms of static constants, not uniform user parameters. To get around this -// limitation, we need to define derived constants using functions. - -// Set device gamma constants, but allow users to override them: -#ifdef OVERRIDE_DEVICE_GAMMA - // The user promises to globally define the appropriate constants: - inline float get_crt_gamma() { return crt_gamma; } - inline float get_gba_gamma() { return gba_gamma; } - inline float get_lcd_gamma() { return lcd_gamma; } -#else - inline float get_crt_gamma() { return crt_reference_gamma_high; } - inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) - inline float get_lcd_gamma() { return lcd_office_gamma; } -#endif // OVERRIDE_DEVICE_GAMMA - -// Set decoding/encoding gammas for the first/lass passes, but allow overrides: -#ifdef OVERRIDE_FINAL_GAMMA - // The user promises to globally define the appropriate constants: - inline float get_intermediate_gamma() { return intermediate_gamma; } - inline float get_input_gamma() { return input_gamma; } - inline float get_output_gamma() { return output_gamma; } -#else - // If we gamma-correct every pass, always use ntsc_gamma between passes to - // ensure middle passes don't need to care if anything is being simulated: - inline float get_intermediate_gamma() { return ntsc_gamma; } - #ifdef SIMULATE_CRT_ON_LCD - inline float get_input_gamma() { return get_crt_gamma(); } - inline float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_LCD - inline float get_input_gamma() { return get_gba_gamma(); } - inline float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_LCD_ON_CRT - inline float get_input_gamma() { return get_lcd_gamma(); } - inline float get_output_gamma() { return get_crt_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_CRT - inline float get_input_gamma() { return get_gba_gamma(); } - inline float get_output_gamma() { return get_crt_gamma(); } - #else // Don't simulate anything: - inline float get_input_gamma() { return ntsc_gamma; } - inline float get_output_gamma() { return ntsc_gamma; } - #endif // SIMULATE_GBA_ON_CRT - #endif // SIMULATE_LCD_ON_CRT - #endif // SIMULATE_GBA_ON_LCD - #endif // SIMULATE_CRT_ON_LCD -#endif // OVERRIDE_FINAL_GAMMA - -// Set decoding/encoding gammas for the current pass. Use static constants for -// linearize_input and gamma_encode_output, because they aren't derived, and -// they let the compiler do dead-code elimination. -#ifndef GAMMA_ENCODE_EVERY_FBO - #ifdef FIRST_PASS - static const bool linearize_input = true; - inline float get_pass_input_gamma() { return get_input_gamma(); } - #else - static const bool linearize_input = false; - inline float get_pass_input_gamma() { return 1.0; } - #endif - #ifdef LAST_PASS - static const bool gamma_encode_output = true; - inline float get_pass_output_gamma() { return get_output_gamma(); } - #else - static const bool gamma_encode_output = false; - inline float get_pass_output_gamma() { return 1.0; } - #endif -#else - static const bool linearize_input = true; - static const bool gamma_encode_output = true; - #ifdef FIRST_PASS - inline float get_pass_input_gamma() { return get_input_gamma(); } - #else - inline float get_pass_input_gamma() { return get_intermediate_gamma(); } - #endif - #ifdef LAST_PASS - inline float get_pass_output_gamma() { return get_output_gamma(); } - #else - inline float get_pass_output_gamma() { return get_intermediate_gamma(); } - #endif -#endif - -// Users might want to know if bilinear filtering will be gamma-correct: -static const bool gamma_aware_bilinear = !linearize_input; - - -////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// - -inline float4 encode_output(const float4 color) -{ - if(gamma_encode_output) - { - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0); - } - else - { - return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a); - } - } - else - { - return color; - } -} - -inline float4 decode_input(const float4 color) -{ - if(linearize_input) - { - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0); - } - else - { - return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a); - } - } - else - { - return color; - } -} - -inline float4 decode_gamma_input(const float4 color, const float3 gamma) -{ - if(assume_opaque_alpha) - { - return float4(pow(color.rgb, gamma), 1.0); - } - else - { - return float4(pow(color.rgb, gamma), color.a); - } -} - -//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯ -//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D))) -// EDIT: it's the 'const' in front of the coords that's doing it - -/////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// - -// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// Provide a wide array of linearizing texture lookup wrapper functions. The -// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D -// lookups are provided for completeness in case that changes someday. Nobody -// is likely to use the *fetch and *proj functions, but they're included just -// in case. The only tex*D texture sampling functions omitted are: -// - tex*Dcmpbias -// - tex*Dcmplod -// - tex*DARRAY* -// - tex*DMS* -// - Variants returning integers -// Standard line length restrictions are ignored below for vertical brevity. -/* -// tex1D: -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords) -{ return decode_input(tex1D(tex, tex_coords)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords) -{ return decode_input(tex1D(tex, tex_coords)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy) -{ return decode_input(tex1D(tex, tex_coords, dx, dy)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy) -{ return decode_input(tex1D(tex, tex_coords, dx, dy)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } - -inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off) -{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); } - -// tex1Dbias: -inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords) -{ return decode_input(tex1Dbias(tex, tex_coords)); } - -inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); } - -// tex1Dfetch: -inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords) -{ return decode_input(tex1Dfetch(tex, tex_coords)); } - -inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off) -{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); } - -// tex1Dlod: -inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords) -{ return decode_input(tex1Dlod(tex, tex_coords)); } - -inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); } - -// tex1Dproj: -inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords) -{ return decode_input(tex1Dproj(tex, tex_coords)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords) -{ return decode_input(tex1Dproj(tex, tex_coords)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off) -{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } - -inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); } -*/ -// tex2D: -inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords) -{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); } - -inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords) -{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); } - -inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords, texel_off)); } - -inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } - -//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off) -//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); } - -// tex2Dbias: -//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords) -//{ return decode_input(tex2Dbias(tex, tex_coords)); } - -//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) -//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); } - -// tex2Dfetch: -//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords) -//{ return decode_input(tex2Dfetch(tex, tex_coords)); } - -//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off) -//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); } - -// tex2Dlod: -inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords) -{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); } - -inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off) -{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); } -/* -// tex2Dproj: -inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords) -{ return decode_input(tex2Dproj(tex, tex_coords)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords) -{ return decode_input(tex2Dproj(tex, tex_coords)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } - -inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); } -*/ -/* -// tex3D: -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords) -{ return decode_input(tex3D(tex, tex_coords)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off) -{ return decode_input(tex3D(tex, tex_coords, texel_off)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy) -{ return decode_input(tex3D(tex, tex_coords, dx, dy)); } - -inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off) -{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); } - -// tex3Dbias: -inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dbias(tex, tex_coords)); } - -inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); } - -// tex3Dfetch: -inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords) -{ return decode_input(tex3Dfetch(tex, tex_coords)); } - -inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off) -{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); } - -// tex3Dlod: -inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dlod(tex, tex_coords)); } - -inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); } - -// tex3Dproj: -inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords) -{ return decode_input(tex3Dproj(tex, tex_coords)); } - -inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off) -{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); } -/////////* - -// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// This narrow selection of nonstandard tex2D* functions can be useful: - -// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. -//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords) -//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); } - -//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off) -//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); } - - -// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: -// Provide a narrower selection of tex2D* wrapper functions that decode an -// input sample with a specified gamma value. These are useful for reading -// LUT's and for reading the input of pass0 in a later pass. - -// tex2D: -inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma) -{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); } - -inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma) -{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } - -//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma) -//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); } -/* -// tex2Dbias: -inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma) -{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); } - -inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma) -{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); } - -// tex2Dfetch: -inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma) -{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); } - -inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma) -{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); } -*/ -// tex2Dlod: -inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma) -{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); } - -inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma) -{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); } - - -#endif // GAMMA_MANAGEMENT_H - -//////////////////////////// END GAMMA-MANAGEMENT ////////////////////////// - -//#include "tex2Dantialias.h" - -///////////////////////// BEGIN TEX2DANTIALIAS ///////////////////////// - -#ifndef TEX2DANTIALIAS_H -#define TEX2DANTIALIAS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////////// DESCRIPTION //////////////////////////////// - -// This file provides antialiased and subpixel-aware tex2D lookups. -// Requires: All functions share these requirements: -// 1.) All requirements of gamma-management.h must be satisfied! -// 2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe- -// space offsets to texture uv offsets. You can get this with: -// const float2 duv_dx = ddx(tex_uv); -// const float2 duv_dy = ddy(tex_uv); -// const float2x2 pixel_to_tex_uv = float2x2( -// duv_dx.x, duv_dy.x, -// duv_dx.y, duv_dy.y); -// This is left to the user in case the current Cg profile -// doesn't support ddx()/ddy(). Ideally, the user could find -// calculate a distorted tangent-space mapping analytically. -// If not, a simple flat mapping can be obtained with: -// const float2 xy_to_uv_scale = output_size * -// video_size/texture_size; -// const float2x2 pixel_to_tex_uv = float2x2( -// xy_to_uv_scale.x, 0.0, -// 0.0, xy_to_uv_scale.y); -// Optional: To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and: -// 1.) Set an antialiasing level: -// static const float aa_level = {0 (none), -// 1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24} -// 2.) Set a filter type: -// static const float aa_filter = { -// 0 (Box, Separable), 1 (Box, Cylindrical), -// 2 (Tent, Separable), 3 (Tent, Cylindrical) -// 4 (Gaussian, Separable), 5 (Gaussian, Cylindrical) -// 6 (Cubic, Separable), 7 (Cubic, Cylindrical) -// 8 (Lanczos Sinc, Separable), -// 9 (Lanczos Jinc, Cylindrical)} -// If the input is unknown, a separable box filter is used. -// Note: Lanczos Jinc is terrible for sparse sampling, and -// using aa_axis_importance (see below) defeats the purpose. -// 3.) Mirror the sample pattern on odd frames? -// static const bool aa_temporal = {true, false] -// This helps rotational invariance but can look "fluttery." -// The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override -// (all of) the following default parameters with static or uniform -// constants (or an accessor function for subpixel offsets): -// 1.) Cubic parameters: -// static const float aa_cubic_c = 0.5; -// See http://www.imagemagick.org/Usage/filter/#mitchell -// 2.) Gaussian parameters: -// static const float aa_gauss_sigma = -// 0.5/aa_pixel_diameter; -// 3.) Set subpixel offsets. This requires an accessor function -// for compatibility with scalar runtime shader Return -// a float2 pixel offset in [-0.5, 0.5] for the red subpixel: -// float2 get_aa_subpixel_r_offset() -// The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to -// override (all of) the following default static values. However, -// the file's structure requires them to be declared static const: -// 1.) static const float aa_lanczos_lobes = 3.0; -// 2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter; -// Note the default tent/Gaussian support radii may appear -// arbitrary, but extensive testing found them nearly optimal -// for tough cases like strong distortion at low AA levels. -// (The Gaussian default is only best for practical gauss_sigma -// values; much larger gauss_sigmas ironically prefer slightly -// smaller support given sparse sampling, and vice versa.) -// 3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter; -// 4.) static const float2 aa_xy_axis_importance: -// The sparse N-queens sampling grid interacts poorly with -// negative-lobed 2D filters. However, if aliasing is much -// stronger in one direction (e.g. horizontally with a phosphor -// mask), it can be useful to downplay sample offsets along the -// other axis. The support radius in each direction scales with -// aa_xy_axis_importance down to a minimum of 0.5 (box support), -// after which point only the offsets used for calculating -// weights continue to scale downward. This works as follows: -// If aa_xy_axis_importance = float2(1.0, 1.0/support_radius), -// the vertical support radius will drop to 1.0, and we'll just -// filter vertical offsets with the first filter lobe, while -// horizontal offsets go through the full multi-lobe filter. -// If aa_xy_axis_importance = float2(1.0, 0.0), the vertical -// support radius will drop to box support, and the vertical -// offsets will be ignored entirely (essentially giving us a -// box filter vertically). The former is potentially smoother -// (but less predictable) and the default behavior of Lanczos -// jinc, whereas the latter is sharper and the default behavior -// of cubics and Lanczos sinc. -// 5.) static const float aa_pixel_diameter: You can expand the -// pixel diameter to e.g. sqrt(2.0), which may be a better -// support range for cylindrical filters (they don't -// currently discard out-of-circle samples though). -// Finally, there are two miscellaneous options: -// 1.) If you want to antialias a manually tiled texture, you can -// #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to -// fix incompatibilities with anisotropic filtering. This is -// slower, and the Cg profile must support tex2Dlod(). -// 2.) If aa_cubic_c is a runtime uniform, you can #define -// RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per -// fragment instead of at the usage site (which is used by -// default, because it enables static evaluation). -// Description: -// Each antialiased lookup follows these steps: -// 1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5] -// pixels, spanning the diameter of a rectangular box filter. -// 2.) Scale these offsets by the support diameter of the user's chosen filter. -// 3.) Using these pixel offsets from the pixel center, compute the offsets to -// predefined subpixel locations. -// 4.) Compute filter weights based on subpixel offsets. -// Much of that can often be done at compile-time. At runtime: -// 1.) Project pixel-space offsets into uv-space with a matrix multiplication -// to get the uv offsets for each sample. Rectangular pixels have a -// diameter of 1.0. Circular pixels are not currently supported, but they -// might be better with a diameter of sqrt(2.0) to ensure there are no gaps -// between them. -// 2.) Load, weight, and sum samples. -// We use a sparse bilinear sampling grid, so there are two major implications: -// 1.) We can directly project the pixel-space support box into uv-space even -// if we're upsizing. This wouldn't be the case for nearest neighbor, -// where we'd have to expand the uv-space diameter to at least the support -// size to ensure sufficient filter support. In our case, this allows us -// to treat upsizing the same as downsizing and use static weighting. :) -// 2.) For decent results, negative-lobed filters must be computed based on -// separable weights, not radial distances, because the sparse sampling -// makes no guarantees about radial distributions. Even then, it's much -// better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g. -// Lanczos2 horizontally and a box filter vertically. This is mainly due -// to the sparse N-queens sampling and a statistically enormous positive or -// negative covariance between horizontal and vertical weights. -// -// Design Decision Comments: -// "aa_temporal" mirrors the sample pattern on odd frames along the axis that -// keeps subpixel weights constant. This helps with rotational invariance, but -// it can cause distracting fluctuations, and horizontal and vertical edges -// will look the same. Using a different pattern on a shifted grid would -// exploit temporal AA better, but it would require a dynamic branch or a lot -// of conditional moves, so it's prohibitively slow for the minor benefit. - - -///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// - -#ifndef ANTIALIAS_OVERRIDE_BASICS - // The following settings must be static constants: - static const float aa_level = 12.0; - static const float aa_filter = 0.0; - static const bool aa_temporal = false; -#endif - -#ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS - // Users may override these parameters, but the file structure requires - // them to be static constants; see the descriptions above. - static const float aa_pixel_diameter = 1.0; - static const float aa_lanczos_lobes = 3.0; - static const float aa_gauss_support = 1.0 / aa_pixel_diameter; - static const float aa_tent_support = 1.0 / aa_pixel_diameter; - - // If we're using a negative-lobed filter, default to using it horizontally - // only, and use only the first lobe vertically or a box filter, over a - // correspondingly smaller range. This compensates for the sparse sampling - // grid's typically large positive/negative x/y covariance. - static const float2 aa_xy_axis_importance = - aa_filter < 5.5 ? float2(1.0) : // Box, tent, Gaussian - aa_filter < 8.5 ? float2(1.0, 0.0) : // Cubic and Lanczos sinc - aa_filter < 9.5 ? float2(1.0, 1.0/aa_lanczos_lobes) : // Lanczos jinc - float2(1.0); // Default to box -#endif - -#ifndef ANTIALIAS_OVERRIDE_PARAMETERS - // Users may override these values with their own uniform or static consts. - // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell - // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. - // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. - // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. - // 4.) C = 0.0 is a soft spline filter. - static const float aa_cubic_c = 0.5; - static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter; - // Users may override the subpixel offset accessor function with their own. - // A function is used for compatibility with scalar runtime shader - inline float2 get_aa_subpixel_r_offset() - { - return float2(0.0, 0.0); - } -#endif - - -////////////////////////////////// INCLUDES ////////////////////////////////// - -//#include "../../../../include/gamma-management.h" - - -////////////////////////////////// CONSTANTS ///////////////////////////////// - -static const float aa_box_support = 0.5; -static const float aa_cubic_support = 2.0; - - -//////////////////////////// GLOBAL NON-CONSTANTS //////////////////////////// - -// We'll want to define these only once per fragment at most. -#ifdef RUNTIME_ANTIALIAS_WEIGHTS - float aa_cubic_b; - float cubic_branch1_x3_coeff; - float cubic_branch1_x2_coeff; - float cubic_branch1_x0_coeff; - float cubic_branch2_x3_coeff; - float cubic_branch2_x2_coeff; - float cubic_branch2_x1_coeff; - float cubic_branch2_x0_coeff; -#endif - - -/////////////////////////////////// HELPERS ////////////////////////////////// - -void assign_aa_cubic_constants() -{ - // Compute cubic coefficients on demand at runtime, and save them to global - // uniforms. The B parameter is computed from C, because "Keys cubics" - // with B = 1 - 2C are considered the highest quality. - #ifdef RUNTIME_ANTIALIAS_WEIGHTS - if(aa_filter > 5.5 && aa_filter < 7.5) - { - aa_cubic_b = 1.0 - 2.0*aa_cubic_c; - cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c; - cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c; - cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b; - cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c; - cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c; - cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c; - cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c; - } - #endif -} - -inline float4 get_subpixel_support_diam_and_final_axis_importance() -{ - // Statically select the base support radius: - static const float base_support_radius = - aa_filter < 1.5 ? aa_box_support : - aa_filter < 3.5 ? aa_tent_support : - aa_filter < 5.5 ? aa_gauss_support : - aa_filter < 7.5 ? aa_cubic_support : - aa_filter < 9.5 ? aa_lanczos_lobes : - aa_box_support; // Default to box - // Expand the filter support for subpixel filtering. - const float2 subpixel_support_radius_raw = - float2(base_support_radius) + abs(get_aa_subpixel_r_offset()); - if(aa_filter < 1.5) - { - // Ignore aa_xy_axis_importance for box filtering. - const float2 subpixel_support_diam = - 2.0 * subpixel_support_radius_raw; - const float2 final_axis_importance = float2(1.0); - return float4(subpixel_support_diam, final_axis_importance); - } - else - { - // Scale the support window by aa_xy_axis_importance, but don't narrow - // it further than box support. This allows decent vertical AA without - // messing up horizontal weights or using something silly like Lanczos4 - // horizontally with a huge vertical average over an 8-pixel radius. - const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support), - subpixel_support_radius_raw * aa_xy_axis_importance); - // Adjust aa_xy_axis_importance to compensate for what's already done: - const float2 final_axis_importance = aa_xy_axis_importance * - subpixel_support_radius_raw/subpixel_support_radius; - const float2 subpixel_support_diam = 2.0 * subpixel_support_radius; - return float4(subpixel_support_diam, final_axis_importance); - } -} - - -/////////////////////////// FILTER WEIGHT FUNCTIONS ////////////////////////// - -inline float eval_box_filter(const float dist) -{ - return float(abs(dist) <= aa_box_support); -} - -inline float eval_separable_box_filter(const float2 offset) -{ - return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support)))); -} - -inline float eval_tent_filter(const float dist) -{ - return clamp((aa_tent_support - dist)/ - aa_tent_support, 0.0, 1.0); -} - -inline float eval_gaussian_filter(const float dist) -{ - return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma)); -} - -inline float eval_cubic_filter(const float dist) -{ - // Compute coefficients like assign_aa_cubic_constants(), but statically. - #ifndef RUNTIME_ANTIALIAS_WEIGHTS - // When runtime weights are used, these values are instead written to - // global uniforms at the beginning of each tex2Daa* call. - const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c; - const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c; - const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c; - const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b; - const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c; - const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c; - const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c; - const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c; - #endif - const float abs_dist = abs(dist); - // Compute the cubic based on the Horner's method formula in: - // http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf - return (abs_dist < 1.0 ? - (cubic_branch1_x3_coeff*abs_dist + - cubic_branch1_x2_coeff)*abs_dist*abs_dist + - cubic_branch1_x0_coeff : - abs_dist < 2.0 ? - ((cubic_branch2_x3_coeff*abs_dist + - cubic_branch2_x2_coeff)*abs_dist + - cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff : - 0.0)/6.0; -} - -inline float eval_separable_cubic_filter(const float2 offset) -{ - // This is faster than using a specific float2 version: - return eval_cubic_filter(offset.x) * - eval_cubic_filter(offset.y); -} - -inline float2 eval_sinc_filter(const float2 offset) -{ - // It's faster to let the caller handle the zero case, or at least it - // was when I used macros and the shader preset took a full minute to load. - const float2 pi_offset = pi * offset; - return sin(pi_offset)/pi_offset; -} - -inline float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe) -{ - // Note: For sparse sampling, you really need to pick an axis to use - // Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)). - const float2 offset = FIX_ZERO(offset_unsafe); - const float2 xy_weights = eval_sinc_filter(offset) * - eval_sinc_filter(offset/aa_lanczos_lobes); - return xy_weights.x * xy_weights.y; -} - -inline float eval_jinc_filter_unorm(const float x) -{ - // This is a Jinc approximation for x in [0, 45). We'll use x in range - // [0, 4*pi) or so. There are faster/closer approximations based on - // piecewise cubics from [0, 45) and asymptotic approximations beyond that, - // but this has a maximum absolute error < 1/512, and it's simpler/faster - // for shaders...not that it's all that useful for sparse sampling anyway. - const float point3845_x = 0.38448566093564*x; - const float exp_term = exp(-(point3845_x*point3845_x)); - const float point8154_plus_x = 0.815362332840791 + x; - const float cos_term = cos(point8154_plus_x); - return ( - 0.0264727330997042*min(x, 6.83134964622778) + - 0.680823557250528*exp_term + - -0.0597255978950933*min(7.41043194481873, x)*cos_term / - (point8154_plus_x + 0.0646074538634482*(x*x) + - cos(x)*max(exp_term, cos(x) + cos_term)) - - 0.180837503591406); -} - -inline float eval_jinc_filter(const float dist) -{ - return eval_jinc_filter_unorm(pi * dist); -} - -inline float eval_lanczos_jinc_filter(const float dist) -{ - return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes); -} - - -inline float3 eval_unorm_rgb_weights(const float2 offset, - const float2 final_axis_importance) -{ - // Requires: 1.) final_axis_impportance must be computed according to - // get_subpixel_support_diam_and_final_axis_importance(). - // 2.) aa_filter must be a global constant. - // 3.) offset must be an xy pixel offset in the range: - // ([-subpixel_support_diameter.x/2, - // subpixel_support_diameter.x/2], - // [-subpixel_support_diameter.y/2, - // subpixel_support_diameter.y/2]) - // Returns: Sample weights at R/G/B destination subpixels for the - // given xy pixel offset. - const float2 offset_g = offset * final_axis_importance; - const float2 aa_r_offset = get_aa_subpixel_r_offset(); - const float2 offset_r = offset_g - aa_r_offset * final_axis_importance; - const float2 offset_b = offset_g + aa_r_offset * final_axis_importance; - // Statically select a filter: - if(aa_filter < 0.5) - { - return float3(eval_separable_box_filter(offset_r), - eval_separable_box_filter(offset_g), - eval_separable_box_filter(offset_b)); - } - else if(aa_filter < 1.5) - { - return float3(eval_box_filter(length(offset_r)), - eval_box_filter(length(offset_g)), - eval_box_filter(length(offset_b))); - } - else if(aa_filter < 2.5) - { - return float3( - eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y), - eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y), - eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y)); - } - else if(aa_filter < 3.5) - { - return float3(eval_tent_filter(length(offset_r)), - eval_tent_filter(length(offset_g)), - eval_tent_filter(length(offset_b))); - } - else if(aa_filter < 4.5) - { - return float3( - eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y), - eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y), - eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y)); - } - else if(aa_filter < 5.5) - { - return float3(eval_gaussian_filter(length(offset_r)), - eval_gaussian_filter(length(offset_g)), - eval_gaussian_filter(length(offset_b))); - } - else if(aa_filter < 6.5) - { - return float3( - eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y), - eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y), - eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y)); - } - else if(aa_filter < 7.5) - { - return float3(eval_cubic_filter(length(offset_r)), - eval_cubic_filter(length(offset_g)), - eval_cubic_filter(length(offset_b))); - } - else if(aa_filter < 8.5) - { - return float3(eval_separable_lanczos_sinc_filter(offset_r), - eval_separable_lanczos_sinc_filter(offset_g), - eval_separable_lanczos_sinc_filter(offset_b)); - } - else if(aa_filter < 9.5) - { - return float3(eval_lanczos_jinc_filter(length(offset_r)), - eval_lanczos_jinc_filter(length(offset_g)), - eval_lanczos_jinc_filter(length(offset_b))); - } - else - { - // Default to a box, because Lanczos Jinc is so bad. ;) - return float3(eval_separable_box_filter(offset_r), - eval_separable_box_filter(offset_g), - eval_separable_box_filter(offset_b)); - } -} - - -////////////////////////////// HELPER FUNCTIONS ////////////////////////////// - -inline float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s) -{ - // If we're manually tiling a texture, anisotropic filtering can get - // confused. This is one workaround: - #ifdef ANTIALIAS_DISABLE_ANISOTROPIC - // TODO: Use tex2Dlod_linearize with a calculated mip level. - return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0)); - #else - return tex2D_linearize(samp, s); - #endif -} - -inline float2 get_frame_sign(const float frame) -{ - if(aa_temporal) - { - // Mirror the sampling pattern for odd frames in a direction that - // lets us keep the same subpixel sample weights: - const float frame_odd = float(fmod(frame, 2.0) > 0.5); - const float2 aa_r_offset = get_aa_subpixel_r_offset(); - const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0))); - return mirror; - } - else - { - return float2(1.0, 1.0); - } -} - - -///////////////////////// ANTIALIASED TEXTURE LOOKUPS //////////////////////// - -float3 tex2Daa_subpixel_weights_only(const sampler2D tex, - const float2 tex_uv, const float2x2 pixel_to_tex_uv) -{ - // This function is unlike the others: Just perform a single independent - // lookup for each subpixel. It may be very aliased. - const float2 aa_r_offset = get_aa_subpixel_r_offset(); - const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset); - const float color_g = tex2D_linearize(tex, tex_uv).g; - const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset).r; - const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset).b; - return float3(color_r, color_g, color_b); -} - -// The tex2Daa* functions compile very slowly due to all the macros and -// compile-time math, so only include the ones we'll actually use! -float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use an RGMS4 pattern (4-queens): - // . . Q . : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4 - // Q . . . : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4 - // . . . Q : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4 - // . Q . . : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4 - // Static screenspace sample offsets (compute some implicitly): - static const float grid_size = 4.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0,1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5,0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = w1.bgr; - const float3 w3 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0,1.0,1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * (w0 * sample0 + w1 * sample1 + - w2 * sample2 + w3 * sample3); -} - -float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 5-queens pattern: - // . Q . . . : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5 - // . . . . Q : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5 - // . . Q . . : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5 - // Q . . . . : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5 - // . . . Q . : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5 - // Static screenspace sample offsets (compute some implicitly): - static const float grid_size = 5.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = w1.bgr; - const float3 w4 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 w_sum_inv = float3(1.0)/(w0 + w1 + w2 + w3 + w4); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * (w0 * sample0 + w1 * sample1 + - w2 * sample2 + w3 * sample3 + w4 * sample4); -} - -float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 6-queens pattern with a stronger horizontal - // than vertical slant: - // . . . . Q . : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6 - // . . Q . . . : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6 - // Q . . . . . : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6 - // . . . . . Q : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6 - // . . . Q . . : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6 - // . Q . . . . : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6 - // Static screenspace sample offsets (compute some implicitly): - static const float grid_size = 6.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = w2.bgr; - const float3 w4 = w1.bgr; - const float3 w5 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 + - w3 * sample3 + w4 * sample4 + w5 * sample5); -} - -float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 7-queens pattern with a queen in the center: - // . Q . . . . . : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7 - // . . . . Q . . : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7 - // Q . . . . . . : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7 - // . . . Q . . . : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7 - // . . . . . . Q : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7 - // . . Q . . . . : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7 - // . . . . . Q . : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7 - static const float grid_size = 7.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = w2.bgr; - const float3 w5 = w1.bgr; - const float3 w6 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2; - const float3 w_sum = half_sum + half_sum.bgr + w3; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6); -} - -float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 8-queens pattern. - // . . Q . . . . . : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8 - // . . . . Q . . . : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8 - // . Q . . . . . . : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8 - // . . . . . . . Q : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8 - // Q . . . . . . . : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8 - // . . . . . . Q . : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8 - // . . . Q . . . . : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8 - // . . . . . Q . . : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8 - static const float grid_size = 8.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = w3.bgr; - const float3 w5 = w2.bgr; - const float3 w6 = w1.bgr; - const float3 w7 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, and mirror on odd frames if directed: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7); -} - -float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 12-superqueens pattern where no 3 points are - // exactly collinear. - // . . . Q . . . . . . . . : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12 - // . . . . . . . . . Q . . : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12 - // . . . . . . Q . . . . . : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12 - // . Q . . . . . . . . . . : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12 - // . . . . . . . . . . . Q : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12 - // . . . . Q . . . . . . . : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12 - // . . . . . . . Q . . . . : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12 - // Q . . . . . . . . . . . : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12 - // . . . . . . . . . . Q . : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12 - // . . . . . Q . . . . . . : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12 - // . . Q . . . . . . . . . : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12 - // . . . . . . . . Q . . . : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12 - static const float grid_size = 12.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step; - const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step; - const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); - const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); - const float3 w6 = w5.bgr; - const float3 w7 = w4.bgr; - const float3 w8 = w3.bgr; - const float3 w9 = w2.bgr; - const float3 w10 = w1.bgr; - const float3 w11 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/w_sum; - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); - const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); - const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb; - const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb; - const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + - w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11); -} - -float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 16-superqueens pattern where no 3 points are - // exactly collinear. - // . . Q . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16 - // . . . . . . . . . Q . . . . . . : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16 - // . . . . . . . . . . . . Q . . . : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16 - // . . . . Q . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16 - // . . . . . . . . Q . . . . . . . : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16 - // . . . . . . . . . . . . . . Q . : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16 - // Q . . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16 - // . . . . . . . . . . Q . . . . . : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16 - // . . . . . Q . . . . . . . . . . : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16 - // . . . . . . . . . . . . . . . Q : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16 - // . Q . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16 - // . . . . . . . Q . . . . . . . . : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16 - // . . . . . . . . . . . Q . . . . : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16 - // . . . Q . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16 - // . . . . . . Q . . . . . . . . . : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16 - // . . . . . . . . . . . . . Q . . : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16 - static const float grid_size = 16.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step; - const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step; - const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step; - const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step; - const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); - const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); - const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); - const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); - const float3 w8 = w7.bgr; - const float3 w9 = w6.bgr; - const float3 w10 = w5.bgr; - const float3 w11 = w4.bgr; - const float3 w12 = w3.bgr; - const float3 w13 = w2.bgr; - const float3 w14 = w1.bgr; - const float3 w15 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); - const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); - const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); - const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); - const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb; - const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb; - const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb; - const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb; - const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb; - const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb; - const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + - w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + - w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15); -} - -float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 20-superqueens pattern where no 3 points are - // exactly collinear and superqueens have a squared attack radius of 13. - // . . . . . . . Q . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20 - // . . . . . . . . . . . . . . . . Q . . . : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20 - // . . . . . . . . . . . Q . . . . . . . . : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20 - // . Q . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20 - // . . . . . Q . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20 - // . . . . . . . . . . . . . . . Q . . . . : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20 - // . . . . . . . . . . Q . . . . . . . . . : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20 - // . . . . . . . . . . . . . . . . . . . Q : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20 - // . . Q . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20 - // . . . . . . Q . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20 - // . . . . . . . . . . . . . Q . . . . . . : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20 - // . . . . . . . . . . . . . . . . . Q . . : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20 - // Q . . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20 - // . . . . . . . . . Q . . . . . . . . . . : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20 - // . . . . Q . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20 - // . . . . . . . . . . . . . . Q . . . . . : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20 - // . . . . . . . . . . . . . . . . . . Q . : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20 - // . . . . . . . . Q . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20 - // . . . Q . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20 - // . . . . . . . . . . . . Q . . . . . . . : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20 - static const float grid_size = 20.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step; - const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step; - const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step; - const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step; - const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step; - const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step; - const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); - const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); - const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); - const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); - const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance); - const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance); - const float3 w10 = w9.bgr; - const float3 w11 = w8.bgr; - const float3 w12 = w7.bgr; - const float3 w13 = w6.bgr; - const float3 w14 = w5.bgr; - const float3 w15 = w4.bgr; - const float3 w16 = w3.bgr; - const float3 w17 = w2.bgr; - const float3 w18 = w1.bgr; - const float3 w19 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); - const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); - const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); - const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); - const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); - const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign); - const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb; - const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb; - const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb; - const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb; - const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb; - const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb; - const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb; - const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb; - const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb; - const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb; - const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + - w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + - w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 + - w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19); -} - -float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Use a diagonally symmetric 24-superqueens pattern where no 3 points are - // exactly collinear and superqueens have a squared attack radius of 13. - // . . . . . . Q . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24 - // . . . . . . . . . . . . . . . . Q . . . . . . . : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24 - // . . . . . . . . . . Q . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24 - // . . . . . . . . . . . . . . . . . . . . . Q . . : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24 - // . . . . . Q . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24 - // . . . . . . . . . . . . . . . Q . . . . . . . . : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24 - // . Q . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24 - // . . . . . . . . . . . Q . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24 - // . . . . . . . . . . . . . . . . . . . Q . . . . : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24 - // . . . . . . . . . . . . . . . . . . . . . . . Q : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24 - // . . . Q . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24 - // . . . . . . . . . . . . . . Q . . . . . . . . . : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24 - // . . . . . . . . . Q . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24 - // . . . . . . . . . . . . . . . . . . . . Q . . . : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24 - // Q . . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24 - // . . . . Q . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24 - // . . . . . . . . . . . . Q . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24 - // . . . . . . . . . . . . . . . . . . . . . . Q . : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24 - // . . . . . . . . Q . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24 - // . . . . . . . . . . . . . . . . . . Q . . . . . : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24 - // . . Q . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24 - // . . . . . . . . . . . . . Q . . . . . . . . . . : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24 - // . . . . . . . Q . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24 - // . . . . . . . . . . . . . . . . . Q . . . . . . : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24 - static const float grid_size = 24.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample. Exploit diagonal symmetry: - const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step; - const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step; - const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step; - const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step; - const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step; - const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step; - const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step; - const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step; - const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); - const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); - const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); - const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); - const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance); - const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance); - const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance); - const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance); - const float3 w12 = w11.bgr; - const float3 w13 = w10.bgr; - const float3 w14 = w9.bgr; - const float3 w15 = w8.bgr; - const float3 w16 = w7.bgr; - const float3 w17 = w6.bgr; - const float3 w18 = w5.bgr; - const float3 w19 = w4.bgr; - const float3 w20 = w3.bgr; - const float3 w21 = w2.bgr; - const float3 w22 = w1.bgr; - const float3 w23 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3 + w4 + - w5 + w6 + w7 + w8 + w9 + w10 + w11; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, mirror on odd frames if directed, and exploit - // diagonal symmetry: - const float2 frame_sign = get_frame_sign(frame); - const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); - const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); - const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); - const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); - const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); - const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); - const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); - const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); - const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign); - const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign); - const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign); - const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign); - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb; - const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb; - const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb; - const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10).rgb; - const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11).rgb; - const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11).rgb; - const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10).rgb; - const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb; - const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb; - const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb; - const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb; - const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb; - const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb; - const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb; - const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb; - const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb; - const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + - w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + - w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 + - w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 + - w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23); -} - -float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // Sample on a regular 4x4 grid. This is mainly for testing. - static const float grid_size = 4.0; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter; - const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step; - // Get the xy offset of each sample: - const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step; - const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step; - const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step; - const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step; - const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step; - const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step; - const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step; - const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step; - // Compute subpixel weights, and exploit diagonal symmetry for speed. - // (We can't exploit vertical or horizontal symmetry due to uncertain - // subpixel offsets. We could fix that by rotating xy offsets with the - // subpixel structure, but...no.) - const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); - const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); - const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); - const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); - const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); - const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); - const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); - const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); - const float3 w8 = w7.bgr; - const float3 w9 = w6.bgr; - const float3 w10 = w5.bgr; - const float3 w11 = w4.bgr; - const float3 w12 = w3.bgr; - const float3 w13 = w2.bgr; - const float3 w14 = w1.bgr; - const float3 w15 = w0.bgr; - // Get the weight sum to normalize the total to 1.0 later: - const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7; - const float3 w_sum = half_sum + half_sum.bgr; - const float3 w_sum_inv = float3(1.0)/(w_sum); - // Scale the pixel-space to texture offset matrix by the pixel diameter. - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - // Get uv sample offsets, taking advantage of row alignment: - const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0)); - const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y)); - const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y); - const float2 sample0_uv = tex_uv + uv_offset0; - const float2 sample4_uv = sample0_uv + uv_step_y; - const float2 sample8_uv = sample0_uv + uv_step_y * 2.0; - const float2 sample12_uv = sample0_uv + uv_step_y * 3.0; - // Load samples, linearizing if necessary, etc.: - const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv).rgb; - const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x).rgb; - const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0).rgb; - const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0).rgb; - const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv).rgb; - const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x).rgb; - const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0).rgb; - const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0).rgb; - const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv).rgb; - const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x).rgb; - const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0).rgb; - const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0).rgb; - const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv).rgb; - const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x).rgb; - const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0).rgb; - const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0).rgb; - // Sum weighted samples (weight sum must equal 1.0 for each channel): - return w_sum_inv * ( - w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + - w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + - w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + - w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15); -} - -float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ - // This function is for testing only: Use an NxN grid with dynamic weights. - static const int grid_size = 8; - assign_aa_cubic_constants(); - const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); - const float2 subpixel_support_diameter = ssd_fai.xy; - const float2 final_axis_importance = ssd_fai.zw; - const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0; - const float2 filter_space_offset_step = - subpixel_support_diameter/float2(grid_size); - const float2 sample0_filter_space_offset = - -grid_radius_in_samples * filter_space_offset_step; - // Compute xy sample offsets and subpixel weights: - float3 weights[64]; //originally grid_size * grid_size - float3 weight_sum = float3(0.0, 0.0, 0.0); - for(int i = 0; i < grid_size; ++i) - { - for(int j = 0; j < grid_size; ++j) - { - // Weights based on xy distances: - const float2 offset = sample0_filter_space_offset + - float2(j, i) * filter_space_offset_step; - const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance); - weights[i*grid_size + j] = weight; - weight_sum += weight; - } - } - // Get uv offset vectors along x and y directions: - const float2x2 true_pixel_to_tex_uv = - float2x2(pixel_to_tex_uv * aa_pixel_diameter); - const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv, - float2(filter_space_offset_step.x, 0.0)); - const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv, - float2(0.0, filter_space_offset_step.y)); - // Get a starting sample location: - const float2 sample0_uv_offset = -grid_radius_in_samples * - (uv_offset_step_x + uv_offset_step_y); - const float2 sample0_uv = tex_uv + sample0_uv_offset; - // Load, weight, and sum [linearized] samples: - float3 sum = float3(0.0, 0.0, 0.0); - const float3 weight_sum_inv = float3(1.0)/weight_sum; - for(int i = 0; i < grid_size; ++i) - { - const float2 row_i_first_sample_uv = - sample0_uv + i * uv_offset_step_y; - for(int j = 0; j < grid_size; ++j) - { - const float2 sample_uv = - row_i_first_sample_uv + j * uv_offset_step_x; - sum += weights[i*grid_size + j] * - tex2Daa_tiled_linearize(tex, sample_uv).rgb; - } - } - return sum * weight_sum_inv; -} - - -/////////////////////// ANTIALIASING CODEPATH SELECTION ////////////////////// - -inline float3 tex2Daa(const sampler2D tex, const float2 tex_uv, - const float2x2 pixel_to_tex_uv, const float frame) -{ -//#define DEBUG -#ifdef DEBUG - return tex2Daa_subpixel_weights_only( - tex, tex_uv, pixel_to_tex_uv); -#else - // Statically switch between antialiasing modes/levels: - return (aa_level < 0.5) ? tex2D_linearize(tex, tex_uv).rgb : - (aa_level < 3.5) ? tex2Daa_subpixel_weights_only( - tex, tex_uv, pixel_to_tex_uv) : - (aa_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame) : - (aa_level < 254.5) ? tex2Daa_debug_16x_regular( - tex, tex_uv, pixel_to_tex_uv, frame) : - tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame); -#endif -} - - -#endif // TEX2DANTIALIAS_H - -///////////////////////// END TEX2DANTIALIAS ///////////////////////// - -//#include "geometry-functions.h" - -///////////////////////// BEGIN GEOMETRY-FUNCTIONS ///////////////////////// - -#ifndef GEOMETRY_FUNCTIONS_H -#define GEOMETRY_FUNCTIONS_H - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -////////////////////////////////// INCLUDES ////////////////////////////////// - -// already included elsewhere -//#include "../user-settings.h" -//#include "derived-settings-and-constants.h" -//#include "bind-shader-h" - - -//////////////////////////// MACROS AND CONSTANTS //////////////////////////// - -// Curvature-related constants: -#define MAX_POINT_CLOUD_SIZE 9 - - -///////////////////////////// CURVATURE FUNCTIONS ///////////////////////////// - -float2 quadratic_solve(const float a, const float b_over_2, const float c) -{ - // Requires: 1.) a, b, and c are quadratic formula coefficients - // 2.) b_over_2 = b/2.0 (simplifies terms to factor 2 out) - // 3.) b_over_2 must be guaranteed < 0.0 (avoids a branch) - // Returns: Returns float2(first_solution, discriminant), so the caller - // can choose how to handle the "no intersection" case. The - // Kahan or Citardauq formula is used for numerical robustness. - const float discriminant = b_over_2*b_over_2 - a*c; - const float solution0 = c/(-b_over_2 + sqrt(discriminant)); - return float2(solution0, discriminant); -} - -float2 intersect_sphere(const float3 view_vec, const float3 eye_pos_vec) -{ - // Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's - // local coordinate frame (eye_pos_vec is a position, i.e. - // a vector from the origin to the eye/camera) - // 2.) geom_radius is a global containing the sphere's radius - // Returns: Cast a ray of direction view_vec from eye_pos_vec at a - // sphere of radius geom_radius, and return the distance to - // the first intersection in units of length(view_vec). - // http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection - // Quadratic formula coefficients (b_over_2 is guaranteed negative): - const float a = dot(view_vec, view_vec); - const float b_over_2 = dot(view_vec, eye_pos_vec); // * 2.0 factored out - const float c = dot(eye_pos_vec, eye_pos_vec) - geom_radius*geom_radius; - return quadratic_solve(a, b_over_2, c); -} - -float2 intersect_cylinder(const float3 view_vec, const float3 eye_pos_vec) -{ - // Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's - // local coordinate frame (eye_pos_vec is a position, i.e. - // a vector from the origin to the eye/camera) - // 2.) geom_radius is a global containing the cylinder's radius - // Returns: Cast a ray of direction view_vec from eye_pos_vec at a - // cylinder of radius geom_radius, and return the distance to - // the first intersection in units of length(view_vec). The - // derivation of the coefficients is in Christer Ericson's - // Real-Time Collision Detection, p. 195-196, and this version - // uses LaGrange's identity to reduce operations. - // Arbitrary "cylinder top" reference point for an infinite cylinder: - const float3 cylinder_top_vec = float3(0.0, geom_radius, 0.0); - const float3 cylinder_axis_vec = float3(0.0, 1.0, 0.0);//float3(0.0, 2.0*geom_radius, 0.0); - const float3 top_to_eye_vec = eye_pos_vec - cylinder_top_vec; - const float3 axis_x_view = cross(cylinder_axis_vec, view_vec); - const float3 axis_x_top_to_eye = cross(cylinder_axis_vec, top_to_eye_vec); - // Quadratic formula coefficients (b_over_2 is guaranteed negative): - const float a = dot(axis_x_view, axis_x_view); - const float b_over_2 = dot(axis_x_top_to_eye, axis_x_view); - const float c = dot(axis_x_top_to_eye, axis_x_top_to_eye) - - geom_radius*geom_radius;//*dot(cylinder_axis_vec, cylinder_axis_vec); - return quadratic_solve(a, b_over_2, c); -} - -float2 cylinder_xyz_to_uv(const float3 intersection_pos_local, - const float2 geom_aspect) -{ - // Requires: An xyz intersection position on a cylinder. - // Returns: video_uv coords mapped to range [-0.5, 0.5] - // Mapping: Define square_uv.x to be the signed arc length in xz-space, - // and define square_uv.y = -intersection_pos_local.y (+v = -y). - // Start with a numerically robust arc length calculation. - const float angle_from_image_center = atan2(intersection_pos_local.x, - intersection_pos_local.z); - const float signed_arc_len = angle_from_image_center * geom_radius; - // Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide - // by the aspect ratio to stretch the mapping appropriately: - const float2 square_uv = float2(signed_arc_len, -intersection_pos_local.y); - const float2 video_uv = square_uv / geom_aspect; - return video_uv; -} - -float3 cylinder_uv_to_xyz(const float2 video_uv, const float2 geom_aspect) -{ - // Requires: video_uv coords mapped to range [-0.5, 0.5] - // Returns: An xyz intersection position on a cylinder. This is the - // inverse of cylinder_xyz_to_uv(). - // Expand video_uv by the aspect ratio to get proportionate x/y lengths, - // then calculate an xyz position for the cylindrical mapping above. - const float2 square_uv = video_uv * geom_aspect; - const float arc_len = square_uv.x; - const float angle_from_image_center = arc_len / geom_radius; - const float x_pos = sin(angle_from_image_center) * geom_radius; - const float z_pos = cos(angle_from_image_center) * geom_radius; - // Or: z = sqrt(geom_radius**2 - x**2) - // Or: z = geom_radius/sqrt(1.0 + tan(angle)**2), x = z * tan(angle) - const float3 intersection_pos_local = float3(x_pos, -square_uv.y, z_pos); - return intersection_pos_local; -} - -float2 sphere_xyz_to_uv(const float3 intersection_pos_local, - const float2 geom_aspect) -{ - // Requires: An xyz intersection position on a sphere. - // Returns: video_uv coords mapped to range [-0.5, 0.5] - // Mapping: First define square_uv.x/square_uv.y == - // intersection_pos_local.x/intersection_pos_local.y. Then, - // length(square_uv) is the arc length from the image center - // at (0.0, 0.0, geom_radius) along the tangent great circle. - // Credit for this mapping goes to cgwg: I never managed to - // understand his code, but he told me his mapping was based on - // great circle distances when I asked him about it, which - // informed this very similar (almost identical) mapping. - // Start with a numerically robust arc length calculation between the ray- - // sphere intersection point and the image center using a method posted by - // Roger Stafford on comp.soft-sys.matlab: - // https://groups.google.com/d/msg/comp.soft-sys.matlab/zNbUui3bjcA/c0HV_bHSx9cJ - const float3 image_center_pos_local = float3(0.0, 0.0, geom_radius); - const float cp_len = - length(cross(intersection_pos_local, image_center_pos_local)); - const float dp = dot(intersection_pos_local, image_center_pos_local); - const float angle_from_image_center = atan2(cp_len, dp); - const float arc_len = angle_from_image_center * geom_radius; - // Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide - // by the aspect ratio to stretch the mapping appropriately: - const float2 square_uv_unit = normalize(float2(intersection_pos_local.x, - -intersection_pos_local.y)); - const float2 square_uv = arc_len * square_uv_unit; - const float2 video_uv = square_uv / geom_aspect; - return video_uv; -} - -float3 sphere_uv_to_xyz(const float2 video_uv, const float2 geom_aspect) -{ - // Requires: video_uv coords mapped to range [-0.5, 0.5] - // Returns: An xyz intersection position on a sphere. This is the - // inverse of sphere_xyz_to_uv(). - // Expand video_uv by the aspect ratio to get proportionate x/y lengths, - // then calculate an xyz position for the spherical mapping above. - const float2 square_uv = video_uv * geom_aspect; - // Using length or sqrt here butchers the framerate on my 8800GTS if - // this function is called too many times, and so does taking the max - // component of square_uv/square_uv_unit (program length threshold?). - //float arc_len = length(square_uv); - const float2 square_uv_unit = normalize(square_uv); - const float arc_len = square_uv.y/square_uv_unit.y; - const float angle_from_image_center = arc_len / geom_radius; - const float xy_dist_from_sphere_center = - sin(angle_from_image_center) * geom_radius; - //float2 xy_pos = xy_dist_from_sphere_center * (square_uv/FIX_ZERO(arc_len)); - const float2 xy_pos = xy_dist_from_sphere_center * square_uv_unit; - const float z_pos = cos(angle_from_image_center) * geom_radius; - const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos); - return intersection_pos_local; -} - -float2 sphere_alt_xyz_to_uv(const float3 intersection_pos_local, - const float2 geom_aspect) -{ - // Requires: An xyz intersection position on a cylinder. - // Returns: video_uv coords mapped to range [-0.5, 0.5] - // Mapping: Define square_uv.x to be the signed arc length in xz-space, - // and define square_uv.y == signed arc length in yz-space. - // See cylinder_xyz_to_uv() for implementation details (very similar). - const float2 angle_from_image_center = atan2( - float2(intersection_pos_local.x, -intersection_pos_local.y), - intersection_pos_local.zz); - const float2 signed_arc_len = angle_from_image_center * geom_radius; - const float2 video_uv = signed_arc_len / geom_aspect; - return video_uv; -} - -float3 sphere_alt_uv_to_xyz(const float2 video_uv, const float2 geom_aspect) -{ - // Requires: video_uv coords mapped to range [-0.5, 0.5] - // Returns: An xyz intersection position on a sphere. This is the - // inverse of sphere_alt_xyz_to_uv(). - // See cylinder_uv_to_xyz() for implementation details (very similar). - const float2 square_uv = video_uv * geom_aspect; - const float2 arc_len = square_uv; - const float2 angle_from_image_center = arc_len / geom_radius; - const float2 xy_pos = sin(angle_from_image_center) * geom_radius; - const float z_pos = sqrt(geom_radius*geom_radius - dot(xy_pos, xy_pos)); - return float3(xy_pos.x, -xy_pos.y, z_pos); -} - -inline float2 intersect(const float3 view_vec_local, const float3 eye_pos_local, - const float geom_mode) -{ - return geom_mode < 2.5 ? intersect_sphere(view_vec_local, eye_pos_local) : - intersect_cylinder(view_vec_local, eye_pos_local); -} - -inline float2 xyz_to_uv(const float3 intersection_pos_local, - const float2 geom_aspect, const float geom_mode) -{ - return geom_mode < 1.5 ? - sphere_xyz_to_uv(intersection_pos_local, geom_aspect) : - geom_mode < 2.5 ? - sphere_alt_xyz_to_uv(intersection_pos_local, geom_aspect) : - cylinder_xyz_to_uv(intersection_pos_local, geom_aspect); -} - -inline float3 uv_to_xyz(const float2 uv, const float2 geom_aspect, - const float geom_mode) -{ - return geom_mode < 1.5 ? sphere_uv_to_xyz(uv, geom_aspect) : - geom_mode < 2.5 ? sphere_alt_uv_to_xyz(uv, geom_aspect) : - cylinder_uv_to_xyz(uv, geom_aspect); -} - -float2 view_vec_to_uv(const float3 view_vec_local, const float3 eye_pos_local, - const float2 geom_aspect, const float geom_mode, out float3 intersection_pos) -{ - // Get the intersection point on the primitive, given an eye position - // and view vector already in its local coordinate frame: - const float2 intersect_dist_and_discriminant = intersect(view_vec_local, - eye_pos_local, geom_mode); - const float3 intersection_pos_local = eye_pos_local + - view_vec_local * intersect_dist_and_discriminant.x; - // Save the intersection position to an output parameter: - intersection_pos = intersection_pos_local; - // Transform into uv coords, but give out-of-range coords if the - // view ray doesn't intersect the primitive in the first place: - return intersect_dist_and_discriminant.y > 0.005 ? - xyz_to_uv(intersection_pos_local, geom_aspect, geom_mode) : float2(1.0); -} - -float3 get_ideal_global_eye_pos_for_points(float3 eye_pos, - const float2 geom_aspect, const float3 global_coords[MAX_POINT_CLOUD_SIZE], - const int num_points) -{ - // Requires: Parameters: - // 1.) Starting eye_pos is a global 3D position at which the - // camera contains all points in global_coords[] in its FOV - // 2.) geom_aspect = get_aspect_vector( - // output_size.x / output_size.y); - // 3.) global_coords is a point cloud containing global xyz - // coords of extreme points on the simulated CRT screen. - // Globals: - // 1.) geom_view_dist must be > 0.0. It controls the "near - // plane" used to interpret flat_video_uv as a view - // vector, which controls the field of view (FOV). - // Eyespace coordinate frame: +x = right, +y = up, +z = back - // Returns: Return an eye position at which the point cloud spans as - // much of the screen as possible (given the FOV controlled by - // geom_view_dist) without being cropped or sheared. - // Algorithm: - // 1.) Move the eye laterally to a point which attempts to maximize the - // the amount we can move forward without clipping the CRT screen. - // 2.) Move forward by as much as possible without clipping the CRT. - // Get the allowed movement range by solving for the eye_pos offsets - // that result in each point being projected to a screen edge/corner in - // pseudo-normalized device coords (where xy ranges from [-0.5, 0.5] - // and z = eyespace z): - // pndc_coord = float3(float2(eyespace_xyz.x, -eyespace_xyz.y)* - // geom_view_dist / (geom_aspect * -eyespace_xyz.z), eyespace_xyz.z); - // Notes: - // The field of view is controlled by geom_view_dist's magnitude relative to - // the view vector's x and y components: - // view_vec.xy ranges from [-0.5, 0.5] * geom_aspect - // view_vec.z = -geom_view_dist - // But for the purposes of perspective divide, it should be considered: - // view_vec.xy ranges from [-0.5, 0.5] * geom_aspect / geom_view_dist - // view_vec.z = -1.0 - static const int max_centering_iters = 1; // Keep for easy testing. - for(int iter = 0; iter < max_centering_iters; iter++) - { - // 0.) Get the eyespace coordinates of our point cloud: - float3 eyespace_coords[MAX_POINT_CLOUD_SIZE]; - for(int i = 0; i < num_points; i++) - { - eyespace_coords[i] = global_coords[i] - eye_pos; - } - // 1a.)For each point, find out how far we can move eye_pos in each - // lateral direction without the point clipping the frustum. - // Eyespace +y = up, screenspace +y = down, so flip y after - // applying the eyespace offset (on the way to "clip space"). - // Solve for two offsets per point based on: - // (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) * - // geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(-0.5) - // (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) * - // geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(0.5) - // offset_ul and offset_dr represent the farthest we can move the - // eye_pos up-left and down-right. Save the min of all offset_dr's - // and the max of all offset_ul's (since it's negative). - float abs_radius = abs(geom_radius); // In case anyone gets ideas. ;) - float2 offset_dr_min = float2(10.0 * abs_radius, 10.0 * abs_radius); - float2 offset_ul_max = float2(-10.0 * abs_radius, -10.0 * abs_radius); - for(int i = 0; i < num_points; i++) - { - static const float2 flipy = float2(1.0, -1.0); - float3 eyespace_xyz = eyespace_coords[i]; - float2 offset_dr = eyespace_xyz.xy - float2(-0.5) * - (geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy); - float2 offset_ul = eyespace_xyz.xy - float2(0.5) * - (geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy); - offset_dr_min = min(offset_dr_min, offset_dr); - offset_ul_max = max(offset_ul_max, offset_ul); - } - // 1b.)Update eye_pos: Adding the average of offset_ul_max and - // offset_dr_min gives it equal leeway on the top vs. bottom - // and left vs. right. Recalculate eyespace_coords accordingly. - float2 center_offset = 0.5 * (offset_ul_max + offset_dr_min); - eye_pos.xy += center_offset; - for(int i = 0; i < num_points; i++) - { - eyespace_coords[i] = global_coords[i] - eye_pos; - } - // 2a.)For each point, find out how far we can move eye_pos forward - // without the point clipping the frustum. Flip the y - // direction in advance (matters for a later step, not here). - // Solve for four offsets per point based on: - // eyespace_xyz_flipy.x * geom_view_dist / - // (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) =-0.5 - // eyespace_xyz_flipy.y * geom_view_dist / - // (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) =-0.5 - // eyespace_xyz_flipy.x * geom_view_dist / - // (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) = 0.5 - // eyespace_xyz_flipy.y * geom_view_dist / - // (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) = 0.5 - // We'll vectorize the actual computation. Take the maximum of - // these four for a single offset, and continue taking the max - // for every point (use max because offset.z is negative). - float offset_z_max = -10.0 * geom_radius * geom_view_dist; - for(int i = 0; i < num_points; i++) - { - float3 eyespace_xyz_flipy = eyespace_coords[i] * - float3(1.0, -1.0, 1.0); - float4 offset_zzzz = eyespace_xyz_flipy.zzzz + - (eyespace_xyz_flipy.xyxy * geom_view_dist) / - (float4(-0.5, -0.5, 0.5, 0.5) * float4(geom_aspect, geom_aspect)); - // Ignore offsets that push positive x/y values to opposite - // boundaries, and vice versa, and don't let the camera move - // past a point in the dead center of the screen: - offset_z_max = (eyespace_xyz_flipy.x < 0.0) ? - max(offset_z_max, offset_zzzz.x) : offset_z_max; - offset_z_max = (eyespace_xyz_flipy.y < 0.0) ? - max(offset_z_max, offset_zzzz.y) : offset_z_max; - offset_z_max = (eyespace_xyz_flipy.x > 0.0) ? - max(offset_z_max, offset_zzzz.z) : offset_z_max; - offset_z_max = (eyespace_xyz_flipy.y > 0.0) ? - max(offset_z_max, offset_zzzz.w) : offset_z_max; - offset_z_max = max(offset_z_max, eyespace_xyz_flipy.z); - } - // 2b.)Update eye_pos: Add the maximum (smallest negative) z offset. - eye_pos.z += offset_z_max; - } - return eye_pos; -} - -float3 get_ideal_global_eye_pos(const float3x3 local_to_global, - const float2 geom_aspect, const float geom_mode) -{ - // Start with an initial eye_pos that includes the entire primitive - // (sphere or cylinder) in its field-of-view: - const float3 high_view = float3(0.0, geom_aspect.y, -geom_view_dist); - const float3 low_view = high_view * float3(1.0, -1.0, 1.0); - const float len_sq = dot(high_view, high_view); - const float fov = abs(acos(dot(high_view, low_view)/len_sq)); - // Trigonometry/similar triangles say distance = geom_radius/sin(fov/2): - const float eye_z_spherical = geom_radius/sin(fov*0.5); - const float3 eye_pos = geom_mode < 2.5 ? - float3(0.0, 0.0, eye_z_spherical) : - float3(0.0, 0.0, max(geom_view_dist, eye_z_spherical)); - - // Get global xyz coords of extreme sample points on the simulated CRT - // screen. Start with the center, edge centers, and corners of the - // video image. We can't ignore backfacing points: They're occluded - // by closer points on the primitive, but they may NOT be occluded by - // the convex hull of the remaining samples (i.e. the remaining convex - // hull might not envelope points that do occlude a back-facing point.) - static const int num_points = MAX_POINT_CLOUD_SIZE; - float3 global_coords[MAX_POINT_CLOUD_SIZE]; - global_coords[0] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.0), geom_aspect, geom_mode)); - global_coords[1] = mul(local_to_global, uv_to_xyz(float2(0.0, -0.5), geom_aspect, geom_mode)); - global_coords[2] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.5), geom_aspect, geom_mode)); - global_coords[3] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.0), geom_aspect, geom_mode)); - global_coords[4] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.0), geom_aspect, geom_mode)); - global_coords[5] = mul(local_to_global, uv_to_xyz(float2(-0.5, -0.5), geom_aspect, geom_mode)); - global_coords[6] = mul(local_to_global, uv_to_xyz(float2(0.5, -0.5), geom_aspect, geom_mode)); - global_coords[7] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.5), geom_aspect, geom_mode)); - global_coords[8] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.5), geom_aspect, geom_mode)); - // Adding more inner image points could help in extreme cases, but too many - // points will kille the framerate. For safety, default to the initial - // eye_pos if any z coords are negative: - float num_negative_z_coords = 0.0; - for(int i = 0; i < num_points; i++) - { - num_negative_z_coords += float(global_coords[0].z < 0.0); - } - // Outsource the optimized eye_pos calculation: - return num_negative_z_coords > 0.5 ? eye_pos : - get_ideal_global_eye_pos_for_points(eye_pos, geom_aspect, - global_coords, num_points); -} - -float3x3 get_pixel_to_object_matrix(const float3x3 global_to_local, - const float3 eye_pos_local, const float3 view_vec_global, - const float3 intersection_pos_local, const float3 normal, - const float2 output_size_inv) -{ - // Requires: See get_curved_video_uv_coords_and_tangent_matrix for - // descriptions of each parameter. - // Returns: Return a transformation matrix from 2D pixel-space vectors - // (where (+1.0, +1.0) is a vector to one pixel down-right, - // i.e. same directionality as uv texels) to 3D object-space - // vectors in the CRT's local coordinate frame (right-handed) - // ***which are tangent to the CRT surface at the intersection - // position.*** (Basically, we want to convert pixel-space - // vectors to 3D vectors along the CRT's surface, for later - // conversion to uv vectors.) - // Shorthand inputs: - const float3 pos = intersection_pos_local; - const float3 eye_pos = eye_pos_local; - // Get a piecewise-linear matrix transforming from "pixelspace" offset - // vectors (1.0 = one pixel) to object space vectors in the tangent - // plane (faster than finding 3 view-object intersections). - // 1.) Get the local view vecs for the pixels to the right and down: - const float3 view_vec_right_global = view_vec_global + - float3(output_size_inv.x, 0.0, 0.0); - const float3 view_vec_down_global = view_vec_global + - float3(0.0, -output_size_inv.y, 0.0); - const float3 view_vec_right_local = - mul(global_to_local, view_vec_right_global); - const float3 view_vec_down_local = - mul(global_to_local, view_vec_down_global); - // 2.) Using the true intersection point, intersect the neighboring - // view vectors with the tangent plane: - const float3 intersection_vec_dot_normal = float3(dot(pos - eye_pos, normal), dot(pos - eye_pos, normal), dot(pos - eye_pos, normal)); - const float3 right_pos = eye_pos + (intersection_vec_dot_normal / - dot(view_vec_right_local, normal))*view_vec_right_local; - const float3 down_pos = eye_pos + (intersection_vec_dot_normal / - dot(view_vec_down_local, normal))*view_vec_down_local; - // 3.) Subtract the original intersection pos from its neighbors; the - // resulting vectors are object-space vectors tangent to the plane. - // These vectors are the object-space transformations of (1.0, 0.0) - // and (0.0, 1.0) pixel offsets, so they form the first two basis - // vectors of a pixelspace to object space transformation. This - // transformation is 2D to 3D, so use (0, 0, 0) for the third vector. - const float3 object_right_vec = right_pos - pos; - const float3 object_down_vec = down_pos - pos; - const float3x3 pixel_to_object = float3x3( - object_right_vec.x, object_down_vec.x, 0.0, - object_right_vec.y, object_down_vec.y, 0.0, - object_right_vec.z, object_down_vec.z, 0.0); - return pixel_to_object; -} - -float3x3 get_object_to_tangent_matrix(const float3 intersection_pos_local, - const float3 normal, const float2 geom_aspect, const float geom_mode) -{ - // Requires: See get_curved_video_uv_coords_and_tangent_matrix for - // descriptions of each parameter. - // Returns: Return a transformation matrix from 3D object-space vectors - // in the CRT's local coordinate frame (right-handed, +y = up) - // to 2D video_uv vectors (+v = down). - // Description: - // The TBN matrix formed by the [tangent, bitangent, normal] basis - // vectors transforms ordinary vectors from tangent->object space. - // The cotangent matrix formed by the [cotangent, cobitangent, normal] - // basis vectors transforms normal vectors (covectors) from - // tangent->object space. It's the inverse-transpose of the TBN matrix. - // We want the inverse of the TBN matrix (transpose of the cotangent - // matrix), which transforms ordinary vectors from object->tangent space. - // Start by calculating the relevant basis vectors in accordance with - // Christian Schüler's blog post "Followup: Normal Mapping Without - // Precomputed Tangents": http://www.thetenthplanet.de/archives/1180 - // With our particular uv mapping, the scale of the u and v directions - // is determined entirely by the aspect ratio for cylindrical and ordinary - // spherical mappings, and so tangent and bitangent lengths are also - // determined by it (the alternate mapping is more complex). Therefore, we - // must ensure appropriate cotangent and cobitangent lengths as well. - // Base these off the uv<=>xyz mappings for each primitive. - const float3 pos = intersection_pos_local; - static const float3 x_vec = float3(1.0, 0.0, 0.0); - static const float3 y_vec = float3(0.0, 1.0, 0.0); - // The tangent and bitangent vectors correspond with increasing u and v, - // respectively. Mathematically we'd base the cotangent/cobitangent on - // those, but we'll compute the cotangent/cobitangent directly when we can. - float3 cotangent_unscaled, cobitangent_unscaled; - // geom_mode should be constant-folded without RUNTIME_GEOMETRY_MODE. - if(geom_mode < 1.5) - { - // Sphere: - // tangent = normalize(cross(normal, cross(x_vec, pos))) * geom_aspect.x - // bitangent = normalize(cross(cross(y_vec, pos), normal)) * geom_aspect.y - // inv_determinant = 1.0/length(cross(bitangent, tangent)) - // cotangent = cross(normal, bitangent) * inv_determinant - // == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant - // cobitangent = cross(tangent, normal) * inv_determinant - // == normalize(cross(x_vec, pos)) * geom_aspect.x * inv_determinant - // Simplified (scale by inv_determinant below): - cotangent_unscaled = normalize(cross(y_vec, pos)) * geom_aspect.y; - cobitangent_unscaled = normalize(cross(x_vec, pos)) * geom_aspect.x; - } - else if(geom_mode < 2.5) - { - // Sphere, alternate mapping: - // This mapping works a bit like the cylindrical mapping in two - // directions, which makes the lengths and directions more complex. - // Unfortunately, I can't find much of a shortcut: - const float3 tangent = normalize( - cross(y_vec, float3(pos.x, 0.0, pos.z))) * geom_aspect.x; - const float3 bitangent = normalize( - cross(x_vec, float3(0.0, pos.yz))) * geom_aspect.y; - cotangent_unscaled = cross(normal, bitangent); - cobitangent_unscaled = cross(tangent, normal); - } - else - { - // Cylinder: - // tangent = normalize(cross(y_vec, normal)) * geom_aspect.x; - // bitangent = float3(0.0, -geom_aspect.y, 0.0); - // inv_determinant = 1.0/length(cross(bitangent, tangent)) - // cotangent = cross(normal, bitangent) * inv_determinant - // == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant - // cobitangent = cross(tangent, normal) * inv_determinant - // == float3(0.0, -geom_aspect.x, 0.0) * inv_determinant - cotangent_unscaled = cross(y_vec, normal) * geom_aspect.y; - cobitangent_unscaled = float3(0.0, -geom_aspect.x, 0.0); - } - const float3 computed_normal = - cross(cobitangent_unscaled, cotangent_unscaled); - const float inv_determinant = rsqrt(dot(computed_normal, computed_normal)); - const float3 cotangent = cotangent_unscaled * inv_determinant; - const float3 cobitangent = cobitangent_unscaled * inv_determinant; - // The [cotangent, cobitangent, normal] column vecs form the cotangent - // frame, i.e. the inverse-transpose TBN matrix. Get its transpose: - const float3x3 object_to_tangent = float3x3(cotangent, cobitangent, normal); - return object_to_tangent; -} - -float2 get_curved_video_uv_coords_and_tangent_matrix( - const float2 flat_video_uv, const float3 eye_pos_local, - const float2 output_size_inv, const float2 geom_aspect, - const float geom_mode, const float3x3 global_to_local, - out float2x2 pixel_to_tangent_video_uv) -{ - // Requires: Parameters: - // 1.) flat_video_uv coords are in range [0.0, 1.0], where - // (0.0, 0.0) is the top-left corner of the screen and - // (1.0, 1.0) is the bottom-right corner. - // 2.) eye_pos_local is the 3D camera position in the simulated - // CRT's local coordinate frame. For best results, it must - // be computed based on the same geom_view_dist used here. - // 3.) output_size_inv = float2(1.0)/output_size - // 4.) geom_aspect = get_aspect_vector( - // output_size.x / output_size.y); - // 5.) geom_mode is a static or runtime mode setting: - // 0 = off, 1 = sphere, 2 = sphere alt., 3 = cylinder - // 6.) global_to_local is a 3x3 matrix transforming (ordinary) - // worldspace vectors to the CRT's local coordinate frame - // Globals: - // 1.) geom_view_dist must be > 0.0. It controls the "near - // plane" used to interpret flat_video_uv as a view - // vector, which controls the field of view (FOV). - // Returns: Return final uv coords in [0.0, 1.0], and return a pixel- - // space to video_uv tangent-space matrix in the out parameter. - // (This matrix assumes pixel-space +y = down, like +v = down.) - // We'll transform flat_video_uv into a view vector, project - // the view vector from the camera/eye, intersect with a sphere - // or cylinder representing the simulated CRT, and convert the - // intersection position into final uv coords and a local - // transformation matrix. - // First get the 3D view vector (geom_aspect and geom_view_dist are globals): - // 1.) Center uv around (0.0, 0.0) and make (-0.5, -0.5) and (0.5, 0.5) - // correspond to the top-left/bottom-right output screen corners. - // 2.) Multiply by geom_aspect to preemptively "undo" Retroarch's screen- - // space 2D aspect correction. We'll reapply it in uv-space. - // 3.) (x, y) = (u, -v), because +v is down in 2D screenspace, but +y - // is up in 3D worldspace (enforce a right-handed system). - // 4.) The view vector z controls the "near plane" distance and FOV. - // For the effect of "looking through a window" at a CRT, it should be - // set equal to the user's distance from their physical screen, in - // units of the viewport's physical diagonal size. - const float2 view_uv = (flat_video_uv - float2(0.5)) * geom_aspect; - const float3 view_vec_global = - float3(view_uv.x, -view_uv.y, -geom_view_dist); - // Transform the view vector into the CRT's local coordinate frame, convert - // to video_uv coords, and get the local 3D intersection position: - const float3 view_vec_local = mul(global_to_local, view_vec_global); - float3 pos; - const float2 centered_uv = view_vec_to_uv( - view_vec_local, eye_pos_local, geom_aspect, geom_mode, pos); - const float2 video_uv = centered_uv + float2(0.5); - // Get a pixel-to-tangent-video-uv matrix. The caller could deal with - // all but one of these cases, but that would be more complicated. - #ifdef DRIVERS_ALLOW_DERIVATIVES - // Derivatives obtain a matrix very fast, but the direction of pixel- - // space +y seems to depend on the pass. Enforce the correct direction - // on a best-effort basis (but it shouldn't matter for antialiasing). - const float2 duv_dx = ddx(video_uv); - const float2 duv_dy = ddy(video_uv); - #ifdef LAST_PASS - pixel_to_tangent_video_uv = float2x2( - duv_dx.x, duv_dy.x, - -duv_dx.y, -duv_dy.y); - #else - pixel_to_tangent_video_uv = float2x2( - duv_dx.x, duv_dy.x, - duv_dx.y, duv_dy.y); - #endif - #else - // Manually define a transformation matrix. We'll assume pixel-space - // +y = down, just like +v = down. - if(geom_force_correct_tangent_matrix) - { - // Get the surface normal based on the local intersection position: - const float3 normal_base = geom_mode < 2.5 ? pos : - float3(pos.x, 0.0, pos.z); - const float3 normal = normalize(normal_base); - // Get pixel-to-object and object-to-tangent matrices and combine - // them into a 2x2 pixel-to-tangent matrix for video_uv offsets: - const float3x3 pixel_to_object = get_pixel_to_object_matrix( - global_to_local, eye_pos_local, view_vec_global, pos, normal, - output_size_inv); - const float3x3 object_to_tangent = get_object_to_tangent_matrix( - pos, normal, geom_aspect, geom_mode); - const float3x3 pixel_to_tangent3x3 = - mul(object_to_tangent, pixel_to_object); - pixel_to_tangent_video_uv = float2x2( - pixel_to_tangent3x3[0][0], pixel_to_tangent3x3[0][1], pixel_to_tangent3x3[1][0], pixel_to_tangent3x3[1][1]);//._m00_m01_m10_m11); //TODO/FIXME: needs to correct for column-major?? - } - else - { - // Ignore curvature, and just consider flat scaling. The - // difference is only apparent with strong curvature: - pixel_to_tangent_video_uv = float2x2( - output_size_inv.x, 0.0, 0.0, output_size_inv.y); - } - #endif - return video_uv; -} - -float get_border_dim_factor(const float2 video_uv, const float2 geom_aspect) -{ - // COPYRIGHT NOTE FOR THIS FUNCTION: - // Copyright (C) 2010-2012 cgwg, 2014 TroggleMonkey - // This function uses an algorithm first coded in several of cgwg's GPL- - // licensed lines in crt-geom-curved.cg and its ancestors. The line - // between algorithm and code is nearly indistinguishable here, so it's - // unclear whether I could even release this project under a non-GPL - // license with this function included. - - // Calculate border_dim_factor from the proximity to uv-space image - // borders; geom_aspect/border_size/border/darkness/border_compress are globals: - const float2 edge_dists = min(video_uv, float2(1.0) - video_uv) * - geom_aspect; - const float2 border_penetration = - max(float2(border_size) - edge_dists, float2(0.0)); - const float penetration_ratio = length(border_penetration)/border_size; - const float border_escape_ratio = max(1.0 - penetration_ratio, 0.0); - const float border_dim_factor = - pow(border_escape_ratio, border_darkness) * max(1.0, border_compress); - return min(border_dim_factor, 1.0); -} - - - -#endif // GEOMETRY_FUNCTIONS_H - -///////////////////////// END GEOMETRY-FUNCTIONS ///////////////////////// - -/////////////////////////////////// HELPERS ////////////////////////////////// - -float2x2 mul_scale(float2 scale, float2x2 matrix) -{ - //float2x2 scale_matrix = float2x2(scale.x, 0.0, 0.0, scale.y); - //return mul(scale_matrix, matrix); - float4 intermed = float4(matrix[0][0],matrix[0][1],matrix[1][0],matrix[1][1]) * scale.xxyy; - return float2x2(intermed.x, intermed.y, intermed.z, intermed.w); -} - -#undef COMPAT_PRECISION -#undef COMPAT_TEXTURE - -#if defined(VERTEX) - -#if __VERSION__ >= 130 -#define COMPAT_VARYING out -#define COMPAT_ATTRIBUTE in -#define COMPAT_TEXTURE texture -#else -#define COMPAT_VARYING varying -#define COMPAT_ATTRIBUTE attribute -#define COMPAT_TEXTURE texture2D -#endif - -#ifdef GL_ES -#define COMPAT_PRECISION mediump -#else -#define COMPAT_PRECISION -#endif - -COMPAT_ATTRIBUTE vec4 VertexCoord; -COMPAT_ATTRIBUTE vec4 COLOR; -COMPAT_ATTRIBUTE vec4 TexCoord; -COMPAT_VARYING vec4 COL0; -COMPAT_VARYING vec4 TEX0; -COMPAT_VARYING vec2 tex_uv; -COMPAT_VARYING vec4 video_and_texture_size_inv; -COMPAT_VARYING vec2 output_size_inv; -COMPAT_VARYING vec3 eye_pos_local; -COMPAT_VARYING vec4 geom_aspect_and_overscan; -COMPAT_VARYING vec3 global_to_local_row0; -COMPAT_VARYING vec3 global_to_local_row1; -COMPAT_VARYING vec3 global_to_local_row2; - -vec4 _oPosition1; -uniform mat4 MVPMatrix; -uniform COMPAT_PRECISION int FrameDirection; -uniform COMPAT_PRECISION int FrameCount; -uniform COMPAT_PRECISION vec2 OutputSize; -uniform COMPAT_PRECISION vec2 TextureSize; -uniform COMPAT_PRECISION vec2 InputSize; - -// compatibility #defines -#define vTexCoord TEX0.xy -#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize -#define OutSize vec4(OutputSize, 1.0 / OutputSize) - -void main() -{ - gl_Position = MVPMatrix * VertexCoord; - TEX0.xy = TexCoord.xy; - tex_uv = TEX0.xy; - video_and_texture_size_inv = - float4(1.0, 1.0, 1.0, 1.0) / float4(video_size, texture_size); - output_size_inv = float2(1.0, 1.0)/output_size; - - // Get aspect/overscan vectors from scalar parameters (likely uniforms): - const float viewport_aspect_ratio = output_size.x/output_size.y; - const float2 geom_aspect = get_aspect_vector(viewport_aspect_ratio); - const float2 geom_overscan = get_geom_overscan_vector(); - geom_aspect_and_overscan = float4(geom_aspect, geom_overscan); - - #ifdef RUNTIME_GEOMETRY_TILT - // Create a local-to-global rotation matrix for the CRT's coordinate - // frame and its global-to-local inverse. Rotate around the x axis - // first (pitch) and then the y axis (yaw) with yucky Euler angles. - // Positive angles go clockwise around the right-vec and up-vec. - // Runtime shader parameters prevent us from computing these globally, - // but we can still combine the pitch/yaw matrices by hand to cut a - // few instructions. Note that cg matrices fill row1 first, then row2, - // etc. (row-major order). - const float2 geom_tilt_angle = get_geom_tilt_angle_vector(); - const float2 sin_tilt = sin(geom_tilt_angle); - const float2 cos_tilt = cos(geom_tilt_angle); - // Conceptual breakdown: - static const float3x3 rot_x_matrix = float3x3( - 1.0, 0.0, 0.0, - 0.0, cos_tilt.y, -sin_tilt.y, - 0.0, sin_tilt.y, cos_tilt.y); - static const float3x3 rot_y_matrix = float3x3( - cos_tilt.x, 0.0, sin_tilt.x, - 0.0, 1.0, 0.0, - -sin_tilt.x, 0.0, cos_tilt.x); - static const float3x3 local_to_global = - mul(rot_y_matrix, rot_x_matrix); -/* static const float3x3 global_to_local = - transpose(local_to_global); - const float3x3 local_to_global = float3x3( - cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, - 0.0, cos_tilt.y, sin_tilt.y, - sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); -*/ // This is a pure rotation, so transpose = inverse: - const float3x3 global_to_local = transpose(local_to_global); - // Decompose the matrix into 3 float3's for output: - global_to_local_row0 = float3(global_to_local[0][0], global_to_local[0][1], global_to_local[0][2]);//._m00_m01_m02); - global_to_local_row1 = float3(global_to_local[1][0], global_to_local[1][1], global_to_local[1][2]);//._m10_m11_m12); - global_to_local_row2 = float3(global_to_local[2][0], global_to_local[2][1], global_to_local[2][2]);//._m20_m21_m22); - #else - static const float3x3 global_to_local = geom_global_to_local_static; - static const float3x3 local_to_global = geom_local_to_global_static; - #endif - - // Get an optimal eye position based on geom_view_dist, viewport_aspect, - // and CRT radius/rotation: - #ifdef RUNTIME_GEOMETRY_MODE - const float geom_mode = geom_mode_runtime; - #else - static const float geom_mode = geom_mode_static; - #endif - const float3 eye_pos_global = - get_ideal_global_eye_pos(local_to_global, geom_aspect, geom_mode); - eye_pos_local = mul(global_to_local, eye_pos_global); -} - -#elif defined(FRAGMENT) - -#ifdef GL_ES -#ifdef GL_FRAGMENT_PRECISION_HIGH -precision highp float; -#else -precision mediump float; -#endif -#define COMPAT_PRECISION mediump -#else -#define COMPAT_PRECISION -#endif - -#if __VERSION__ >= 130 -#define COMPAT_VARYING in -#define COMPAT_TEXTURE texture -out COMPAT_PRECISION vec4 FragColor; -#else -#define COMPAT_VARYING varying -#define FragColor gl_FragColor -#define COMPAT_TEXTURE texture2D -#endif - -uniform COMPAT_PRECISION int FrameDirection; -uniform COMPAT_PRECISION int FrameCount; -uniform COMPAT_PRECISION vec2 OutputSize; -uniform COMPAT_PRECISION vec2 TextureSize; -uniform COMPAT_PRECISION vec2 InputSize; -uniform sampler2D Texture; -#define input_texture Texture -COMPAT_VARYING vec4 TEX0; -COMPAT_VARYING vec2 tex_uv; -COMPAT_VARYING vec4 video_and_texture_size_inv; -COMPAT_VARYING vec2 output_size_inv; -COMPAT_VARYING vec3 eye_pos_local; -COMPAT_VARYING vec4 geom_aspect_and_overscan; -COMPAT_VARYING vec3 global_to_local_row0; -COMPAT_VARYING vec3 global_to_local_row1; -COMPAT_VARYING vec3 global_to_local_row2; - -// compatibility #defines -#define Source Texture -#define vTexCoord TEX0.xy - -#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize -#define OutSize vec4(OutputSize, 1.0 / OutputSize) - -void main() -{ - // Localize some parameters: - const float2 geom_aspect = geom_aspect_and_overscan.xy; - const float2 geom_overscan = geom_aspect_and_overscan.zw; - const float2 video_size_inv = video_and_texture_size_inv.xy; - const float2 texture_size_inv = video_and_texture_size_inv.zw; - //const float2 output_size_inv = output_size_inv; - #ifdef RUNTIME_GEOMETRY_TILT - const float3x3 global_to_local = float3x3(global_to_local_row0, - global_to_local_row1, global_to_local_row2); - #else - static const float3x3 global_to_local = geom_global_to_local_static; - #endif - #ifdef RUNTIME_GEOMETRY_MODE - const float geom_mode = geom_mode_runtime; - #else - static const float geom_mode = geom_mode_static; - #endif - - // Get flat and curved texture coords for the current fragment point sample - // and a pixel_to_tangent_video_uv matrix for transforming pixel offsets: - // video_uv = relative position in video frame, mapped to [0.0, 1.0] range - // tex_uv = relative position in padded texture, mapped to [0.0, 1.0] range - const float2 flat_video_uv = tex_uv * (texture_size * video_size_inv); - float2x2 pixel_to_video_uv; - float2 video_uv_no_geom_overscan; - if(geom_mode > 0.5) - { - video_uv_no_geom_overscan = - get_curved_video_uv_coords_and_tangent_matrix(flat_video_uv, - eye_pos_local, output_size_inv, geom_aspect, - geom_mode, global_to_local, pixel_to_video_uv); - } - else - { - video_uv_no_geom_overscan = flat_video_uv; - pixel_to_video_uv = float2x2( - output_size_inv.x, 0.0, 0.0, output_size_inv.y); - } - // Correct for overscan here (not in curvature code): - const float2 video_uv = - (video_uv_no_geom_overscan - float2(0.5, 0.5))/geom_overscan + float2(0.5, 0.5); - const float2 tex_uv = video_uv * (video_size * texture_size_inv); - - // Get a matrix transforming pixel vectors to tex_uv vectors: - const float2x2 pixel_to_tex_uv = - mul_scale(video_size * texture_size_inv / - geom_aspect_and_overscan.zw, pixel_to_video_uv); - - // Sample! Skip antialiasing if aa_level < 0.5 or both of these hold: - // 1.) Geometry/curvature isn't used - // 2.) Overscan == float2(1.0, 1.0) - // Skipping AA is sharper, but it's only faster with dynamic branches. - const float2 abs_aa_r_offset = abs(get_aa_subpixel_r_offset()); - const bool need_subpixel_aa = abs_aa_r_offset.x + abs_aa_r_offset.y > 0.0; - float3 color; - if(aa_level > 0.5 && (geom_mode > 0.5 || any(bool2((geom_overscan.x != 1.0), (geom_overscan.y != 1.0))))) - { - // Sample the input with antialiasing (due to sharp phosphors, etc.): - color = tex2Daa(input_texture, tex_uv, pixel_to_tex_uv, float(frame_count)); - } - - else if(aa_level > 0.5 && need_subpixel_aa) - { - // Sample at each subpixel location: - color = tex2Daa_subpixel_weights_only( - input_texture, tex_uv, pixel_to_tex_uv); - } - else - { - color = tex2D_linearize(input_texture, tex_uv).rgb; - } - - // Dim borders and output the final result: - const float border_dim_factor = get_border_dim_factor(video_uv, geom_aspect); - const float3 final_color = color * border_dim_factor; - - FragColor = encode_output(COMPAT_TEXTURE(input_texture, TEX0.xy)); -} -#endif diff --git a/presets/crt-royale-kurozumi.glslp b/presets/crt-royale-kurozumi.glslp index 90020c5..7080c07 100755 --- a/presets/crt-royale-kurozumi.glslp +++ b/presets/crt-royale-kurozumi.glslp @@ -205,7 +205,7 @@ scale11 = "1.0" srgb_framebuffer11 = "true" # Pass 12: Compute curvature/AA: -shader12 = "../crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.glsl" +shader12 = "../crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.glsl" filter_linear12 = "true" scale_type12 = "viewport" mipmap_input12 = "true"