Grade - Formatting + Notes + Cosmetics (#239)

* Grade - Formatting + Notes + Cosmetics

- Adopted some GLES related type consistency and formatting (still not compatible with GLES and not planned)
- Some notes on Phosphors
- Cosmetics

* Grade - Formatting + Notes + Cosmetics

- Adopted some GLES related type consistency and formatting (still not compatible with GLES and not planned)
- Some notes on Phosphors
- Cosmetics
This commit is contained in:
Dogway 2023-07-20 03:07:33 +01:00 committed by GitHub
parent e16126b45f
commit 64b79b95d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 138 additions and 262 deletions

View File

@ -21,7 +21,7 @@
/*
Grade (16-06-2023)
Grade (17-07-2023)
> See settings decriptions at: https://forums.libretro.com/t/dogways-grading-shader-slang/27148/442
> Ubershader grouping some monolithic color related shaders:
@ -78,7 +78,7 @@
#pragma parameter g_CRT_rf "CRT Lambert Refl. in %" 5.0 2.0 5.0 0.1
#pragma parameter g_CRT_sl "Surround Luminance -nits-" 0.0 0.0 100.0 1.0
#pragma parameter g_vignette "Vignette Toggle" 0.0 0.0 1.0 1.0
#pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0
#pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0
#pragma parameter g_vpower "Vignette Power" 0.20 0.0 0.5 0.01
// Digital controls
@ -139,19 +139,24 @@ uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
// compatibility #defines
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
void main()
{
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
@ -163,16 +168,6 @@ precision mediump float;
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
@ -181,58 +176,13 @@ uniform COMPAT_PRECISION vec2 InputSize;
uniform sampler2D Texture;
COMPAT_VARYING vec4 TEX0;
// compatibility #defines
// fragment compatibility #defines
#define Source Texture
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize)
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float g_signal_type;
uniform COMPAT_PRECISION float g_crtgamut;
uniform COMPAT_PRECISION float g_space_out;
uniform COMPAT_PRECISION float g_Dark_to_Dim;
uniform COMPAT_PRECISION float g_GCompress;
uniform COMPAT_PRECISION float g_hue_degrees;
uniform COMPAT_PRECISION float g_U_SHIFT;
uniform COMPAT_PRECISION float g_V_SHIFT;
uniform COMPAT_PRECISION float g_U_MUL;
uniform COMPAT_PRECISION float g_V_MUL;
uniform COMPAT_PRECISION float g_CRT_l;
uniform COMPAT_PRECISION float g_CRT_b;
uniform COMPAT_PRECISION float g_CRT_c;
uniform COMPAT_PRECISION float g_CRT_br;
uniform COMPAT_PRECISION float g_CRT_bg;
uniform COMPAT_PRECISION float g_CRT_bb;
uniform COMPAT_PRECISION float g_CRT_rf;
uniform COMPAT_PRECISION float g_CRT_sl;
uniform COMPAT_PRECISION float g_vignette;
uniform COMPAT_PRECISION float g_vstr;
uniform COMPAT_PRECISION float g_vpower;
uniform COMPAT_PRECISION float g_lum_fix;
uniform COMPAT_PRECISION float g_lum;
uniform COMPAT_PRECISION float g_cntrst;
uniform COMPAT_PRECISION float g_mid;
uniform COMPAT_PRECISION float wp_temperature;
uniform COMPAT_PRECISION float g_sat;
uniform COMPAT_PRECISION float g_vibr;
uniform COMPAT_PRECISION float g_satr;
uniform COMPAT_PRECISION float g_satg;
uniform COMPAT_PRECISION float g_satb;
uniform COMPAT_PRECISION float g_lift;
uniform COMPAT_PRECISION float blr;
uniform COMPAT_PRECISION float blg;
uniform COMPAT_PRECISION float blb;
uniform COMPAT_PRECISION float wlr;
uniform COMPAT_PRECISION float wlg;
uniform COMPAT_PRECISION float wlb;
uniform COMPAT_PRECISION float rg;
uniform COMPAT_PRECISION float rb;
uniform COMPAT_PRECISION float gr;
uniform COMPAT_PRECISION float gb;
uniform COMPAT_PRECISION float br;
uniform COMPAT_PRECISION float bg;
uniform COMPAT_PRECISION float g_signal_type, g_crtgamut, g_space_out, g_Dark_to_Dim, g_GCompress, g_hue_degrees, g_U_SHIFT, g_V_SHIFT, g_U_MUL, g_V_MUL, g_CRT_l, g_CRT_b, g_CRT_c, g_CRT_br, g_CRT_bg, g_CRT_bb, g_CRT_rf, g_CRT_sl, g_vignette, g_vstr, g_vpower, g_lum_fix, g_lum, g_cntrst, g_mid, wp_temperature, g_sat, g_vibr, g_satr, g_satg, g_satb, g_lift, blr, blg, blb, wlr, wlg, wlb, rg, rb, gr, gb, br, bg;
#else
#define g_signal_type 0.0
#define g_crtgamut 0.0
@ -316,17 +266,17 @@ vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) {
vec3 XYZtoYxy(vec3 XYZ) {
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
return vec3(XYZ.g, Yxyg, Yxyb);
}
vec3 YxytoXYZ(vec3 Yxy) {
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0;
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
return XYZ;
}
@ -345,17 +295,17 @@ vec3 YxytoXYZ(vec3 Yxy) {
vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) {
float temp3 = 1000. / temperature;
float temp6 = 1000000. / pow(temperature, 2.);
float temp9 = 1000000000. / pow(temperature, 3.);
float temp6 = 1000000. / pow(temperature, 2.0);
float temp9 = 1000000000. / pow(temperature, 3.0);
vec3 wp = vec3(1.);
vec3 wp = vec3(1.0);
wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \
(temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \
0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ;
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2) + 0.0297408 * pow(wp.x,3);
wp.z = 1. - wp.x - wp.y;
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2.0) + 0.0297408 * pow(wp.x,3.0);
wp.z = 1.0 - wp.x - wp.y;
const mat3 CAT16 = mat3(
0.401288,-0.250268, -0.002079,
@ -392,17 +342,17 @@ float EOTF_1886a(float color, float bl, float brightness, float contrast) {
// Contrast = 100
const float wl = 100.0;
float b = pow(bl, 1/2.4);
float a = pow(wl, 1/2.4)-b;
b = (brightness-50) / 250. + b/a; // -0.20 to +0.20
a = contrast!=50 ? pow(2,(contrast-50)/50.) : 1.; // 0.50 to +2.00
float b = pow(bl, 1./2.4);
float a = pow(wl, 1./2.4)-b;
b = (brightness-50.) / 250. + b/a; // -0.20 to +0.20
a = contrast!=50. ? pow(2.,(contrast-50.)/50.) : 1.; // 0.50 to +2.00
const float Vc = 0.35; // Offset
float Lw = wl/100. * a; // White level
float Lb = min( b * a,Vc); // Black level
const float a1 = 2.6; // Shoulder gamma
const float a2 = 3.0; // Knee gamma
float k = Lw /pow(1 + Lb, a1);
float k = Lw /pow(1. + Lb, a1);
float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma
color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 );
@ -500,7 +450,7 @@ float rolled_gain(float color, float gain) {
float gx = abs(gain) + 0.001;
float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx;
color = (gain > 0.0) ? color * ((color - anch) / (1 - anch)) : color * ((1 - anch) / (color - anch)) * (1 - gain);
color = (gain > 0.0) ? color * ((color - anch) / (1.0 - anch)) : color * ((1.0 - anch) / (color - anch)) * (1.0 - gain);
return color;
}
@ -533,11 +483,11 @@ float SatMask(float color_r, float color_g, float color_b) {
vec3 GamutCompression (vec3 rgb, float grey) {
// Limit/Thres order is Cyan, Magenta, Yellow
vec3 beam = max(vec3(0.0),vec3(g_CRT_bg,(g_CRT_bb+g_CRT_br)/2,(g_CRT_br+g_CRT_bg)/2));
vec3 sat = max(vec3(0.0),vec3(g_satg, (g_satb +g_satr )/2,(g_satr +g_satg) /2)+1); // center at 1
float temp = max(0,abs(wp_temperature-7000)-1000)/825.0+1; // center at 1
vec3 WPD = wp_temperature < 7000 ? vec3(1,temp,(temp-1)/2+1) : vec3((temp-1)/2+1,temp,1);
sat = max(0.0,g_sat+1)*(sat*beam) * WPD;
vec3 beam = max(vec3(0.0),vec3(g_CRT_bg,(g_CRT_bb+g_CRT_br)/2.,(g_CRT_br+g_CRT_bg)/2.));
vec3 sat = max(vec3(0.0),vec3(g_satg, (g_satb +g_satr )/2.,(g_satr +g_satg) /2.)+1.); // center at 1
float temp = max(0.0,abs(wp_temperature-7000.)-1000.)/825.+1.; // center at 1
vec3 WPD = wp_temperature < 7000. ? vec3(1.,temp,(temp-1.)/2.+1.) : vec3((temp-1.)/2.+1.,temp,1.);
sat = max(0.0,g_sat+1.0)*(sat*beam) * WPD;
mat2x3 LimThres = mat2x3( 0.100000,0.100000,0.100000,
0.125000,0.125000,0.125000);
@ -580,7 +530,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
vec3 dl = 1.0+vec3(LimThres[0])*sat;
// Calculate scale so compression function passes through distance limit: (x=dl, y=1)
vec3 s = (vec3(1)-th)/sqrt(max(vec3(1.001), dl)-1.0);
vec3 s = (vec3(1.0)-th)/sqrt(max(vec3(1.001), dl)-1.0);
// Achromatic axis
float ac = max(rgb.x, max(rgb.y, rgb.z));
@ -597,7 +547,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
// Inverse RGB Ratios to RGB
// and Mask with "luma"
return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1/g_CRT_l));
return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1.0/g_CRT_l));
}
@ -621,8 +571,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
// Rymax 0.701088
// R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y)
// Rows should sum to 0, except first one which sums 1
const mat3 YByRy =
mat3(
const mat3 YByRy = mat3(
0.298912, 0.586603, 0.114485,
-0.298912,-0.586603, 0.885515,
0.701088,-0.586603,-0.114485);
@ -636,8 +585,8 @@ const mat3 YByRy =
// Y excursion is limited to 16-235 for NTSC-U and 0-235 for PAL and NTSC-J
vec3 r601_YUV(vec3 RGB, float NTSC_U) {
const float sclU = ((0.5*(235-16)+16)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
const float sclV = (240-16) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
const float sclU = ((0.5*(235.-16.)+16.)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
const float sclV = (240.-16.) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
mat3 conv_mat = mat3(
vec3(YByRy[0]),
@ -686,14 +635,12 @@ vec3 Quantize8_f3(vec3 col) {
// Hunt-Pointer-Estevez D65 cone response
// modification for IPT model
const mat3 LMS =
mat3(
const mat3 LMS = mat3(
0.4002, 0.7075, -0.0807,
-0.2280, 1.1500, 0.0612,
0.0000, 0.0000, 0.9184);
const mat3 IPT =
mat3(
const mat3 IPT = mat3(
0.4000, 0.4000, 0.2000,
4.4550, -4.8510, 0.3960,
0.8056, 0.3572, -1.1628);
@ -707,28 +654,28 @@ mat3(
////// STANDARDS ///////
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
// SMPTE-C - Standard Phosphor (Rec.601 NTSC)
// Standardized in 1982 (as CCIR Rec.601-1) after "Conrac Corp. & RCA" P22 phosphors (circa 1969) for consumer CRTs
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE170M_ph =
mat3(
const mat3 SMPTE170M_ph = mat3(
0.630, 0.310, 0.155,
0.340, 0.595, 0.070,
0.030, 0.095, 0.775);
// ITU-R BT.470/601 (B/G)
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors (also used in Sony BVMs and Higher-end PVMs)
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE470BG_ph =
mat3(
const mat3 SMPTE470BG_ph = mat3(
0.640, 0.290, 0.150,
0.330, 0.600, 0.060,
0.030, 0.110, 0.790);
// NTSC-J P22
// Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22'
// Phosphors based on 1975's EBU Tech.3123-E (formerly known as JEDEC-P22)
// Typical P22 phosphors used in Japanese consumer CRTs with 9300K+27MPCD white point
// ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K)
// ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series (around 10000.0K for wp_adjust() daylight fit)
const mat3 P22_J_ph =
mat3(
const mat3 P22_J_ph = mat3(
0.625, 0.280, 0.152,
0.350, 0.605, 0.062,
0.025, 0.115, 0.786);
@ -739,22 +686,19 @@ const mat3 P22_J_ph =
// You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based.
// P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement.
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 P22_80s_ph =
mat3(
const mat3 P22_80s_ph = mat3(
0.6470, 0.2820, 0.1472,
0.3430, 0.6200, 0.0642,
0.0100, 0.0980, 0.7886);
// P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits)
const mat3 P22_90s_ph =
mat3(
const mat3 P22_90s_ph = mat3(
0.6661, 0.3134, 0.1472,
0.3329, 0.6310, 0.0642,
0.0010, 0.0556, 0.7886);
// RPTV (Rear Projection TV) for NTSC-U late 90s, early 00s
const mat3 RPTV_95s_ph =
mat3(
const mat3 RPTV_95s_ph = mat3(
0.640, 0.341, 0.150,
0.335, 0.586, 0.070,
0.025, 0.073, 0.780);
@ -766,29 +710,25 @@ const mat3 RPTV_95s_ph =
//----------------------- Display Primaries -----------------------
// sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709)
const mat3 sRGB_prims =
mat3(
const mat3 sRGB_prims = mat3(
0.640, 0.300, 0.150,
0.330, 0.600, 0.060,
0.030, 0.100, 0.790);
// Adobe RGB (1998)
const mat3 Adobe_prims =
mat3(
const mat3 Adobe_prims = mat3(
0.640, 0.210, 0.150,
0.330, 0.710, 0.060,
0.030, 0.080, 0.790);
// BT-2020/BT-2100 (from 630nm, 532nm and 467nm)
const mat3 rec2020_prims =
mat3(
const mat3 rec2020_prims = mat3(
0.707917792, 0.170237195, 0.131370635,
0.292027109, 0.796518542, 0.045875976,
0.000055099, 0.033244263, 0.822753389);
// SMPTE RP 432-2 (DCI-P3)
const mat3 DCIP3_prims =
mat3(
const mat3 DCIP3_prims = mat3(
0.680, 0.265, 0.150,
0.320, 0.690, 0.060,
0.000, 0.045, 0.790);
@ -805,7 +745,7 @@ void main()
{
// Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations.
float lum_exp = (g_lum_fix == 1.0) ? (255.0/239.0) : 1.0;
float lum_exp = (g_lum_fix == 1.0) ? (255.0/239.0) : 1.0;
vec3 src = COMPAT_TEXTURE(Source, vTexCoord).rgb * lum_exp;
@ -830,10 +770,10 @@ void main()
col.z = (mod((chroma * sin(hue) + 1.0) + g_V_SHIFT, 2.0) - 1.0) * g_V_MUL;
// Back to R'G'B' full
col = g_signal_type > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src;
col = g_signal_type > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src;
// CRT EOTF. To Display Referred Linear: Undo developer baked CRT gamma (from 2.40 at default 0.1 CRT black level, to 2.60 at 0.0 CRT black level)
col = EOTF_1886a_f3(col, g_bl, g_CRT_b, g_CRT_c);
col = EOTF_1886a_f3(col, g_bl, g_CRT_b, g_CRT_c);
//_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
@ -868,10 +808,10 @@ void main()
// Display color space
mat3 m_ou;
if (g_space_out == 1.0) { m_ou = DCIP3_prims; } else
if (g_space_out == 2.0) { m_ou = rec2020_prims; } else
if (g_space_out == 3.0) { m_ou = Adobe_prims; } else
{ m_ou = sRGB_prims; }
if (g_space_out == 1.0) { m_ou = DCIP3_prims; } else
if (g_space_out == 2.0) { m_ou = rec2020_prims; } else
if (g_space_out == 3.0) { m_ou = Adobe_prims; } else
{ m_ou = sRGB_prims; }
// White Point Mapping
@ -889,7 +829,7 @@ void main()
src_h.xyz *= IPT;
float hue_at = atan(src_h.z, src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
// red 320º green 220º blue 100º
float hue_radians_r = 320.0 * M_PI;
@ -901,7 +841,7 @@ void main()
float hue_radians_b = 100.0 * M_PI;
float hue_b = cos(hue_at + hue_radians_b);
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2, 0.0, 1.0), -vec3(g_satr, g_satg, g_satb));
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2.0, 0.0, 1.0), -vec3(g_satr, g_satg, g_satb));
src_h = mix(col, vec3(dot(coeff, col)), msk);
float sat_msk = (g_vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(g_vibr) : \
@ -948,13 +888,13 @@ void main()
vpos *= 1.0 - vpos.xy;
float vig = vpos.x * vpos.y * g_vstr;
vig = min(pow(vig, g_vpower), 1.0);
vig = vig >= 0.5 ? smoothstep(0,1,vig) : vig;
vig = vig >= 0.5 ? smoothstep(0.0,1.0,vig) : vig;
src_h *= (g_vignette == 1.0) ? vig : 1.0;
// Dark to Dim adaptation OOTF; for 709, P3-D65 and 2020
float DtD = g_Dark_to_Dim > 0.0 ? 1/0.9811 : 1.0;
float DtD = g_Dark_to_Dim > 0.0 ? 1.0/0.9811 : 1.0;
// EOTF^-1 - Inverted Electro-Optical Transfer Function
vec3 TRC = (g_space_out == 3.0) ? clamp(pow(src_h, vec3(1./ (563./256.))), 0., 1.) : \

View File

@ -21,7 +21,7 @@
/*
Grade (16-06-2023)
Grade (17-07-2023)
> See settings decriptions at: https://forums.libretro.com/t/dogways-grading-shader-slang/27148/442
> Ubershader grouping some monolithic color related shaders:
@ -106,9 +106,9 @@
#pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005
#pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005
#pragma parameter LUT_Size1 "LUT Size 1" 32.0 8.0 64.0 16.0
#pragma parameter LUT1_toggle "LUT 1 Toggle" 0.0 0.0 1.0 1.0
#pragma parameter LUT1_toggle "LUT 1 Toggle" 0.0 0.0 1.0 1.0
#pragma parameter LUT_Size2 "LUT Size 2" 64.0 0.0 64.0 16.0
#pragma parameter LUT2_toggle "LUT 2 Toggle" 0.0 0.0 1.0 1.0
#pragma parameter LUT2_toggle "LUT 2 Toggle" 0.0 0.0 1.0 1.0
@ -143,19 +143,24 @@ uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
// compatibility #defines
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
void main()
{
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
@ -167,16 +172,6 @@ precision mediump float;
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
@ -187,62 +182,13 @@ uniform sampler2D SamplerLUT1;
uniform sampler2D SamplerLUT2;
COMPAT_VARYING vec4 TEX0;
// compatibility #defines
// fragment compatibility #defines
#define Source Texture
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize)
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float g_signal_type;
uniform COMPAT_PRECISION float g_crtgamut;
uniform COMPAT_PRECISION float g_space_out;
uniform COMPAT_PRECISION float g_Dark_to_Dim;
uniform COMPAT_PRECISION float g_GCompress;
uniform COMPAT_PRECISION float g_hue_degrees;
uniform COMPAT_PRECISION float g_U_SHIFT;
uniform COMPAT_PRECISION float g_V_SHIFT;
uniform COMPAT_PRECISION float g_U_MUL;
uniform COMPAT_PRECISION float g_V_MUL;
uniform COMPAT_PRECISION float g_CRT_l;
uniform COMPAT_PRECISION float g_CRT_b;
uniform COMPAT_PRECISION float g_CRT_c;
uniform COMPAT_PRECISION float g_CRT_br;
uniform COMPAT_PRECISION float g_CRT_bg;
uniform COMPAT_PRECISION float g_CRT_bb;
uniform COMPAT_PRECISION float g_CRT_rf;
uniform COMPAT_PRECISION float g_CRT_sl;
uniform COMPAT_PRECISION float g_vignette;
uniform COMPAT_PRECISION float g_vstr;
uniform COMPAT_PRECISION float g_vpower;
uniform COMPAT_PRECISION float g_lum_fix;
uniform COMPAT_PRECISION float g_lum;
uniform COMPAT_PRECISION float g_cntrst;
uniform COMPAT_PRECISION float g_mid;
uniform COMPAT_PRECISION float wp_temperature;
uniform COMPAT_PRECISION float g_sat;
uniform COMPAT_PRECISION float g_vibr;
uniform COMPAT_PRECISION float g_satr;
uniform COMPAT_PRECISION float g_satg;
uniform COMPAT_PRECISION float g_satb;
uniform COMPAT_PRECISION float g_lift;
uniform COMPAT_PRECISION float blr;
uniform COMPAT_PRECISION float blg;
uniform COMPAT_PRECISION float blb;
uniform COMPAT_PRECISION float wlr;
uniform COMPAT_PRECISION float wlg;
uniform COMPAT_PRECISION float wlb;
uniform COMPAT_PRECISION float rg;
uniform COMPAT_PRECISION float rb;
uniform COMPAT_PRECISION float gr;
uniform COMPAT_PRECISION float gb;
uniform COMPAT_PRECISION float br;
uniform COMPAT_PRECISION float bg;
uniform COMPAT_PRECISION float LUT_Size1;
uniform COMPAT_PRECISION float LUT1_toggle;
uniform COMPAT_PRECISION float LUT_Size2;
uniform COMPAT_PRECISION float LUT2_toggle;
uniform COMPAT_PRECISION float g_signal_type, g_crtgamut, g_space_out, g_Dark_to_Dim, g_GCompress, g_hue_degrees, g_U_SHIFT, g_V_SHIFT, g_U_MUL, g_V_MUL, g_CRT_l, g_CRT_b, g_CRT_c, g_CRT_br, g_CRT_bg, g_CRT_bb, g_CRT_rf, g_CRT_sl, g_vignette, g_vstr, g_vpower, g_lum_fix, g_lum, g_cntrst, g_mid, wp_temperature, g_sat, g_vibr, g_satr, g_satg, g_satb, g_lift, blr, blg, blb, wlr, wlg, wlb, rg, rb, gr, gb, br, bg, LUT_Size1, LUT1_toggle, LUT_Size2, LUT2_toggle;
#else
#define g_signal_type 1.0
#define g_crtgamut 2.0
@ -330,17 +276,17 @@ vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) {
vec3 XYZtoYxy(vec3 XYZ) {
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
return vec3(XYZ.g, Yxyg, Yxyb);
}
vec3 YxytoXYZ(vec3 Yxy) {
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0;
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
return XYZ;
}
@ -359,17 +305,17 @@ vec3 YxytoXYZ(vec3 Yxy) {
vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) {
float temp3 = 1000. / temperature;
float temp6 = 1000000. / pow(temperature, 2.);
float temp9 = 1000000000. / pow(temperature, 3.);
float temp6 = 1000000. / pow(temperature, 2.0);
float temp9 = 1000000000. / pow(temperature, 3.0);
vec3 wp = vec3(1.);
vec3 wp = vec3(1.0);
wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \
(temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \
0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ;
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2) + 0.0297408 * pow(wp.x,3);
wp.z = 1. - wp.x - wp.y;
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2.0) + 0.0297408 * pow(wp.x,3.0);
wp.z = 1.0 - wp.x - wp.y;
const mat3 CAT16 = mat3(
0.401288,-0.250268, -0.002079,
@ -406,17 +352,17 @@ float EOTF_1886a(float color, float bl, float brightness, float contrast) {
// Contrast = 100
const float wl = 100.0;
float b = pow(bl, 1/2.4);
float a = pow(wl, 1/2.4)-b;
b = (brightness-50) / 250. + b/a; // -0.20 to +0.20
a = contrast!=50 ? pow(2,(contrast-50)/50.) : 1.; // 0.50 to +2.00
float b = pow(bl, 1./2.4);
float a = pow(wl, 1./2.4)-b;
b = (brightness-50.) / 250. + b/a; // -0.20 to +0.20
a = contrast!=50. ? pow(2.,(contrast-50.)/50.) : 1.; // 0.50 to +2.00
const float Vc = 0.35; // Offset
float Lw = wl/100. * a; // White level
float Lb = min( b * a,Vc); // Black level
const float a1 = 2.6; // Shoulder gamma
const float a2 = 3.0; // Knee gamma
float k = Lw /pow(1 + Lb, a1);
float k = Lw /pow(1. + Lb, a1);
float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma
color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 );
@ -514,7 +460,7 @@ float rolled_gain(float color, float gain) {
float gx = abs(gain) + 0.001;
float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx;
color = (gain > 0.0) ? color * ((color - anch) / (1 - anch)) : color * ((1 - anch) / (color - anch)) * (1 - gain);
color = (gain > 0.0) ? color * ((color - anch) / (1.0 - anch)) : color * ((1.0 - anch) / (color - anch)) * (1.0 - gain);
return color;
}
@ -560,11 +506,11 @@ vec4 mixfix_v4(vec4 a, vec4 b, float c) {
vec3 GamutCompression (vec3 rgb, float grey) {
// Limit/Thres order is Cyan, Magenta, Yellow
vec3 beam = max(vec3(0.0),vec3(g_CRT_bg,(g_CRT_bb+g_CRT_br)/2,(g_CRT_br+g_CRT_bg)/2));
vec3 sat = max(vec3(0.0),vec3(g_satg, (g_satb +g_satr )/2,(g_satr +g_satg) /2)+1); // center at 1
float temp = max(0,abs(wp_temperature-7000)-1000)/825.0+1; // center at 1
vec3 WPD = wp_temperature < 7000 ? vec3(1,temp,(temp-1)/2+1) : vec3((temp-1)/2+1,temp,1);
sat = max(0.0,g_sat+1)*(sat*beam) * WPD;
vec3 beam = max(vec3(0.0),vec3(g_CRT_bg,(g_CRT_bb+g_CRT_br)/2.,(g_CRT_br+g_CRT_bg)/2.));
vec3 sat = max(vec3(0.0),vec3(g_satg, (g_satb +g_satr )/2.,(g_satr +g_satg) /2.)+1.); // center at 1
float temp = max(0.0,abs(wp_temperature-7000.)-1000.)/825.+1.; // center at 1
vec3 WPD = wp_temperature < 7000. ? vec3(1.,temp,(temp-1.)/2.+1.) : vec3((temp-1.)/2.+1.,temp,1.);
sat = max(0.0,g_sat+1.)*(sat*beam) * WPD;
mat2x3 LimThres = mat2x3( 0.100000,0.100000,0.100000,
0.125000,0.125000,0.125000);
@ -607,7 +553,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
vec3 dl = 1.0+vec3(LimThres[0])*sat;
// Calculate scale so compression function passes through distance limit: (x=dl, y=1)
vec3 s = (vec3(1)-th)/sqrt(max(vec3(1.001), dl)-1.0);
vec3 s = (vec3(1.0)-th)/sqrt(max(vec3(1.001), dl)-1.0);
// Achromatic axis
float ac = max(rgb.x, max(rgb.y, rgb.z));
@ -624,7 +570,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
// Inverse RGB Ratios to RGB
// and Mask with "luma"
return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1/g_CRT_l));
return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1.0/g_CRT_l));
}
@ -648,8 +594,7 @@ vec3 GamutCompression (vec3 rgb, float grey) {
// Rymax 0.701088
// R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y)
// Rows should sum to 0, except first one which sums 1
const mat3 YByRy =
mat3(
const mat3 YByRy = mat3(
0.298912, 0.586603, 0.114485,
-0.298912,-0.586603, 0.885515,
0.701088,-0.586603,-0.114485);
@ -663,8 +608,8 @@ const mat3 YByRy =
// Y excursion is limited to 16-235 for NTSC-U and 0-235 for PAL and NTSC-J
vec3 r601_YUV(vec3 RGB, float NTSC_U) {
const float sclU = ((0.5*(235-16)+16)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
const float sclV = (240-16) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
const float sclU = ((0.5*(235.-16.)+16.)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
const float sclV = (240.-16.) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
mat3 conv_mat = mat3(
vec3(YByRy[0]),
@ -713,14 +658,12 @@ vec3 Quantize8_f3(vec3 col) {
// Hunt-Pointer-Estevez D65 cone response
// modification for IPT model
const mat3 LMS =
mat3(
const mat3 LMS = mat3(
0.4002, 0.7075, -0.0807,
-0.2280, 1.1500, 0.0612,
0.0000, 0.0000, 0.9184);
const mat3 IPT =
mat3(
const mat3 IPT = mat3(
0.4000, 0.4000, 0.2000,
4.4550, -4.8510, 0.3960,
0.8056, 0.3572, -1.1628);
@ -734,28 +677,28 @@ mat3(
////// STANDARDS ///////
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
// SMPTE-C - Standard Phosphor (Rec.601 NTSC)
// Standardized in 1982 (as CCIR Rec.601-1) after "Conrac Corp. & RCA" P22 phosphors (circa 1969) for consumer CRTs
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE170M_ph =
mat3(
const mat3 SMPTE170M_ph = mat3(
0.630, 0.310, 0.155,
0.340, 0.595, 0.070,
0.030, 0.095, 0.775);
// ITU-R BT.470/601 (B/G)
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors (also used in Sony BVMs and Higher-end PVMs)
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE470BG_ph =
mat3(
const mat3 SMPTE470BG_ph = mat3(
0.640, 0.290, 0.150,
0.330, 0.600, 0.060,
0.030, 0.110, 0.790);
// NTSC-J P22
// Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22'
// Phosphors based on 1975's EBU Tech.3123-E (formerly known as JEDEC-P22)
// Typical P22 phosphors used in Japanese consumer CRTs with 9300K+27MPCD white point
// ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K)
// ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series (around 10000.0K for wp_adjust() daylight fit)
const mat3 P22_J_ph =
mat3(
const mat3 P22_J_ph = mat3(
0.625, 0.280, 0.152,
0.350, 0.605, 0.062,
0.025, 0.115, 0.786);
@ -766,22 +709,19 @@ const mat3 P22_J_ph =
// You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based.
// P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement.
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 P22_80s_ph =
mat3(
const mat3 P22_80s_ph = mat3(
0.6470, 0.2820, 0.1472,
0.3430, 0.6200, 0.0642,
0.0100, 0.0980, 0.7886);
// P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits)
const mat3 P22_90s_ph =
mat3(
const mat3 P22_90s_ph = mat3(
0.6661, 0.3134, 0.1472,
0.3329, 0.6310, 0.0642,
0.0010, 0.0556, 0.7886);
// RPTV (Rear Projection TV) for NTSC-U late 90s, early 00s
const mat3 RPTV_95s_ph =
mat3(
const mat3 RPTV_95s_ph = mat3(
0.640, 0.341, 0.150,
0.335, 0.586, 0.070,
0.025, 0.073, 0.780);
@ -793,29 +733,25 @@ const mat3 RPTV_95s_ph =
//----------------------- Display Primaries -----------------------
// sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709)
const mat3 sRGB_prims =
mat3(
const mat3 sRGB_prims = mat3(
0.640, 0.300, 0.150,
0.330, 0.600, 0.060,
0.030, 0.100, 0.790);
// Adobe RGB (1998)
const mat3 Adobe_prims =
mat3(
const mat3 Adobe_prims = mat3(
0.640, 0.210, 0.150,
0.330, 0.710, 0.060,
0.030, 0.080, 0.790);
// BT-2020/BT-2100 (from 630nm, 532nm and 467nm)
const mat3 rec2020_prims =
mat3(
const mat3 rec2020_prims = mat3(
0.707917792, 0.170237195, 0.131370635,
0.292027109, 0.796518542, 0.045875976,
0.000055099, 0.033244263, 0.822753389);
// SMPTE RP 432-2 (DCI-P3)
const mat3 DCIP3_prims =
mat3(
const mat3 DCIP3_prims = mat3(
0.680, 0.265, 0.150,
0.320, 0.690, 0.060,
0.000, 0.045, 0.790);
@ -832,7 +768,7 @@ void main()
{
// Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations.
float lum_exp = (g_lum_fix == 1.0) ? (255.0/239.0) : 1.0;
float lum_exp = (g_lum_fix == 1.0) ? (255.0/239.0) : 1.0;
vec3 src = COMPAT_TEXTURE(Source, vTexCoord).rgb * lum_exp;
@ -857,7 +793,7 @@ void main()
col.z = (mod((chroma * sin(hue) + 1.0) + g_V_SHIFT, 2.0) - 1.0) * g_V_MUL;
// Back to R'G'B' full
col = g_signal_type > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src;
col = g_signal_type > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src;
// Look LUT - (in SPC space)
float red = (col.r * (LUT_Size1 - 1.0) + 0.4999) / (LUT_Size1 * LUT_Size1);
@ -907,10 +843,10 @@ void main()
// Display color space
mat3 m_ou;
if (g_space_out == 1.0) { m_ou = DCIP3_prims; } else
if (g_space_out == 2.0) { m_ou = rec2020_prims; } else
if (g_space_out == 3.0) { m_ou = Adobe_prims; } else
{ m_ou = sRGB_prims; }
if (g_space_out == 1.0) { m_ou = DCIP3_prims; } else
if (g_space_out == 2.0) { m_ou = rec2020_prims; } else
if (g_space_out == 3.0) { m_ou = Adobe_prims; } else
{ m_ou = sRGB_prims; }
// White Point Mapping
@ -928,7 +864,7 @@ void main()
src_h.xyz *= IPT;
float hue_at = atan(src_h.z, src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
// red 320º green 220º blue 100º
float hue_radians_r = 320.0 * M_PI;
@ -940,7 +876,7 @@ void main()
float hue_radians_b = 100.0 * M_PI;
float hue_b = cos(hue_at + hue_radians_b);
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2, 0.0, 1.0), -vec3(g_satr, g_satg, g_satb));
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2.0, 0.0, 1.0), -vec3(g_satr, g_satg, g_satb));
src_h = mix(col, vec3(dot(coeff, col)), msk);
float sat_msk = (g_vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(g_vibr) : \
@ -987,13 +923,13 @@ void main()
vpos *= 1.0 - vpos.xy;
float vig = vpos.x * vpos.y * g_vstr;
vig = min(pow(vig, g_vpower), 1.0);
vig = vig >= 0.5 ? smoothstep(0,1,vig) : vig;
vig = vig >= 0.5 ? smoothstep(0.0,1.0,vig) : vig;
src_h *= (g_vignette == 1.0) ? vig : 1.0;
// Dark to Dim adaptation OOTF; for 709, P3-D65 and 2020
float DtD = g_Dark_to_Dim > 0.0 ? 1/0.9811 : 1.0;
float DtD = g_Dark_to_Dim > 0.0 ? 1.0/0.9811 : 1.0;
// EOTF^-1 - Inverted Electro-Optical Transfer Function
vec3 TRC = (g_space_out == 3.0) ? clamp(pow(src_h, vec3(1./ (563./256.))), 0., 1.) : \