update crt-hyllian shaders and presets, move hyllians crt stuff into … (#136)

* update crt-hyllian shaders and presets, move hyllians crt stuff into a dedicated dir

* fix glow mask
This commit is contained in:
hunterk 2021-01-16 09:32:02 -06:00 committed by GitHub
parent bd6cc0c838
commit d95c2454cc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 2266 additions and 522 deletions

View File

@ -24,6 +24,7 @@
*/
// Parameter lines go here:
#pragma parameter SB_BLUR_LEVEL "Smart Blur Level" 0.66 0.00 1.00 0.02
#pragma parameter SB_RED_THRESHOLD "Smart Blur Red Threshold" 0.2 0.0 0.6 0.01
#pragma parameter SB_GREEN_THRESHOLD "Smart Blur Green Threshold" 0.2 0.0 0.6 0.01
#pragma parameter SB_BLUE_THRESHOLD "Smart Blur Blue Threshold" 0.2 0.0 0.6 0.01
@ -69,10 +70,12 @@ uniform COMPAT_PRECISION vec2 InputSize;
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float SB_BLUR_LEVEL;
uniform COMPAT_PRECISION float SB_RED_THRESHOLD;
uniform COMPAT_PRECISION float SB_GREEN_THRESHOLD;
uniform COMPAT_PRECISION float SB_BLUE_THRESHOLD;
#else
#define SB_BLUR_LEVEL 0.66
#define SB_RED_THRESHOLD 0.2
#define SB_GREEN_THRESHOLD 0.2
#define SB_BLUE_THRESHOLD 0.2
@ -133,10 +136,12 @@ COMPAT_VARYING vec4 t3;
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float SB_BLUR_LEVEL;
uniform COMPAT_PRECISION float SB_RED_THRESHOLD;
uniform COMPAT_PRECISION float SB_GREEN_THRESHOLD;
uniform COMPAT_PRECISION float SB_BLUE_THRESHOLD;
#else
#define SB_BLUR_LEVEL 0.66
#define SB_RED_THRESHOLD 0.2
#define SB_GREEN_THRESHOLD 0.2
#define SB_BLUE_THRESHOLD 0.2
@ -172,8 +177,8 @@ void main()
if (eq(E,F) && eq(E,H) && eq(E,I) && eq(E,B) && eq(E,C) && eq(E,A) && eq(E,D) && eq(E,G))
{
sum = (E+A+C+D+F+G+I+B+H)/9.0;
E = sum;
sum = (A+C+D+F+G+I+B+H)/8.0;
E = mix(E, sum, SB_BLUR_LEVEL);
}
FragColor = vec4(E, 1.0);

View File

@ -1,5 +1,5 @@
shaders = 1
shader0 = shaders/crt-hyllian-3d.glsl
shader0 = shaders/hyllian/crt-hyllian-3d.glsl
filter_linear0 = true
srgb_framebuffer0 = true

View File

@ -4,7 +4,7 @@ shader0 = shaders/glow/linearize.glsl
filter_linear0 = false
srgb_framebuffer0 = true
shader1 = shaders/crt-hyllian-glow/crt-hyllian.glsl
shader1 = shaders/hyllian/crt-hyllian-glow/crt-hyllian-glow.glsl
filter_linear1 = false
scale_type1 = viewport
scale1 = 1.0
@ -26,5 +26,5 @@ shader4 = shaders/glow/blur_vert.glsl
filter_linear4 = true
srgb_framebuffer4 = true
shader5 = shaders/crt-hyllian-glow/resolve2.glsl
shader5 = shaders/hyllian/crt-hyllian-glow/resolve2.glsl
filter_linear5 = true

View File

@ -1,6 +1,6 @@
shaders = 2
shader0 = shaders/crt-hyllian-multipass/crt-hyllian-pass0.glsl
shader0 = shaders/hyllian/crt-hyllian-multipass/crt-hyllian-pass0.glsl
filter_linear0 = false
srgb_framebuffer0 = true
scale_type_x0 = viewport
@ -8,6 +8,6 @@ scale_type_y0 = source
scale_x0 = 1.0
scale_y0 = 1.0
shader1 = shaders/crt-hyllian-multipass/crt-hyllian-pass1.glsl
shader1 = shaders/hyllian/crt-hyllian-multipass/crt-hyllian-pass1.glsl
filter_linear1 = false
srgb_framebuffer1 = false

View File

@ -1,5 +1,5 @@
shaders = 1
shader0 = shaders/crt-hyllian.glsl
shader0 = shaders/hyllian/crt-hyllian.glsl
filter_linear0 = false
srgb_framebuffer0 = true

View File

@ -1,284 +0,0 @@
#version 130
/*
Hyllian's CRT Shader
Copyright (C) 2011-2015 Hyllian - sergiogdb@gmail.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#pragma parameter PHOSPHOR "CRT - Phosphor ON/OFF" 0.0 0.0 1.0 1.0
#pragma parameter VSCANLINES "CRT - Scanlines Direction" 0.0 0.0 1.0 1.0
#pragma parameter InputGamma "CRT - Input gamma" 2.2 0.0 5.0 0.1
#pragma parameter OutputGamma "CRT - Output Gamma" 2.2 0.0 5.0 0.1
#pragma parameter SHARPNESS "CRT - Sharpness Hack" 2.0 1.0 5.0 1.0
#pragma parameter COLOR_BOOST "CRT - Color Boost" 1.3 1.0 2.0 0.05
#pragma parameter RED_BOOST "CRT - Red Boost" 1.0 1.0 2.0 0.01
#pragma parameter GREEN_BOOST "CRT - Green Boost" 1.0 1.0 2.0 0.01
#pragma parameter BLUE_BOOST "CRT - Blue Boost" 1.0 1.0 2.0 0.01
#pragma parameter SCANLINES_STRENGTH "CRT - Scanline Strength" 1.0 0.0 1.0 0.02
#pragma parameter BEAM_MIN_WIDTH "CRT - Min Beam Width" 0.60 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH "CRT - Max Beam Width" 0.80 0.0 1.0 0.02
#pragma parameter CRT_ANTI_RINGING "CRT - Anti-Ringing" 0.8 0.0 1.0 0.1
#define GAMMA_IN(color) pow(color, vec3(InputGamma, InputGamma, InputGamma))
#define GAMMA_OUT(color) pow(color, vec3(1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma))
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
// B = 0.36, C = 0.28 => My best config for ringing elimination in pixel art (Hyllian).
// For more info, see: http://www.imagemagick.org/Usage/img_diagrams/cubic_survey.gif
#if defined(VERTEX)
#if __VERSION__ >= 130
#define COMPAT_VARYING out
#define COMPAT_ATTRIBUTE in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define COMPAT_ATTRIBUTE attribute
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
COMPAT_ATTRIBUTE vec4 VertexCoord;
COMPAT_ATTRIBUTE vec4 COLOR;
COMPAT_ATTRIBUTE vec4 TexCoord;
COMPAT_VARYING vec4 COL0;
COMPAT_VARYING vec4 TEX0;
vec4 _oPosition1;
uniform mat4 MVPMatrix;
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
// compatibility #defines
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float PHOSPHOR;
uniform COMPAT_PRECISION float VSCANLINES;
uniform COMPAT_PRECISION float InputGamma;
uniform COMPAT_PRECISION float OutputGamma;
uniform COMPAT_PRECISION float SHARPNESS;
uniform COMPAT_PRECISION float COLOR_BOOST;
uniform COMPAT_PRECISION float RED_BOOST;
uniform COMPAT_PRECISION float GREEN_BOOST;
uniform COMPAT_PRECISION float BLUE_BOOST;
uniform COMPAT_PRECISION float SCANLINES_STRENGTH;
uniform COMPAT_PRECISION float BEAM_MIN_WIDTH;
uniform COMPAT_PRECISION float BEAM_MAX_WIDTH;
uniform COMPAT_PRECISION float CRT_ANTI_RINGING;
#else
#define PHOSPHOR 0.0
#define VSCANLINES 0.0
#define InputGamma 2.2
#define OutputGamma 2.2
#define SHARPNESS 2.0
#define COLOR_BOOST 1.3
#define RED_BOOST 1.0
#define GREEN_BOOST 1.0
#define BLUE_BOOST 1.0
#define SCANLINES_STRENGTH 1.0
#define BEAM_MIN_WIDTH 0.60
#define BEAM_MAX_WIDTH 0.80
#define CRT_ANTI_RINGING 0.8
#endif
void main()
{
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
}
#elif defined(FRAGMENT)
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
uniform sampler2D Texture;
COMPAT_VARYING vec4 TEX0;
// compatibility #defines
#define Source Texture
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float PHOSPHOR;
uniform COMPAT_PRECISION float VSCANLINES;
uniform COMPAT_PRECISION float InputGamma;
uniform COMPAT_PRECISION float OutputGamma;
uniform COMPAT_PRECISION float SHARPNESS;
uniform COMPAT_PRECISION float COLOR_BOOST;
uniform COMPAT_PRECISION float RED_BOOST;
uniform COMPAT_PRECISION float GREEN_BOOST;
uniform COMPAT_PRECISION float BLUE_BOOST;
uniform COMPAT_PRECISION float SCANLINES_STRENGTH;
uniform COMPAT_PRECISION float BEAM_MIN_WIDTH;
uniform COMPAT_PRECISION float BEAM_MAX_WIDTH;
uniform COMPAT_PRECISION float CRT_ANTI_RINGING;
#else
#define PHOSPHOR 0.0
#define VSCANLINES 0.0
#define InputGamma 2.2
#define OutputGamma 2.2
#define SHARPNESS 2.0
#define COLOR_BOOST 1.3
#define RED_BOOST 1.0
#define GREEN_BOOST 1.0
#define BLUE_BOOST 1.0
#define SCANLINES_STRENGTH 1.0
#define BEAM_MIN_WIDTH 0.60
#define BEAM_MAX_WIDTH 0.80
#define CRT_ANTI_RINGING 0.8
#endif
// Change these params to configure the horizontal filter.
float B = 0.0;
float C = 0.5;
mat4 invX = mat4(
(-B - 6.0*C)/6.0, (3.0*B + 12.0*C)/6.0, (-3.0*B - 6.0*C)/6.0, B/6.0,
(12.0 - 9.0*B - 6.0*C)/6.0, (-18.0 + 12.0*B + 6.0*C)/6.0, 0.0, (6.0 - 2.0*B)/6.0,
-(12.0 - 9.0*B - 6.0*C)/6.0, (18.0 - 15.0*B - 12.0*C)/6.0, (3.0*B + 6.0*C)/6.0, B/6.0,
(B + 6.0*C)/6.0, -C, 0.0, 0.0
);
void main()
{
vec3 color;
vec2 TexSize = vec2(SHARPNESS*SourceSize.x, SourceSize.y);
vec2 dx = mix(vec2(1.0/TexSize.x, 0.0), vec2(0.0, 1.0/TexSize.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/TexSize.y), vec2(1.0/TexSize.x, 0.0), VSCANLINES);
vec2 pix_coord = vTexCoord*TexSize + vec2(-0.5, 0.5);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/TexSize, (floor(pix_coord) + vec2(1.0, -0.5))/TexSize, VSCANLINES);
vec2 fp = mix(fract(pix_coord), fract(pix_coord.yx), VSCANLINES);
vec3 c00 = GAMMA_IN(COMPAT_TEXTURE(Source, tc - dx - dy).xyz);
vec3 c01 = GAMMA_IN(COMPAT_TEXTURE(Source, tc - dy).xyz);
vec3 c02 = GAMMA_IN(COMPAT_TEXTURE(Source, tc + dx - dy).xyz);
vec3 c03 = GAMMA_IN(COMPAT_TEXTURE(Source, tc + 2.0*dx - dy).xyz);
vec3 c10 = GAMMA_IN(COMPAT_TEXTURE(Source, tc - dx ).xyz);
vec3 c11 = GAMMA_IN(COMPAT_TEXTURE(Source, tc ).xyz);
vec3 c12 = GAMMA_IN(COMPAT_TEXTURE(Source, tc + dx ).xyz);
vec3 c13 = GAMMA_IN(COMPAT_TEXTURE(Source, tc + 2.0*dx ).xyz);
// Get min/max samples
vec3 min_sample = min(min(c01, c11), min(c02, c12));
vec3 max_sample = max(max(c01, c11), max(c02, c12));
mat4x3 color_matrix0 = mat4x3(c00, c01, c02, c03);
mat4x3 color_matrix1 = mat4x3(c10, c11, c12, c13);
vec4 invX_Px = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0) * invX;
vec3 color0 = color_matrix0 * invX_Px;
vec3 color1 = color_matrix1 * invX_Px;
// Anti-ringing
vec3 aux = color0;
color0 = clamp(color0, min_sample, max_sample);
color0 = mix(aux, color0, CRT_ANTI_RINGING);
aux = color1;
color1 = clamp(color1, min_sample, max_sample);
color1 = mix(aux, color1, CRT_ANTI_RINGING);
float pos0 = fp.y;
float pos1 = 1 - fp.y;
vec3 lum0 = mix(vec3(BEAM_MIN_WIDTH), vec3(BEAM_MAX_WIDTH), color0);
vec3 lum1 = mix(vec3(BEAM_MIN_WIDTH), vec3(BEAM_MAX_WIDTH), color1);
vec3 d0 = clamp(pos0/(lum0 + 0.0000001), 0.0, 1.0);
vec3 d1 = clamp(pos1/(lum1 + 0.0000001), 0.0, 1.0);
d0 = exp(-10.0*SCANLINES_STRENGTH*d0*d0);
d1 = exp(-10.0*SCANLINES_STRENGTH*d1*d1);
color = clamp(color0*d0 + color1*d1, 0.0, 1.0);
color *= COLOR_BOOST*vec3(RED_BOOST, GREEN_BOOST, BLUE_BOOST);
float mod_factor = mix(vTexCoord.x * OutputSize.x, vTexCoord.y * OutputSize.y, VSCANLINES);
vec3 dotMaskWeights = mix(
vec3(1.0, 0.7, 1.0),
vec3(0.7, 1.0, 0.7),
floor(mod(mod_factor, 2.0))
);
color.rgb *= mix(vec3(1.0), dotMaskWeights, PHOSPHOR);
color = GAMMA_OUT(color);
FragColor = vec4(color, 1.0);
}
#endif

View File

@ -1,117 +0,0 @@
// version directive if necessary
// good place for credits/license
#pragma parameter BLOOM_STRENGTH "Bloom Strength" 0.45 0.0 1.0 0.01
#pragma parameter SOURCE_BOOST "Bloom Color Boost" 1.15 1.0 1.3 0.01
#define INV_OUTPUT_GAMMA (1.0 / 2.2)
#define saturate(c) clamp(c, 0.0, 1.0)
#if defined(VERTEX)
#if __VERSION__ >= 130
#define COMPAT_VARYING out
#define COMPAT_ATTRIBUTE in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define COMPAT_ATTRIBUTE attribute
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
COMPAT_ATTRIBUTE vec4 VertexCoord;
COMPAT_ATTRIBUTE vec4 COLOR;
COMPAT_ATTRIBUTE vec4 TexCoord;
COMPAT_VARYING vec4 COL0;
COMPAT_VARYING vec4 TEX0;
vec4 _oPosition1;
uniform mat4 MVPMatrix;
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
// compatibility #defines
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float BLOOM_STRENGTH;
uniform COMPAT_PRECISION float SOURCE_BOOST;
#else
#define BLOOM_STRENGTH 0.45
#define SOURCE_BOOST 1.15
#endif
void main()
{
gl_Position = MVPMatrix * VertexCoord;
TEX0.xy = TexCoord.xy;
}
#elif defined(FRAGMENT)
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out COMPAT_PRECISION vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
uniform sampler2D Texture;
uniform sampler2D Pass2Texture;
#define CRT_PASS Pass2Texture
COMPAT_VARYING vec4 TEX0;
// compatibility #defines
#define Source Texture
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define OutSize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float BLOOM_STRENGTH;
uniform COMPAT_PRECISION float SOURCE_BOOST;
#else
#define BLOOM_STRENGTH 0.45
#define SOURCE_BOOST 1.15
#endif
void main()
{
vec3 source = SOURCE_BOOST * COMPAT_TEXTURE(CRT_PASS, vTexCoord).rgb;
vec3 bloom = COMPAT_TEXTURE(Source, vTexCoord).rgb;
source += BLOOM_STRENGTH * bloom;
FragColor = vec4(pow(saturate(source), vec3(INV_OUTPUT_GAMMA,INV_OUTPUT_GAMMA,INV_OUTPUT_GAMMA)), 1.0);
}
#endif

View File

@ -0,0 +1,306 @@
/*
Hyllian's CRT Shader
Copyright (C) 2011-2020 Hyllian - sergiogdb@gmail.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#version 120
#pragma parameter BEAM_PROFILE "BEAM PROFILE (BP)" 0.0 0.0 6.0 1.0
#pragma parameter BEAM_MIN_WIDTH " Custom [If BP=0.00] MIN BEAM WIDTH" 0.86 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH " Custom [If BP=0.00] MAX BEAM WIDTH" 1.0 0.0 1.0 0.02
#pragma parameter SCANLINES_STRENGTH " Custom [If BP=0.00] SCANLINES STRENGTH" 0.58 0.0 1.0 0.02
#pragma parameter COLOR_BOOST " Custom [If BP=0.00] COLOR BOOST" 1.25 1.0 2.0 0.05
#pragma parameter HFILTER_SHARPNESS "HORIZONTAL FILTER SHARPNESS" 1.0 0.0 1.0 0.02
#pragma parameter CRT_ANTI_RINGING "ANTI RINGING" 1.0 0.0 1.0 0.1
#pragma parameter InputGamma "INPUT GAMMA" 2.4 0.0 5.0 0.1
#pragma parameter OutputGamma "OUTPUT GAMMA" 2.2 0.0 5.0 0.1
#pragma parameter VSCANLINES "SCANLINES DIRECTION" 0.0 0.0 1.0 1.0
#pragma parameter CRT_CURVATURE "CRT-Curvature" 1.0 0.0 1.0 1.0
#pragma parameter CRT_warpX "CRT-Curvature X-Axis" 0.031 0.0 0.125 0.01
#pragma parameter CRT_warpY "CRT-Curvature Y-Axis" 0.041 0.0 0.125 0.01
#pragma parameter CRT_cornersize "CRT-Corner Size" 0.01 0.001 1.0 0.005
#define cornersize CRT_cornersize
#pragma parameter CRT_cornersmooth "CRT-Corner Smoothness" 1000.0 80.0 2000.0 100.0
#define cornersmooth CRT_cornersmooth
#define GAMMA_IN(color) pow(color, vec4(InputGamma, InputGamma, InputGamma, InputGamma))
#define GAMMA_OUT(color) pow(color, vec4(1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma))
#define texCoord TEX0
#if defined(VERTEX)
#if __VERSION__ >= 130
#define OUT out
#define IN in
#define tex2D texture
#else
#define OUT varying
#define IN attribute
#define tex2D texture2D
#endif
#ifdef GL_ES
#define PRECISION mediump
#else
#define PRECISION
#endif
IN vec4 VertexCoord;
IN vec4 Color;
IN vec2 TexCoord;
OUT vec4 color;
OUT vec2 texCoord;
uniform mat4 MVPMatrix;
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
void main()
{
gl_Position = MVPMatrix * VertexCoord;
color = Color;
texCoord = TexCoord;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define IN in
#define tex2D texture
out vec4 FragColor;
#else
#define IN varying
#define FragColor gl_FragColor
#define tex2D texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define PRECISION mediump
#else
#define PRECISION
#endif
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
uniform sampler2D s_p;
IN vec2 texCoord;
#ifdef PARAMETER_UNIFORM
uniform PRECISION float BEAM_PROFILE;
uniform PRECISION float BEAM_MIN_WIDTH;
uniform PRECISION float BEAM_MAX_WIDTH;
uniform PRECISION float SCANLINES_STRENGTH;
uniform PRECISION float COLOR_BOOST;
uniform PRECISION float HFILTER_SHARPNESS;
uniform PRECISION float CRT_ANTI_RINGING;
uniform PRECISION float InputGamma;
uniform PRECISION float OutputGamma;
uniform PRECISION float VSCANLINES;
uniform PRECISION float CRT_CURVATURE;
uniform PRECISION float CRT_warpX;
uniform PRECISION float CRT_warpY;
uniform PRECISION float CRT_cornersize;
uniform PRECISION float CRT_cornersmooth;
#else
#define BEAM_PROFILE 0.0
#define BEAM_MIN_WIDTH 0.86
#define BEAM_MAX_WIDTH 1.0
#define SCANLINES_STRENGTH 0.58
#define COLOR_BOOST 1.25
#define HFILTER_SHARPNESS 1.0
#define CRT_ANTI_RINGING 1.0
#define InputGamma 2.4
#define OutputGamma 2.2
#define VSCANLINES 0.0
#define CRT_CURVATURE 1.0
#define CRT_warpX 0.031
#define CRT_warpY 0.041
#define CRT_cornersize 0.01
#define CRT_cornersmooth 1000.0
#endif
// END PARAMETERS //
const vec2 corner_aspect = vec2(1.0, 0.75);
vec2 CRT_Distortion = vec2(CRT_warpX, CRT_warpY) * 15.;
float corner(vec2 coord)
{
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*cornersmooth, 0.0, 1.0);
}
vec2 Warp(vec2 texCoord){
vec2 curvedCoords = texCoord * 2.0 - 1.0;
float curvedCoordsDistance = sqrt(curvedCoords.x*curvedCoords.x+curvedCoords.y*curvedCoords.y);
curvedCoords = curvedCoords / curvedCoordsDistance;
curvedCoords = curvedCoords * (1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097)),(1.0/(1.0+CRT_Distortion*0.2))));
curvedCoords = curvedCoords / (1.0-pow(vec2(0.29289321881345247559915563789515),(1.0/(vec2(1.0)+CRT_Distortion*0.2))));
curvedCoords = curvedCoords * 0.5 + 0.5;
return curvedCoords;
}
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
float B = 1.0 - HFILTER_SHARPNESS;
float C = HFILTER_SHARPNESS*0.5; // B+2C=1 Mitchel-Netravali recommendation line.
mat4 invX = mat4( (-B - 6.0*C)/6.0, (12.0 - 9.0*B - 6.0*C)/6.0, -(12.0 - 9.0*B - 6.0*C)/6.0, (B + 6.0*C)/6.0,
(3.0*B + 12.0*C)/6.0, (-18.0 + 12.0*B + 6.0*C)/6.0, (18.0 - 15.0*B - 12.0*C)/6.0, -C,
(-3.0*B - 6.0*C)/6.0, 0.0, (3.0*B + 6.0*C)/6.0, 0.0,
B/6.0, (6.0 - 2.0*B)/6.0, B/6.0, 0.0);
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(SCANLINES_STRENGTH, BEAM_MIN_WIDTH, BEAM_MAX_WIDTH, COLOR_BOOST);
if (BEAM_PROFILE == 1.0) bp = vec4(0.40, 1.00, 1.00, 1.00); // Catmull-rom
if (BEAM_PROFILE == 2.0) bp = vec4(0.72, 1.00, 1.00, 1.25); // Catmull-rom
if (BEAM_PROFILE == 3.0) bp = vec4(0.60, 0.50, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 4.0) bp = vec4(0.60, 0.72, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 5.0) bp = vec4(0.68, 0.68, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 6.0) bp = vec4(0.70, 0.50, 1.00, 1.80); // Catmull-rom
return bp;
}
void main()
{
vec4 profile = get_beam_profile();
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), VSCANLINES);
// vec2 pix_coord = texCoord.xy*TextureSize + vec2(-0.5, 0.5);
vec2 pp = texCoord.xy;
pp = (CRT_CURVATURE > 0.5) ? (Warp(pp*TextureSize.xy/InputSize.xy)*InputSize.xy/TextureSize.xy) : pp;
vec2 pix_coord = pp.xy*TextureSize + vec2(-0.5, 0.5);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/TextureSize, (floor(pix_coord) + vec2(1.0, -0.5))/TextureSize, VSCANLINES);
vec2 fp = mix(fract(pix_coord), fract(pix_coord.yx), VSCANLINES);
vec4 c00 = GAMMA_IN(tex2D(s_p, tc - dx - dy).xyzw);
vec4 c01 = GAMMA_IN(tex2D(s_p, tc - dy).xyzw);
vec4 c02 = GAMMA_IN(tex2D(s_p, tc + dx - dy).xyzw);
vec4 c03 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx - dy).xyzw);
vec4 c10 = GAMMA_IN(tex2D(s_p, tc - dx).xyzw);
vec4 c11 = GAMMA_IN(tex2D(s_p, tc ).xyzw);
vec4 c12 = GAMMA_IN(tex2D(s_p, tc + dx).xyzw);
vec4 c13 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx).xyzw);
mat4 color_matrix0 = mat4(c00, c01, c02, c03);
mat4 color_matrix1 = mat4(c10, c11, c12, c13);
vec4 lobes = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0);
vec4 invX_Px = invX * lobes;
vec4 color0 = color_matrix0 * invX_Px;
vec4 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec4 min_sample0 = min(c01,c02);
vec4 max_sample0 = max(c01,c02);
vec4 min_sample1 = min(c11,c12);
vec4 max_sample1 = max(c11,c12);
// Anti-ringing
vec4 aux = color0;
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, CRT_ANTI_RINGING);
aux = color1;
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, CRT_ANTI_RINGING);
float pos0 = fp.y;
float pos1 = 1.0 - fp.y;
vec4 lum0 = mix(vec4(beam_min_width), vec4(beam_max_width), color0);
vec4 lum1 = mix(vec4(beam_min_width), vec4(beam_max_width), color1);
vec4 d0 = scanlines_strength*pos0/(lum0+0.0000001);
vec4 d1 = scanlines_strength*pos1/(lum1+0.0000001);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
vec4 color = color_boost*(color0*d0+color1*d1);
color = GAMMA_OUT(color);
FragColor = vec4(color);
FragColor *= (CRT_CURVATURE > 0.5) ? corner(pp*TextureSize.xy/InputSize.xy) : 1.0;
}
#endif

View File

@ -0,0 +1,621 @@
/*
Hyllian's CRT Shader
Copyright (C) 2011-2020 Hyllian - sergiogdb@gmail.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#version 120
#pragma parameter BEAM_PROFILE "BEAM PROFILE (BP)" 0.0 0.0 6.0 1.0
#pragma parameter BEAM_MIN_WIDTH " Custom [If BP=0.00] MIN BEAM WIDTH" 0.86 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH " Custom [If BP=0.00] MAX BEAM WIDTH" 1.0 0.0 1.0 0.02
#pragma parameter SCANLINES_STRENGTH " Custom [If BP=0.00] SCANLINES STRENGTH" 0.58 0.0 1.0 0.02
#pragma parameter COLOR_BOOST " Custom [If BP=0.00] COLOR BOOST" 1.25 1.0 2.0 0.05
#pragma parameter HFILTER_SHARPNESS "HORIZONTAL FILTER SHARPNESS" 1.0 0.0 1.0 0.02
#pragma parameter PHOSPHOR_LAYOUT "PHOSPHOR LAYOUT" 4.0 0.0 19.0 1.0
#pragma parameter MASK_INTENSITY "MASK INTENSITY" 0.5 0.0 1.0 0.1
#pragma parameter CRT_ANTI_RINGING "ANTI RINGING" 1.0 0.0 1.0 0.1
#pragma parameter InputGamma "INPUT GAMMA" 2.4 0.0 5.0 0.1
#pragma parameter OutputGamma "OUTPUT GAMMA" 2.2 0.0 5.0 0.1
#pragma parameter VSCANLINES "SCANLINES DIRECTION" 0.0 0.0 1.0 1.0
#pragma parameter CRT_CURVATURE "CRT-Curvature" 1.0 0.0 1.0 1.0
#pragma parameter CRT_warpX "CRT-Curvature X-Axis" 0.031 0.0 0.125 0.01
#pragma parameter CRT_warpY "CRT-Curvature Y-Axis" 0.041 0.0 0.125 0.01
#pragma parameter CRT_cornersize "CRT-Corner Size" 0.01 0.001 1.0 0.005
#define cornersize CRT_cornersize
#pragma parameter CRT_cornersmooth "CRT-Corner Smoothness" 1000.0 80.0 2000.0 100.0
#define cornersmooth CRT_cornersmooth
#define GAMMA_IN(color) pow(color, vec4(InputGamma, InputGamma, InputGamma, InputGamma))
#define GAMMA_OUT(color) pow(color, vec4(1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma))
#define texCoord TEX0
#if defined(VERTEX)
#if __VERSION__ >= 130
#define OUT out
#define IN in
#define tex2D texture
#else
#define OUT varying
#define IN attribute
#define tex2D texture2D
#endif
#ifdef GL_ES
#define PRECISION mediump
#else
#define PRECISION
#endif
IN vec4 VertexCoord;
IN vec4 Color;
IN vec2 TexCoord;
OUT vec4 color;
OUT vec2 texCoord;
uniform mat4 MVPMatrix;
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
void main()
{
gl_Position = MVPMatrix * VertexCoord;
color = Color;
texCoord = TexCoord;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define IN in
#define tex2D texture
out vec4 FragColor;
#else
#define IN varying
#define FragColor gl_FragColor
#define tex2D texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define PRECISION mediump
#else
#define PRECISION
#endif
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
uniform sampler2D s_p;
IN vec2 texCoord;
#ifdef PARAMETER_UNIFORM
uniform PRECISION float BEAM_PROFILE;
uniform PRECISION float BEAM_MIN_WIDTH;
uniform PRECISION float BEAM_MAX_WIDTH;
uniform PRECISION float SCANLINES_STRENGTH;
uniform PRECISION float COLOR_BOOST;
uniform PRECISION float HFILTER_SHARPNESS;
uniform PRECISION float PHOSPHOR_LAYOUT;
uniform PRECISION float MASK_INTENSITY;
uniform PRECISION float CRT_ANTI_RINGING;
uniform PRECISION float InputGamma;
uniform PRECISION float OutputGamma;
uniform PRECISION float VSCANLINES;
uniform PRECISION float CRT_CURVATURE;
uniform PRECISION float CRT_warpX;
uniform PRECISION float CRT_warpY;
uniform PRECISION float CRT_cornersize;
uniform PRECISION float CRT_cornersmooth;
#else
#define BEAM_PROFILE 0.0
#define BEAM_MIN_WIDTH 0.86
#define BEAM_MAX_WIDTH 1.0
#define SCANLINES_STRENGTH 0.58
#define COLOR_BOOST 1.25
#define HFILTER_SHARPNESS 1.0
#define PHOSPHOR_LAYOUT 4.0
#define MASK_INTENSITY 0.5
#define CRT_ANTI_RINGING 1.0
#define InputGamma 2.4
#define OutputGamma 2.2
#define VSCANLINES 0.0
#define CRT_CURVATURE 1.0
#define CRT_warpX 0.031
#define CRT_warpY 0.041
#define CRT_cornersize 0.01
#define CRT_cornersmooth 1000.0
#endif
// END PARAMETERS //
/*
A collection of CRT mask effects that work with LCD subpixel structures for
small details
author: hunterk
license: public domain
How to use it:
Multiply your image by the vec3 output:
FragColor.rgb *= mask_weights(gl_FragCoord.xy, 1.0, 1);
The function needs to be tiled across the screen using the physical pixels, e.g.
gl_FragCoord (the "vec2 coord" input). In the case of slang shaders, we use
(vTexCoord.st * OutputSize.xy).
The "mask_intensity" (float value between 0.0 and 1.0) is how strong the mask
effect should be. Full-strength red, green and blue subpixels on a white pixel
are the ideal, and are achieved with an intensity of 1.0, though this darkens
the image significantly and may not always be desirable.
The "phosphor_layout" (int value between 0 and 19) determines which phophor
layout to apply. 0 is no mask/passthru.
Many of these mask arrays are adapted from cgwg's crt-geom-deluxe LUTs, and
those have their filenames included for easy identification
*/
vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout){
vec3 weights = vec3(1.,1.,1.);
float on = 1.;
float off = 1.-mask_intensity;
vec3 red = vec3(on, off, off);
vec3 green = vec3(off, on, off);
vec3 blue = vec3(off, off, on );
vec3 magenta = vec3(on, off, on );
vec3 yellow = vec3(on, on, off);
vec3 cyan = vec3(off, on, on );
vec3 black = vec3(off, off, off);
vec3 white = vec3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0)));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0)));
weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 3){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
// {magenta, green, black, black},
// {magenta, green, magenta, green},
// {black, black, magenta, green}
// GLSL can't do 2D arrays until version 430, so do this stupid thing instead for compatibility's sake:
// First lay out the horizontal pixels in arrays
vec3 slotmask_x1[4] = vec3[](magenta, green, black, black);
vec3 slotmask_x2[4] = vec3[](magenta, green, magenta, green);
vec3 slotmask_x3[4] = vec3[](black, black, magenta, green);
// find the vertical index
w = int(floor(mod(coord.y, 3.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 4.0)));
// do a big, dumb comparison in place of a 2D array
weights = (w == 1) ? slotmask_x1[z] : (w == 2) ? slotmask_x2[z] : slotmask_x3[z];
}
if(phosphor_layout == 4){
// classic aperture for RBG panels; good for 1080p, too small for 4K+
weights = mix(yellow, blue, floor(mod(coord.x, 2.0)));
return weights;
}
else if(phosphor_layout == 5){
// 2x2 shadow mask for RBG panels; good for 1080p, too small for 4K+
vec3 inverse_aperture = mix(blue, yellow, floor(mod(coord.x, 2.0)));
weights = mix(mix(yellow, blue, floor(mod(coord.x, 2.0))), inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
vec3 ap4[4] = vec3[](red, green, blue, black);
z = int(floor(mod(coord.x, 4.0)));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// aperture_2_5_bgr
vec3 ap3[5] = vec3[](red, magenta, blue, green, green);
z = int(floor(mod(coord.x, 5.0)));
weights = ap3[z];
return weights;
}
else if(phosphor_layout == 8){
// aperture_3_6_rgb
vec3 big_ap[7] = vec3[](red, red, yellow, green, cyan, blue, blue);
w = int(floor(mod(coord.x, 7.)));
weights = big_ap[w];
return weights;
}
else if(phosphor_layout == 9){
// reduced TVL aperture for RGB panels
// aperture_2_4_rgb
vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 10){
// reduced TVL aperture for RBG panels
vec3 big_ap_rbg[4] = vec3[](red, magenta, cyan, green);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rbg[w];
return weights;
}
else if(phosphor_layout == 11){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
vec3 delta_1_1[4] = vec3[](red, green, blue, black);
vec3 delta_1_2[4] = vec3[](blue, black, red, green);
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1_1[z] : delta_1_2[z];
return weights;
}
else if(phosphor_layout == 12){
// delta_2_4x1_rgb
vec3 delta_2_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2_2[4] = vec3[](cyan, blue, red, yellow);
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_2_1[z] : delta_2_2[z];
return weights;
}
else if(phosphor_layout == 13){
// delta_2_4x2_rgb
vec3 delta_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_3[4] = vec3[](cyan, blue, red, yellow);
vec3 delta_4[4] = vec3[](cyan, blue, red, yellow);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1[z] : (w == 2) ? delta_2[z] : (w == 3) ? delta_3[z] : delta_4[z];
return weights;
}
else if(phosphor_layout == 14){
// slot mask for RGB panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {magenta, green, black, black, black, black},
// {magenta, green, black, magenta, green, black},
// {black, black, black, magenta, green, black}
vec3 slot2_1[6] = vec3[](magenta, green, black, black, black, black);
vec3 slot2_2[6] = vec3[](magenta, green, black, magenta, green, black);
vec3 slot2_3[6] = vec3[](black, black, black, magenta, green, black);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 6.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 15){
// slot_2_4x4_rgb
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {red, yellow, cyan, blue, black, black, black, black},
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {black, black, black, black, red, yellow, cyan, blue }
vec3 slotmask_RBG_x1[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x2[8] = vec3[](red, yellow, cyan, blue, black, black, black, black);
vec3 slotmask_RBG_x3[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x4[8] = vec3[](black, black, black, black, red, yellow, cyan, blue );
// find the vertical index
w = int(floor(mod(coord.y, 4.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 8.0)));
weights = (w == 1) ? slotmask_RBG_x1[z] : (w == 2) ? slotmask_RBG_x2[z] : (w == 3) ? slotmask_RBG_x3[z] : slotmask_RBG_x4[z];
return weights;
}
else if(phosphor_layout == 16){
// slot mask for RBG panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {yellow, blue, black, black},
// {yellow, blue, yellow, blue},
// {black, black, yellow, blue}
vec3 slot2_1[4] = vec3[](yellow, blue, black, black);
vec3 slot2_2[4] = vec3[](yellow, blue, yellow, blue);
vec3 slot2_3[4] = vec3[](black, black, yellow, blue);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 17){
// slot_2_5x4_bgr
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {black, blue, blue, green, green, red, red, black, black, black},
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {red, red, black, black, black, black, blue, blue, green, green}
vec3 slot_1[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_2[10] = vec3[](black, blue, blue, green, green, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, blue, blue, green, green);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 18){
// same as above but for RBG panels
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {black, green, green, blue, blue, red, red, black, black, black},
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {red, red, black, black, black, black, green, green, blue, blue }
vec3 slot_1[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_2[10] = vec3[](black, green, green, blue, blue, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, green, green, blue, blue );
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 19){
// slot_3_7x6_rgb
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue}
vec3 slot_1[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_2[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_3[14] = vec3[](red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black);
vec3 slot_4[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_5[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_6[14] = vec3[](black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue);
w = int(floor(mod(coord.y, 6.0)));
z = int(floor(mod(coord.x, 14.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : (w == 4) ? slot_4[z] : (w == 5) ? slot_5[z] : slot_6[z];
return weights;
}
else return weights;
}
const vec2 corner_aspect = vec2(1.0, 0.75);
vec2 CRT_Distortion = vec2(CRT_warpX, CRT_warpY) * 15.;
float corner(vec2 coord)
{
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*cornersmooth, 0.0, 1.0);
}
vec2 Warp(vec2 texCoord){
vec2 curvedCoords = texCoord * 2.0 - 1.0;
float curvedCoordsDistance = sqrt(curvedCoords.x*curvedCoords.x+curvedCoords.y*curvedCoords.y);
curvedCoords = curvedCoords / curvedCoordsDistance;
curvedCoords = curvedCoords * (1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097)),(1.0/(1.0+CRT_Distortion*0.2))));
curvedCoords = curvedCoords / (1.0-pow(vec2(0.29289321881345247559915563789515),(1.0/(vec2(1.0)+CRT_Distortion*0.2))));
curvedCoords = curvedCoords * 0.5 + 0.5;
return curvedCoords;
}
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
float B = 1.0 - HFILTER_SHARPNESS;
float C = HFILTER_SHARPNESS*0.5; // B+2C=1 Mitchel-Netravali recommendation line.
mat4 invX = mat4( (-B - 6.0*C)/6.0, (12.0 - 9.0*B - 6.0*C)/6.0, -(12.0 - 9.0*B - 6.0*C)/6.0, (B + 6.0*C)/6.0,
(3.0*B + 12.0*C)/6.0, (-18.0 + 12.0*B + 6.0*C)/6.0, (18.0 - 15.0*B - 12.0*C)/6.0, -C,
(-3.0*B - 6.0*C)/6.0, 0.0, (3.0*B + 6.0*C)/6.0, 0.0,
B/6.0, (6.0 - 2.0*B)/6.0, B/6.0, 0.0);
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(SCANLINES_STRENGTH, BEAM_MIN_WIDTH, BEAM_MAX_WIDTH, COLOR_BOOST);
if (BEAM_PROFILE == 1.0) bp = vec4(0.40, 1.00, 1.00, 1.00); // Catmull-rom
if (BEAM_PROFILE == 2.0) bp = vec4(0.72, 1.00, 1.00, 1.25); // Catmull-rom
if (BEAM_PROFILE == 3.0) bp = vec4(0.60, 0.50, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 4.0) bp = vec4(0.60, 0.72, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 5.0) bp = vec4(0.68, 0.68, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 6.0) bp = vec4(0.70, 0.50, 1.00, 1.80); // Catmull-rom
return bp;
}
void main()
{
vec4 profile = get_beam_profile();
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), VSCANLINES);
// vec2 pix_coord = texCoord.xy*TextureSize + vec2(-0.5, 0.5);
vec2 pp = texCoord.xy;
pp = (CRT_CURVATURE > 0.5) ? (Warp(pp*TextureSize.xy/InputSize.xy)*InputSize.xy/TextureSize.xy) : pp;
vec2 pix_coord = pp.xy*TextureSize + vec2(-0.5, 0.5);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/TextureSize, (floor(pix_coord) + vec2(1.0, -0.5))/TextureSize, VSCANLINES);
vec2 fp = mix(fract(pix_coord), fract(pix_coord.yx), VSCANLINES);
vec4 c00 = GAMMA_IN(tex2D(s_p, tc - dx - dy).xyzw);
vec4 c01 = GAMMA_IN(tex2D(s_p, tc - dy).xyzw);
vec4 c02 = GAMMA_IN(tex2D(s_p, tc + dx - dy).xyzw);
vec4 c03 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx - dy).xyzw);
vec4 c10 = GAMMA_IN(tex2D(s_p, tc - dx).xyzw);
vec4 c11 = GAMMA_IN(tex2D(s_p, tc ).xyzw);
vec4 c12 = GAMMA_IN(tex2D(s_p, tc + dx).xyzw);
vec4 c13 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx).xyzw);
mat4 color_matrix0 = mat4(c00, c01, c02, c03);
mat4 color_matrix1 = mat4(c10, c11, c12, c13);
vec4 lobes = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0);
vec4 invX_Px = invX * lobes;
vec4 color0 = color_matrix0 * invX_Px;
vec4 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec4 min_sample0 = min(c01,c02);
vec4 max_sample0 = max(c01,c02);
vec4 min_sample1 = min(c11,c12);
vec4 max_sample1 = max(c11,c12);
// Anti-ringing
vec4 aux = color0;
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, CRT_ANTI_RINGING);
aux = color1;
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, CRT_ANTI_RINGING);
float pos0 = fp.y;
float pos1 = 1.0 - fp.y;
vec4 lum0 = mix(vec4(beam_min_width), vec4(beam_max_width), color0);
vec4 lum1 = mix(vec4(beam_min_width), vec4(beam_max_width), color1);
vec4 d0 = scanlines_strength*pos0/(lum0+0.0000001);
vec4 d1 = scanlines_strength*pos1/(lum1+0.0000001);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
vec4 color = color_boost*(color0*d0+color1*d1);
// vec2 mask_coords = gl_FragCoord.xy; //texCoord.xy * OutputSize.xy;
vec2 mask_coords = (texCoord.xy * OutputSize.xy) * TextureSize.xy / InputSize.xy;
mask_coords = mix(mask_coords.xy, mask_coords.yx, VSCANLINES);
color.rgb*=mask_weights(mask_coords, MASK_INTENSITY, int(PHOSPHOR_LAYOUT));
color = GAMMA_OUT(color);
FragColor = vec4(color);
FragColor *= (CRT_CURVATURE > 0.5) ? corner(pp*TextureSize.xy/InputSize.xy) : 1.0;
}
#endif

View File

@ -1,7 +1,7 @@
/*
Hyllian's CRT Shader
Copyright (C) 2011-2016 Hyllian - sergiogdb@gmail.com
Copyright (C) 2011-2020 Hyllian - sergiogdb@gmail.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
@ -23,36 +23,22 @@
*/
#pragma parameter PHOSPHOR "CRT - Phosphor ON/OFF" 1.0 0.0 1.0 1.0
#pragma parameter VSCANLINES "CRT - Scanlines Direction" 0.0 0.0 1.0 1.0
#pragma parameter InputGamma "CRT - Input gamma" 2.4 0.0 5.0 0.1
#pragma parameter OutputGamma "CRT - Output Gamma" 2.2 0.0 5.0 0.1
#pragma parameter SHARPNESS "CRT - Sharpness Hack" 1.0 1.0 5.0 1.0
#pragma parameter COLOR_BOOST "CRT - Color Boost" 1.5 1.0 2.0 0.05
#pragma parameter RED_BOOST "CRT - Red Boost" 1.0 1.0 2.0 0.01
#pragma parameter GREEN_BOOST "CRT - Green Boost" 1.0 1.0 2.0 0.01
#pragma parameter BLUE_BOOST "CRT - Blue Boost" 1.0 1.0 2.0 0.01
#pragma parameter SCANLINES_STRENGTH "CRT - Scanline Strength" 0.72 0.0 1.0 0.02
#pragma parameter BEAM_MIN_WIDTH "CRT - Min Beam Width" 0.86 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH "CRT - Max Beam Width" 1.0 0.0 1.0 0.02
#pragma parameter CRT_ANTI_RINGING "CRT - Anti-Ringing" 0.8 0.0 1.0 0.1
#version 120
#pragma parameter BEAM_PROFILE "BEAM PROFILE (BP)" 0.0 0.0 6.0 1.0
#pragma parameter BEAM_MIN_WIDTH " Custom [If BP=0.00] MIN BEAM WIDTH" 0.86 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH " Custom [If BP=0.00] MAX BEAM WIDTH" 1.0 0.0 1.0 0.02
#pragma parameter SCANLINES_STRENGTH " Custom [If BP=0.00] SCANLINES STRENGTH" 0.58 0.0 1.0 0.02
#pragma parameter COLOR_BOOST " Custom [If BP=0.00] COLOR BOOST" 1.25 1.0 2.0 0.05
#pragma parameter HFILTER_SHARPNESS "HORIZONTAL FILTER SHARPNESS" 1.0 0.0 1.0 0.02
#pragma parameter CRT_ANTI_RINGING "ANTI RINGING" 1.0 0.0 1.0 0.1
#pragma parameter InputGamma "INPUT GAMMA" 2.4 0.0 5.0 0.1
#pragma parameter OutputGamma "OUTPUT GAMMA" 2.2 0.0 5.0 0.1
#pragma parameter VSCANLINES "SCANLINES DIRECTION" 0.0 0.0 1.0 1.0
#define GAMMA_IN(color) pow(color, vec4(InputGamma, InputGamma, InputGamma, InputGamma))
#define GAMMA_OUT(color) pow(color, vec4(1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma))
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
// B = 0.36, C = 0.28 => My best config for ringing elimination in pixel art (Hyllian).
// For more info, see: http://www.imagemagick.org/Usage/img_diagrams/cubic_survey.gif
#define texCoord TEX0
@ -128,56 +114,84 @@ uniform sampler2D s_p;
IN vec2 texCoord;
#ifdef PARAMETER_UNIFORM
uniform PRECISION float PHOSPHOR;
uniform PRECISION float VSCANLINES;
uniform PRECISION float InputGamma;
uniform PRECISION float OutputGamma;
uniform PRECISION float SHARPNESS;
uniform PRECISION float COLOR_BOOST;
uniform PRECISION float RED_BOOST;
uniform PRECISION float GREEN_BOOST;
uniform PRECISION float BLUE_BOOST;
uniform PRECISION float SCANLINES_STRENGTH;
uniform PRECISION float BEAM_PROFILE;
uniform PRECISION float BEAM_MIN_WIDTH;
uniform PRECISION float BEAM_MAX_WIDTH;
uniform PRECISION float SCANLINES_STRENGTH;
uniform PRECISION float COLOR_BOOST;
uniform PRECISION float HFILTER_SHARPNESS;
uniform PRECISION float CRT_ANTI_RINGING;
uniform PRECISION float InputGamma;
uniform PRECISION float OutputGamma;
uniform PRECISION float VSCANLINES;
#else
#define PHOSPHOR 1.0
#define VSCANLINES 0.0
#define InputGamma 2.4
#define OutputGamma 2.2
#define SHARPNESS 1.0
#define COLOR_BOOST 1.5
#define RED_BOOST 1.0
#define GREEN_BOOST 1.0
#define BLUE_BOOST 1.0
#define SCANLINES_STRENGTH 0.72
#define BEAM_PROFILE 0.0
#define BEAM_MIN_WIDTH 0.86
#define BEAM_MAX_WIDTH 1.0
#define CRT_ANTI_RINGING 0.8
#define SCANLINES_STRENGTH 0.58
#define COLOR_BOOST 1.25
#define HFILTER_SHARPNESS 1.0
#define CRT_ANTI_RINGING 1.0
#define InputGamma 2.4
#define OutputGamma 2.2
#define VSCANLINES 0.0
#endif
// END PARAMETERS //
// Change these params to configure the horizontal filter.
const float B = 0.0;
const float C = 0.5;
const mat4 invX = mat4( (-B - 6.0*C)/6.0, (12.0 - 9.0*B - 6.0*C)/6.0, -(12.0 - 9.0*B - 6.0*C)/6.0, (B + 6.0*C)/6.0,
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
float B = 1.0 - HFILTER_SHARPNESS;
float C = HFILTER_SHARPNESS*0.5; // B+2C=1 Mitchel-Netravali recommendation line.
mat4 invX = mat4( (-B - 6.0*C)/6.0, (12.0 - 9.0*B - 6.0*C)/6.0, -(12.0 - 9.0*B - 6.0*C)/6.0, (B + 6.0*C)/6.0,
(3.0*B + 12.0*C)/6.0, (-18.0 + 12.0*B + 6.0*C)/6.0, (18.0 - 15.0*B - 12.0*C)/6.0, -C,
(-3.0*B - 6.0*C)/6.0, 0.0, (3.0*B + 6.0*C)/6.0, 0.0,
B/6.0, (6.0 - 2.0*B)/6.0, B/6.0, 0.0);
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(SCANLINES_STRENGTH, BEAM_MIN_WIDTH, BEAM_MAX_WIDTH, COLOR_BOOST);
if (BEAM_PROFILE == 1.0) bp = vec4(0.40, 1.00, 1.00, 1.00); // Catmull-rom
if (BEAM_PROFILE == 2.0) bp = vec4(0.72, 1.00, 1.00, 1.25); // Catmull-rom
if (BEAM_PROFILE == 3.0) bp = vec4(0.60, 0.50, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 4.0) bp = vec4(0.60, 0.72, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 5.0) bp = vec4(0.68, 0.68, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 6.0) bp = vec4(0.70, 0.50, 1.00, 1.80); // Catmull-rom
return bp;
}
void main()
{
vec2 texture_size = vec2(SHARPNESS*TextureSize.x, TextureSize.y);
vec4 profile = get_beam_profile();
vec4 color;
vec2 dx = mix(vec2(1.0/texture_size.x, 0.0), vec2(0.0, 1.0/texture_size.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/texture_size.y), vec2(1.0/texture_size.x, 0.0), VSCANLINES);
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), VSCANLINES);
vec2 pix_coord = texCoord*texture_size+vec2(-0.5,0.5);
vec2 pix_coord = texCoord.xy*TextureSize + vec2(-0.5, 0.5);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/texture_size, (floor(pix_coord) + vec2(1.0, -0.5))/texture_size, VSCANLINES);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/TextureSize, (floor(pix_coord) + vec2(1.0, -0.5))/TextureSize, VSCANLINES);
vec2 fp = mix(fract(pix_coord), fract(pix_coord.yx), VSCANLINES);
@ -190,10 +204,6 @@ void main()
vec4 c12 = GAMMA_IN(tex2D(s_p, tc + dx).xyzw);
vec4 c13 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx).xyzw);
// Get min/max samples
vec4 min_sample = min(min(c01,c11), min(c02,c12));
vec4 max_sample = max(max(c01,c11), max(c02,c12));
mat4 color_matrix0 = mat4(c00, c01, c02, c03);
mat4 color_matrix1 = mat4(c10, c11, c12, c13);
@ -203,39 +213,33 @@ void main()
vec4 color0 = color_matrix0 * invX_Px;
vec4 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec4 min_sample0 = min(c01,c02);
vec4 max_sample0 = max(c01,c02);
vec4 min_sample1 = min(c11,c12);
vec4 max_sample1 = max(c11,c12);
// Anti-ringing
vec4 aux = color0;
color0 = clamp(color0, min_sample, max_sample);
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, CRT_ANTI_RINGING);
aux = color1;
color1 = clamp(color1, min_sample, max_sample);
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, CRT_ANTI_RINGING);
float pos0 = fp.y;
float pos1 = 1.0 - fp.y;
vec4 lum0 = mix(vec4(BEAM_MIN_WIDTH), vec4(BEAM_MAX_WIDTH), color0);
vec4 lum1 = mix(vec4(BEAM_MIN_WIDTH), vec4(BEAM_MAX_WIDTH), color1);
vec4 lum0 = mix(vec4(beam_min_width), vec4(beam_max_width), color0);
vec4 lum1 = mix(vec4(beam_min_width), vec4(beam_max_width), color1);
vec4 d0 = clamp(pos0/(lum0+0.0000001), 0.0, 1.0);
vec4 d1 = clamp(pos1/(lum1+0.0000001), 0.0, 1.0);
vec4 d0 = scanlines_strength*pos0/(lum0+0.0000001);
vec4 d1 = scanlines_strength*pos1/(lum1+0.0000001);
d0 = exp(-10.0*SCANLINES_STRENGTH*d0*d0);
d1 = exp(-10.0*SCANLINES_STRENGTH*d1*d1);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
color = clamp(color0*d0+color1*d1, 0.0, 1.0);
color *= COLOR_BOOST*vec4(RED_BOOST, GREEN_BOOST, BLUE_BOOST, 1.0);
float mod_factor = texCoord.x * OutputSize.x * TextureSize.x / InputSize.x;
vec4 dotMaskWeights = mix(
vec4(1.0, 0.7, 1.0, 1.),
vec4(0.7, 1.0, 0.7, 1.),
floor(mod(mod_factor, 2.0))
);
color.rgba *= mix(vec4(1.0,1.0,1.0,1.0), dotMaskWeights, PHOSPHOR);
vec4 color = color_boost*(color0*d0+color1*d1);
color = GAMMA_OUT(color);

View File

@ -0,0 +1,425 @@
#version 120
// Parameter lines go here:
#pragma parameter BLOOM_STRENGTH "Glow Strength" 0.45 0.0 0.8 0.05
#pragma parameter OUTPUT_GAMMA "Monitor Gamma" 2.2 1.8 2.6 0.02
#pragma parameter PHOSPHOR_LAYOUT "PHOSPHOR LAYOUT" 4.0 0.0 19.0 1.0
#pragma parameter MASK_INTENSITY "MASK INTENSITY" 0.5 0.0 1.0 0.1
#if defined(VERTEX)
#if __VERSION__ >= 130
#define COMPAT_VARYING out
#define COMPAT_ATTRIBUTE in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define COMPAT_ATTRIBUTE attribute
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
COMPAT_ATTRIBUTE vec4 VertexCoord;
COMPAT_ATTRIBUTE vec4 COLOR;
COMPAT_ATTRIBUTE vec4 TexCoord;
COMPAT_VARYING vec4 COL0;
COMPAT_VARYING vec4 TEX0;
vec4 _oPosition1;
uniform mat4 MVPMatrix;
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
void main()
{
gl_Position = MVPMatrix * VertexCoord;
COL0 = COLOR;
TEX0.xy = TexCoord.xy;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
uniform sampler2D Texture;
uniform sampler2D PassPrev4Texture;
COMPAT_VARYING vec4 TEX0;
// compatibility #defines
#define Source Texture
#define vTexCoord TEX0.xy
#define SourceSize vec4(TextureSize, 1.0 / TextureSize) //either TextureSize or InputSize
#define outsize vec4(OutputSize, 1.0 / OutputSize)
#ifdef PARAMETER_UNIFORM
// All parameter floats need to have COMPAT_PRECISION in front of them
uniform COMPAT_PRECISION float BLOOM_STRENGTH;
uniform COMPAT_PRECISION float OUTPUT_GAMMA;
uniform COMPAT_PRECISION float PHOSPHOR_LAYOUT;
uniform COMPAT_PRECISION float MASK_INTENSITY;
#else
#define BLOOM_STRENGTH 0.45
#define OUTPUT_GAMMA 2.2
#define PHOSPHOR_LAYOUT 4.0
#define MASK_INTENSITY 0.5
#endif
/*
A collection of CRT mask effects that work with LCD subpixel structures for
small details
author: hunterk
license: public domain
How to use it:
Multiply your image by the vec3 output:
FragColor.rgb *= mask_weights(gl_FragCoord.xy, 1.0, 1);
The function needs to be tiled across the screen using the physical pixels, e.g.
gl_FragCoord (the "vec2 coord" input). In the case of slang shaders, we use
(vTexCoord.st * OutputSize.xy).
The "mask_intensity" (float value between 0.0 and 1.0) is how strong the mask
effect should be. Full-strength red, green and blue subpixels on a white pixel
are the ideal, and are achieved with an intensity of 1.0, though this darkens
the image significantly and may not always be desirable.
The "phosphor_layout" (int value between 0 and 19) determines which phophor
layout to apply. 0 is no mask/passthru.
Many of these mask arrays are adapted from cgwg's crt-geom-deluxe LUTs, and
those have their filenames included for easy identification
*/
vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout){
vec3 weights = vec3(1.,1.,1.);
float on = 1.;
float off = 1.-mask_intensity;
vec3 red = vec3(on, off, off);
vec3 green = vec3(off, on, off);
vec3 blue = vec3(off, off, on );
vec3 magenta = vec3(on, off, on );
vec3 yellow = vec3(on, on, off);
vec3 cyan = vec3(off, on, on );
vec3 black = vec3(off, off, off);
vec3 white = vec3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0)));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0)));
weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 3){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
// {magenta, green, black, black},
// {magenta, green, magenta, green},
// {black, black, magenta, green}
// GLSL can't do 2D arrays until version 430, so do this stupid thing instead for compatibility's sake:
// First lay out the horizontal pixels in arrays
vec3 slotmask_x1[4] = vec3[](magenta, green, black, black);
vec3 slotmask_x2[4] = vec3[](magenta, green, magenta, green);
vec3 slotmask_x3[4] = vec3[](black, black, magenta, green);
// find the vertical index
w = int(floor(mod(coord.y, 3.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 4.0)));
// do a big, dumb comparison in place of a 2D array
weights = (w == 1) ? slotmask_x1[z] : (w == 2) ? slotmask_x2[z] : slotmask_x3[z];
}
if(phosphor_layout == 4){
// classic aperture for RBG panels; good for 1080p, too small for 4K+
weights = mix(yellow, blue, floor(mod(coord.x, 2.0)));
return weights;
}
else if(phosphor_layout == 5){
// 2x2 shadow mask for RBG panels; good for 1080p, too small for 4K+
vec3 inverse_aperture = mix(blue, yellow, floor(mod(coord.x, 2.0)));
weights = mix(mix(yellow, blue, floor(mod(coord.x, 2.0))), inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
vec3 ap4[4] = vec3[](red, green, blue, black);
z = int(floor(mod(coord.x, 4.0)));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// aperture_2_5_bgr
vec3 ap3[5] = vec3[](red, magenta, blue, green, green);
z = int(floor(mod(coord.x, 5.0)));
weights = ap3[z];
return weights;
}
else if(phosphor_layout == 8){
// aperture_3_6_rgb
vec3 big_ap[7] = vec3[](red, red, yellow, green, cyan, blue, blue);
w = int(floor(mod(coord.x, 7.)));
weights = big_ap[w];
return weights;
}
else if(phosphor_layout == 9){
// reduced TVL aperture for RGB panels
// aperture_2_4_rgb
vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 10){
// reduced TVL aperture for RBG panels
vec3 big_ap_rbg[4] = vec3[](red, magenta, cyan, green);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rbg[w];
return weights;
}
else if(phosphor_layout == 11){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
vec3 delta_1_1[4] = vec3[](red, green, blue, black);
vec3 delta_1_2[4] = vec3[](blue, black, red, green);
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1_1[z] : delta_1_2[z];
return weights;
}
else if(phosphor_layout == 12){
// delta_2_4x1_rgb
vec3 delta_2_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2_2[4] = vec3[](cyan, blue, red, yellow);
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_2_1[z] : delta_2_2[z];
return weights;
}
else if(phosphor_layout == 13){
// delta_2_4x2_rgb
vec3 delta_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_3[4] = vec3[](cyan, blue, red, yellow);
vec3 delta_4[4] = vec3[](cyan, blue, red, yellow);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1[z] : (w == 2) ? delta_2[z] : (w == 3) ? delta_3[z] : delta_4[z];
return weights;
}
else if(phosphor_layout == 14){
// slot mask for RGB panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {magenta, green, black, black, black, black},
// {magenta, green, black, magenta, green, black},
// {black, black, black, magenta, green, black}
vec3 slot2_1[6] = vec3[](magenta, green, black, black, black, black);
vec3 slot2_2[6] = vec3[](magenta, green, black, magenta, green, black);
vec3 slot2_3[6] = vec3[](black, black, black, magenta, green, black);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 6.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 15){
// slot_2_4x4_rgb
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {red, yellow, cyan, blue, black, black, black, black},
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {black, black, black, black, red, yellow, cyan, blue }
vec3 slotmask_RBG_x1[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x2[8] = vec3[](red, yellow, cyan, blue, black, black, black, black);
vec3 slotmask_RBG_x3[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x4[8] = vec3[](black, black, black, black, red, yellow, cyan, blue );
// find the vertical index
w = int(floor(mod(coord.y, 4.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 8.0)));
weights = (w == 1) ? slotmask_RBG_x1[z] : (w == 2) ? slotmask_RBG_x2[z] : (w == 3) ? slotmask_RBG_x3[z] : slotmask_RBG_x4[z];
return weights;
}
else if(phosphor_layout == 16){
// slot mask for RBG panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {yellow, blue, black, black},
// {yellow, blue, yellow, blue},
// {black, black, yellow, blue}
vec3 slot2_1[4] = vec3[](yellow, blue, black, black);
vec3 slot2_2[4] = vec3[](yellow, blue, yellow, blue);
vec3 slot2_3[4] = vec3[](black, black, yellow, blue);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 17){
// slot_2_5x4_bgr
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {black, blue, blue, green, green, red, red, black, black, black},
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {red, red, black, black, black, black, blue, blue, green, green}
vec3 slot_1[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_2[10] = vec3[](black, blue, blue, green, green, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, blue, blue, green, green);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 18){
// same as above but for RBG panels
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {black, green, green, blue, blue, red, red, black, black, black},
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {red, red, black, black, black, black, green, green, blue, blue }
vec3 slot_1[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_2[10] = vec3[](black, green, green, blue, blue, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, green, green, blue, blue );
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 19){
// slot_3_7x6_rgb
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue}
vec3 slot_1[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_2[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_3[14] = vec3[](red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black);
vec3 slot_4[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_5[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_6[14] = vec3[](black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue);
w = int(floor(mod(coord.y, 6.0)));
z = int(floor(mod(coord.x, 14.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : (w == 4) ? slot_4[z] : (w == 5) ? slot_5[z] : slot_6[z];
return weights;
}
else return weights;
}
// For debugging
#define BLOOM_ONLY 0
void main()
{
#if BLOOM_ONLY
vec3 source = BLOOM_STRENGTH * COMPAT_TEXTURE(Source, vTexCoord).rgb;
#else
vec3 source = 1.15 * COMPAT_TEXTURE(PassPrev4Texture, vTexCoord).rgb;
vec3 bloom = COMPAT_TEXTURE(Source, vTexCoord).rgb;
source += BLOOM_STRENGTH * bloom;
vec2 mask_coords = gl_FragCoord.xy; //texCoord.xy * OutputSize.xy;
// vec2 mask_coords = (vTexCoord.xy * OutputSize.xy) * TextureSize.xy / InputSize.xy;
source.rgb*=mask_weights(mask_coords, MASK_INTENSITY, int(PHOSPHOR_LAYOUT));
#endif
FragColor = vec4(pow(clamp(source, 0.0, 1.0), vec3(1.0 / OUTPUT_GAMMA)), 1.0);
}
#endif

View File

@ -0,0 +1,576 @@
/*
Hyllian's CRT Shader
Copyright (C) 2011-2020 Hyllian - sergiogdb@gmail.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#version 120
#pragma parameter BEAM_PROFILE "BEAM PROFILE (BP)" 0.0 0.0 6.0 1.0
#pragma parameter BEAM_MIN_WIDTH " Custom [If BP=0.00] MIN BEAM WIDTH" 0.86 0.0 1.0 0.02
#pragma parameter BEAM_MAX_WIDTH " Custom [If BP=0.00] MAX BEAM WIDTH" 1.0 0.0 1.0 0.02
#pragma parameter SCANLINES_STRENGTH " Custom [If BP=0.00] SCANLINES STRENGTH" 0.58 0.0 1.0 0.02
#pragma parameter COLOR_BOOST " Custom [If BP=0.00] COLOR BOOST" 1.25 1.0 2.0 0.05
#pragma parameter HFILTER_SHARPNESS "HORIZONTAL FILTER SHARPNESS" 1.0 0.0 1.0 0.02
#pragma parameter PHOSPHOR_LAYOUT "PHOSPHOR LAYOUT" 4.0 0.0 19.0 1.0
#pragma parameter MASK_INTENSITY "MASK INTENSITY" 0.5 0.0 1.0 0.1
#pragma parameter CRT_ANTI_RINGING "ANTI RINGING" 1.0 0.0 1.0 0.1
#pragma parameter InputGamma "INPUT GAMMA" 2.4 0.0 5.0 0.1
#pragma parameter OutputGamma "OUTPUT GAMMA" 2.2 0.0 5.0 0.1
#pragma parameter VSCANLINES "SCANLINES DIRECTION" 0.0 0.0 1.0 1.0
#define GAMMA_IN(color) pow(color, vec4(InputGamma, InputGamma, InputGamma, InputGamma))
#define GAMMA_OUT(color) pow(color, vec4(1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma, 1.0 / OutputGamma))
#define texCoord TEX0
#if defined(VERTEX)
#if __VERSION__ >= 130
#define OUT out
#define IN in
#define tex2D texture
#else
#define OUT varying
#define IN attribute
#define tex2D texture2D
#endif
#ifdef GL_ES
#define PRECISION mediump
#else
#define PRECISION
#endif
IN vec4 VertexCoord;
IN vec4 Color;
IN vec2 TexCoord;
OUT vec4 color;
OUT vec2 texCoord;
uniform mat4 MVPMatrix;
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
void main()
{
gl_Position = MVPMatrix * VertexCoord;
color = Color;
texCoord = TexCoord;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define IN in
#define tex2D texture
out vec4 FragColor;
#else
#define IN varying
#define FragColor gl_FragColor
#define tex2D texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define PRECISION mediump
#else
#define PRECISION
#endif
uniform PRECISION int FrameDirection;
uniform PRECISION int FrameCount;
uniform PRECISION vec2 OutputSize;
uniform PRECISION vec2 TextureSize;
uniform PRECISION vec2 InputSize;
uniform sampler2D s_p;
IN vec2 texCoord;
#ifdef PARAMETER_UNIFORM
uniform PRECISION float BEAM_PROFILE;
uniform PRECISION float BEAM_MIN_WIDTH;
uniform PRECISION float BEAM_MAX_WIDTH;
uniform PRECISION float SCANLINES_STRENGTH;
uniform PRECISION float COLOR_BOOST;
uniform PRECISION float HFILTER_SHARPNESS;
uniform PRECISION float PHOSPHOR_LAYOUT;
uniform PRECISION float MASK_INTENSITY;
uniform PRECISION float CRT_ANTI_RINGING;
uniform PRECISION float InputGamma;
uniform PRECISION float OutputGamma;
uniform PRECISION float VSCANLINES;
#else
#define BEAM_PROFILE 0.0
#define BEAM_MIN_WIDTH 0.86
#define BEAM_MAX_WIDTH 1.0
#define SCANLINES_STRENGTH 0.58
#define COLOR_BOOST 1.25
#define HFILTER_SHARPNESS 1.0
#define PHOSPHOR_LAYOUT 4.0
#define MASK_INTENSITY 0.5
#define CRT_ANTI_RINGING 1.0
#define InputGamma 2.4
#define OutputGamma 2.2
#define VSCANLINES 0.0
#endif
// END PARAMETERS //
/*
A collection of CRT mask effects that work with LCD subpixel structures for
small details
author: hunterk
license: public domain
How to use it:
Multiply your image by the vec3 output:
FragColor.rgb *= mask_weights(gl_FragCoord.xy, 1.0, 1);
The function needs to be tiled across the screen using the physical pixels, e.g.
gl_FragCoord (the "vec2 coord" input). In the case of slang shaders, we use
(vTexCoord.st * OutputSize.xy).
The "mask_intensity" (float value between 0.0 and 1.0) is how strong the mask
effect should be. Full-strength red, green and blue subpixels on a white pixel
are the ideal, and are achieved with an intensity of 1.0, though this darkens
the image significantly and may not always be desirable.
The "phosphor_layout" (int value between 0 and 19) determines which phophor
layout to apply. 0 is no mask/passthru.
Many of these mask arrays are adapted from cgwg's crt-geom-deluxe LUTs, and
those have their filenames included for easy identification
*/
vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout){
vec3 weights = vec3(1.,1.,1.);
float on = 1.;
float off = 1.-mask_intensity;
vec3 red = vec3(on, off, off);
vec3 green = vec3(off, on, off);
vec3 blue = vec3(off, off, on );
vec3 magenta = vec3(on, off, on );
vec3 yellow = vec3(on, on, off);
vec3 cyan = vec3(off, on, on );
vec3 black = vec3(off, off, off);
vec3 white = vec3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0)));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0)));
weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 3){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
// {magenta, green, black, black},
// {magenta, green, magenta, green},
// {black, black, magenta, green}
// GLSL can't do 2D arrays until version 430, so do this stupid thing instead for compatibility's sake:
// First lay out the horizontal pixels in arrays
vec3 slotmask_x1[4] = vec3[](magenta, green, black, black);
vec3 slotmask_x2[4] = vec3[](magenta, green, magenta, green);
vec3 slotmask_x3[4] = vec3[](black, black, magenta, green);
// find the vertical index
w = int(floor(mod(coord.y, 3.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 4.0)));
// do a big, dumb comparison in place of a 2D array
weights = (w == 1) ? slotmask_x1[z] : (w == 2) ? slotmask_x2[z] : slotmask_x3[z];
}
if(phosphor_layout == 4){
// classic aperture for RBG panels; good for 1080p, too small for 4K+
weights = mix(yellow, blue, floor(mod(coord.x, 2.0)));
return weights;
}
else if(phosphor_layout == 5){
// 2x2 shadow mask for RBG panels; good for 1080p, too small for 4K+
vec3 inverse_aperture = mix(blue, yellow, floor(mod(coord.x, 2.0)));
weights = mix(mix(yellow, blue, floor(mod(coord.x, 2.0))), inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
vec3 ap4[4] = vec3[](red, green, blue, black);
z = int(floor(mod(coord.x, 4.0)));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// aperture_2_5_bgr
vec3 ap3[5] = vec3[](red, magenta, blue, green, green);
z = int(floor(mod(coord.x, 5.0)));
weights = ap3[z];
return weights;
}
else if(phosphor_layout == 8){
// aperture_3_6_rgb
vec3 big_ap[7] = vec3[](red, red, yellow, green, cyan, blue, blue);
w = int(floor(mod(coord.x, 7.)));
weights = big_ap[w];
return weights;
}
else if(phosphor_layout == 9){
// reduced TVL aperture for RGB panels
// aperture_2_4_rgb
vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 10){
// reduced TVL aperture for RBG panels
vec3 big_ap_rbg[4] = vec3[](red, magenta, cyan, green);
w = int(floor(mod(coord.x, 4.)));
weights = big_ap_rbg[w];
return weights;
}
else if(phosphor_layout == 11){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
vec3 delta_1_1[4] = vec3[](red, green, blue, black);
vec3 delta_1_2[4] = vec3[](blue, black, red, green);
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1_1[z] : delta_1_2[z];
return weights;
}
else if(phosphor_layout == 12){
// delta_2_4x1_rgb
vec3 delta_2_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2_2[4] = vec3[](cyan, blue, red, yellow);
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_2_1[z] : delta_2_2[z];
return weights;
}
else if(phosphor_layout == 13){
// delta_2_4x2_rgb
vec3 delta_1[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_2[4] = vec3[](red, yellow, cyan, blue);
vec3 delta_3[4] = vec3[](cyan, blue, red, yellow);
vec3 delta_4[4] = vec3[](cyan, blue, red, yellow);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? delta_1[z] : (w == 2) ? delta_2[z] : (w == 3) ? delta_3[z] : delta_4[z];
return weights;
}
else if(phosphor_layout == 14){
// slot mask for RGB panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {magenta, green, black, black, black, black},
// {magenta, green, black, magenta, green, black},
// {black, black, black, magenta, green, black}
vec3 slot2_1[6] = vec3[](magenta, green, black, black, black, black);
vec3 slot2_2[6] = vec3[](magenta, green, black, magenta, green, black);
vec3 slot2_3[6] = vec3[](black, black, black, magenta, green, black);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 6.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 15){
// slot_2_4x4_rgb
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {red, yellow, cyan, blue, black, black, black, black},
// {red, yellow, cyan, blue, red, yellow, cyan, blue },
// {black, black, black, black, red, yellow, cyan, blue }
vec3 slotmask_RBG_x1[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x2[8] = vec3[](red, yellow, cyan, blue, black, black, black, black);
vec3 slotmask_RBG_x3[8] = vec3[](red, yellow, cyan, blue, red, yellow, cyan, blue );
vec3 slotmask_RBG_x4[8] = vec3[](black, black, black, black, red, yellow, cyan, blue );
// find the vertical index
w = int(floor(mod(coord.y, 4.0)));
// find the horizontal index
z = int(floor(mod(coord.x, 8.0)));
weights = (w == 1) ? slotmask_RBG_x1[z] : (w == 2) ? slotmask_RBG_x2[z] : (w == 3) ? slotmask_RBG_x3[z] : slotmask_RBG_x4[z];
return weights;
}
else if(phosphor_layout == 16){
// slot mask for RBG panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+
// {yellow, blue, black, black},
// {yellow, blue, yellow, blue},
// {black, black, yellow, blue}
vec3 slot2_1[4] = vec3[](yellow, blue, black, black);
vec3 slot2_2[4] = vec3[](yellow, blue, yellow, blue);
vec3 slot2_3[4] = vec3[](black, black, yellow, blue);
w = int(floor(mod(coord.y, 3.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = (w == 1) ? slot2_1[z] : (w == 2) ? slot2_2[z] : slot2_3[z];
return weights;
}
else if(phosphor_layout == 17){
// slot_2_5x4_bgr
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {black, blue, blue, green, green, red, red, black, black, black},
// {red, magenta, blue, green, green, red, magenta, blue, green, green},
// {red, red, black, black, black, black, blue, blue, green, green}
vec3 slot_1[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_2[10] = vec3[](black, blue, blue, green, green, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, magenta, blue, green, green, red, magenta, blue, green, green);
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, blue, blue, green, green);
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 18){
// same as above but for RBG panels
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {black, green, green, blue, blue, red, red, black, black, black},
// {red, yellow, green, blue, blue, red, yellow, green, blue, blue },
// {red, red, black, black, black, black, green, green, blue, blue }
vec3 slot_1[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_2[10] = vec3[](black, green, green, blue, blue, red, red, black, black, black);
vec3 slot_3[10] = vec3[](red, yellow, green, blue, blue, red, yellow, green, blue, blue );
vec3 slot_4[10] = vec3[](red, red, black, black, black, black, green, green, blue, blue );
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : slot_4[z];
return weights;
}
else if(phosphor_layout == 19){
// slot_3_7x6_rgb
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
// {black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue}
vec3 slot_1[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_2[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_3[14] = vec3[](red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black);
vec3 slot_4[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_5[14] = vec3[](red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue);
vec3 slot_6[14] = vec3[](black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue);
w = int(floor(mod(coord.y, 6.0)));
z = int(floor(mod(coord.x, 14.0)));
weights = (w == 1) ? slot_1[z] : (w == 2) ? slot_2[z] : (w == 3) ? slot_3[z] : (w == 4) ? slot_4[z] : (w == 5) ? slot_5[z] : slot_6[z];
return weights;
}
else return weights;
}
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter. This is the default used in this shader.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
float B = 1.0 - HFILTER_SHARPNESS;
float C = HFILTER_SHARPNESS*0.5; // B+2C=1 Mitchel-Netravali recommendation line.
mat4 invX = mat4( (-B - 6.0*C)/6.0, (12.0 - 9.0*B - 6.0*C)/6.0, -(12.0 - 9.0*B - 6.0*C)/6.0, (B + 6.0*C)/6.0,
(3.0*B + 12.0*C)/6.0, (-18.0 + 12.0*B + 6.0*C)/6.0, (18.0 - 15.0*B - 12.0*C)/6.0, -C,
(-3.0*B - 6.0*C)/6.0, 0.0, (3.0*B + 6.0*C)/6.0, 0.0,
B/6.0, (6.0 - 2.0*B)/6.0, B/6.0, 0.0);
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(SCANLINES_STRENGTH, BEAM_MIN_WIDTH, BEAM_MAX_WIDTH, COLOR_BOOST);
if (BEAM_PROFILE == 1.0) bp = vec4(0.40, 1.00, 1.00, 1.00); // Catmull-rom
if (BEAM_PROFILE == 2.0) bp = vec4(0.72, 1.00, 1.00, 1.25); // Catmull-rom
if (BEAM_PROFILE == 3.0) bp = vec4(0.60, 0.50, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 4.0) bp = vec4(0.60, 0.72, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 5.0) bp = vec4(0.68, 0.68, 1.00, 1.25); // Hermite
if (BEAM_PROFILE == 6.0) bp = vec4(0.70, 0.50, 1.00, 1.80); // Catmull-rom
return bp;
}
void main()
{
vec4 profile = get_beam_profile();
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), VSCANLINES);
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), VSCANLINES);
vec2 pix_coord = texCoord.xy*TextureSize + vec2(-0.5, 0.5);
vec2 tc = mix((floor(pix_coord) + vec2(0.5, 0.5))/TextureSize, (floor(pix_coord) + vec2(1.0, -0.5))/TextureSize, VSCANLINES);
vec2 fp = mix(fract(pix_coord), fract(pix_coord.yx), VSCANLINES);
vec4 c00 = GAMMA_IN(tex2D(s_p, tc - dx - dy).xyzw);
vec4 c01 = GAMMA_IN(tex2D(s_p, tc - dy).xyzw);
vec4 c02 = GAMMA_IN(tex2D(s_p, tc + dx - dy).xyzw);
vec4 c03 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx - dy).xyzw);
vec4 c10 = GAMMA_IN(tex2D(s_p, tc - dx).xyzw);
vec4 c11 = GAMMA_IN(tex2D(s_p, tc ).xyzw);
vec4 c12 = GAMMA_IN(tex2D(s_p, tc + dx).xyzw);
vec4 c13 = GAMMA_IN(tex2D(s_p, tc + 2.0*dx).xyzw);
mat4 color_matrix0 = mat4(c00, c01, c02, c03);
mat4 color_matrix1 = mat4(c10, c11, c12, c13);
vec4 lobes = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0);
vec4 invX_Px = invX * lobes;
vec4 color0 = color_matrix0 * invX_Px;
vec4 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec4 min_sample0 = min(c01,c02);
vec4 max_sample0 = max(c01,c02);
vec4 min_sample1 = min(c11,c12);
vec4 max_sample1 = max(c11,c12);
// Anti-ringing
vec4 aux = color0;
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, CRT_ANTI_RINGING);
aux = color1;
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, CRT_ANTI_RINGING);
float pos0 = fp.y;
float pos1 = 1.0 - fp.y;
vec4 lum0 = mix(vec4(beam_min_width), vec4(beam_max_width), color0);
vec4 lum1 = mix(vec4(beam_min_width), vec4(beam_max_width), color1);
vec4 d0 = scanlines_strength*pos0/(lum0+0.0000001);
vec4 d1 = scanlines_strength*pos1/(lum1+0.0000001);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
vec4 color = color_boost*(color0*d0+color1*d1);
/* float mod_factor = texCoord.x * OutputSize.x * TextureSize.x / InputSize.x;
vec4 dotMaskWeights = mix(
vec4(1.0, 1.0-MASK_INTENSITY, 1.0, 1.),
vec4(1.0-MASK_INTENSITY, 1.0, 1.0-MASK_INTENSITY, 1.),
floor(mod(mod_factor, 2.0))
);
color.rgba *= dotMaskWeights;
*/
vec2 mask_coords = gl_FragCoord.xy; //texCoord.xy * OutputSize.xy;
//vec2 mask_coords = (texCoord.xy * OutputSize.xy) * TextureSize.xy / InputSize.xy;
mask_coords = mix(mask_coords.xy, mask_coords.yx, VSCANLINES);
color.rgb*=mask_weights(mask_coords, MASK_INTENSITY, int(PHOSPHOR_LAYOUT));
color = GAMMA_OUT(color);
FragColor = vec4(color);
}
#endif

View File

@ -1,5 +1,5 @@
/*
SGENPT-MIX - Sega Genesis Pseudo Transparency Mixer Shader - v5
SGENPT-MIX - Sega Genesis Pseudo Transparency Mixer Shader - v8b
2011-2020 Hyllian - sergiogdb@gmail.com
@ -23,9 +23,10 @@
*/
#pragma parameter SGPT_SHARPNESS "SGENPT-MIX Sharpness" 1.0 0.0 1.0 0.1
#pragma parameter SGPT_BLEND_OPTION "OFF | Transparency | Checkerboard" 1.0 0.0 2.0 1.0
#pragma parameter SGPT_BLEND_LEVEL "SGENPT-MIX Blend Level" 1.0 0.0 1.0 0.1
#pragma parameter SGPT_BLEND_OPTION "0.OFF | 1.VL | 2.CB | 3.CB-S | 4.Both | 5.Both2 | 6.Both-S" 4.0 0.0 6.0 1.0
#pragma parameter SGPT_BLEND_LEVEL "SGENPT-MIX Both Blend Level" 1.0 0.0 1.0 0.1
#pragma parameter SGPT_ADJUST_VIEW "SGENPT-MIX Adjust View" 0.0 0.0 1.0 1.0
#pragma parameter SGPT_LINEAR_GAMMA "SGENPT-MIX Use Linear Gamma" 1.0 0.0 1.0 1.0
#define texCoord TEX0
@ -101,18 +102,28 @@ uniform sampler2D s_p;
IN vec2 texCoord;
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float SGPT_SHARPNESS;
uniform COMPAT_PRECISION float SGPT_BLEND_OPTION;
uniform COMPAT_PRECISION float SGPT_BLEND_LEVEL;
uniform COMPAT_PRECISION float SGPT_ADJUST_VIEW;
uniform COMPAT_PRECISION float SGPT_LINEAR_GAMMA;
#else
#define SGPT_SHARPNESS 1.0
#define SGPT_BLEND_OPTION 1.0
#define SGPT_BLEND_OPTION 4.0
#define SGPT_BLEND_LEVEL 1.0
#define SGPT_ADJUST_VIEW 0.0
#define SGPT_LINEAR_GAMMA 1.0
#endif
#define GAMMA_EXP (SGPT_LINEAR_GAMMA+1.0)
#define GAMMA_IN(color) pow(color, vec3(GAMMA_EXP, GAMMA_EXP, GAMMA_EXP))
#define GAMMA_OUT(color) pow(color, vec3(1.0 / GAMMA_EXP, 1.0 / GAMMA_EXP, 1.0 / GAMMA_EXP))
const vec3 Y = vec3(.2126, .7152, .0722);
vec3 min_s(vec3 central, vec3 adj1, vec3 adj2) {return min(central, max(adj1, adj2));}
vec3 max_s(vec3 central, vec3 adj1, vec3 adj2) {return max(central, min(adj1, adj2));}
void main()
{
@ -120,39 +131,80 @@ void main()
vec2 dy = vec2(0.0, 1.0)/TextureSize;
// Reading the texels.
vec3 C = tex2D(s_p, texCoord ).xyz;
vec3 L = tex2D(s_p, texCoord -dx).xyz;
vec3 R = tex2D(s_p, texCoord +dx).xyz;
vec3 U = tex2D(s_p, texCoord -dy).xyz;
vec3 D = tex2D(s_p, texCoord +dy).xyz;
vec3 C = GAMMA_IN(tex2D(s_p, texCoord ).xyz);
vec3 L = GAMMA_IN(tex2D(s_p, texCoord -dx).xyz);
vec3 R = GAMMA_IN(tex2D(s_p, texCoord +dx).xyz);
vec3 U = GAMMA_IN(tex2D(s_p, texCoord -dy).xyz);
vec3 D = GAMMA_IN(tex2D(s_p, texCoord +dy).xyz);
vec3 UL = GAMMA_IN(tex2D(s_p, texCoord -dx -dy).xyz);
vec3 UR = GAMMA_IN(tex2D(s_p, texCoord +dx -dy).xyz);
vec3 DL = GAMMA_IN(tex2D(s_p, texCoord -dx +dy).xyz);
vec3 DR = GAMMA_IN(tex2D(s_p, texCoord +dx +dy).xyz);
vec3 color = C;
if (SGPT_BLEND_OPTION > 0.0)
{
// Get min/max samples
vec3 min_sample = min(C, max(L, R));
vec3 max_sample = max(C, min(L, R));
// Get min/max samples
vec3 min_sample = min_s(C, L, R);
vec3 max_sample = max_s(C, L, R);
float diff = (1.0 - SGPT_BLEND_LEVEL) * dot(max(max(C, L), max(C, R)) - min(min(C, L), min(C, R)), Y);
float diff = dot(max(max(C, L), max(C, R)) - min(min(C, L), min(C, R)), Y);
if (int(SGPT_BLEND_OPTION) == 1) // Only Vertical Lines
{
min_sample = max_s(min_sample, min_s(C, DL, DR), min_s(C, UL, UR));
max_sample = min_s(max_sample, max_s(C, DL, DR), max_s(C, UL, UR));
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.25*( 1.0 - diff )*(L + R);
}
else if (int(SGPT_BLEND_OPTION) == 2) // Only Checkerboard
{
min_sample = max(min_sample, min_s(C, U, D));
max_sample = min(max_sample, max_s(C, U, D));
if (SGPT_BLEND_OPTION > 1.0)
{
// Get min/max samples
min_sample = max(min_sample, min(C, max(U, D)));
max_sample = min(max_sample, max(C, min(U, D)));
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.125*( 1.0 - diff )*(L + R + U + D);
}
color = 0.5*( 1.0 + diff )*C + 0.125*( 1.0 - diff )*(L + R + U + D);
}
else if (int(SGPT_BLEND_OPTION) == 3) // Only Checkerboard - Soft
{
min_sample = min_s(min_sample, U, D);
max_sample = max_s(max_sample, U, D);
// Sharpness control
vec3 aux = color;
color = clamp(color, min_sample, max_sample);
color = mix(aux, color, SGPT_SHARPNESS);
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.125*( 1.0 - diff )*(L + R + U + D);
}
else if (int(SGPT_BLEND_OPTION) == 4) // VL-CB
{
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.25*( 1.0 - diff )*(L + R);
}
else if (int(SGPT_BLEND_OPTION) == 5) // VL-CB-2
{
min_sample = min_s(min_sample, U, D);
max_sample = max_s(max_sample, U, D);
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.25*( 1.0 - diff )*(L + R);
}
else if (int(SGPT_BLEND_OPTION) == 6) // VL-CB-Soft
{
min_sample = min(min_sample, min(min_s(D, DL, DR), min_s(U, UL, UR)));
max_sample = max(max_sample, max(max_s(D, DL, DR), max_s(U, UL, UR)));
diff *= (1.0 - SGPT_BLEND_LEVEL);
color = 0.5*( 1.0 + diff )*C + 0.25*( 1.0 - diff )*(L + R);
}
FragColor.xyz = color;
color = clamp(color, min_sample, max_sample);
color = mix(color, vec3(dot(abs(C-color), vec3(1.0, 1.0, 1.0))), SGPT_ADJUST_VIEW);
FragColor.xyz = GAMMA_OUT(color);
}
#endif

View File

@ -0,0 +1,94 @@
shaders = "7"
shader0 = "../ntsc/shaders/ntsc-pass1-composite-3phase.glsl"
filter_linear0 = "false"
wrap_mode0 = "clamp_to_border"
frame_count_mod0 = "2"
mipmap_input0 = "false"
alias0 = ""
float_framebuffer0 = "true"
srgb_framebuffer0 = "false"
scale_type_x0 = "source"
scale_x0 = "4.000000"
scale_type_y0 = "source"
scale_y0 = "1.000000"
shader1 = "../ntsc/shaders/ntsc-pass2-3phase-linear.glsl"
filter_linear1 = "false"
wrap_mode1 = "clamp_to_border"
mipmap_input1 = "false"
alias1 = ""
float_framebuffer1 = "false"
srgb_framebuffer1 = "true"
scale_type_x1 = "source"
scale_x1 = "0.500000"
scale_type_y1 = "source"
scale_y1 = "1.000000"
shader2 = "../crt/shaders/hyllian/crt-hyllian-curvature-glow.glsl"
filter_linear2 = "false"
wrap_mode2 = "clamp_to_border"
mipmap_input2 = "false"
alias2 = "CRTPass"
float_framebuffer2 = "false"
srgb_framebuffer2 = "true"
scale_type_x2 = "viewport"
scale_x2 = "1.000000"
scale_type_y2 = "viewport"
scale_y2 = "1.000000"
shader3 = "../crt/shaders/glow/threshold.glsl"
filter_linear3 = "false"
wrap_mode3 = "clamp_to_border"
mipmap_input3 = "false"
alias3 = ""
float_framebuffer3 = "false"
srgb_framebuffer3 = "true"
shader4 = "../crt/shaders/glow/blur_horiz.glsl"
filter_linear4 = "true"
wrap_mode4 = "clamp_to_border"
mipmap_input4 = "true"
alias4 = ""
float_framebuffer4 = "false"
srgb_framebuffer4 = "true"
scale_type_x4 = "viewport"
scale_x4 = "0.250000"
scale_type_y4 = "viewport"
scale_y4 = "0.500000"
shader5 = "../crt/shaders/glow/blur_vert.glsl"
filter_linear5 = "true"
wrap_mode5 = "clamp_to_border"
mipmap_input5 = "false"
alias5 = ""
float_framebuffer5 = "false"
srgb_framebuffer5 = "true"
scale_type_x5 = "viewport"
scale_x5 = "1.000000"
scale_type_y5 = "viewport"
scale_y5 = "1.000000"
shader6 = "../crt/shaders/glow/resolve.glsl"
filter_linear6 = "true"
wrap_mode6 = "clamp_to_border"
mipmap_input6 = "false"
alias6 = ""
float_framebuffer6 = "false"
srgb_framebuffer6 = "false"
parameters = "BEAM_PROFILE;HFILTER_PROFILE;BEAM_MIN_WIDTH;BEAM_MAX_WIDTH;SCANLINES_STRENGTH;COLOR_BOOST;HFILTER_SHARPNESS;CRT_ANTI_RINGING;InputGamma;OutputGamma;VSCANLINES;CRT_CURVATURE;CRT_warpX;CRT_warpY;CRT_cornersize;CRT_cornersmooth;GLOW_WHITEPOINT;GLOW_ROLLOFF;BLOOM_STRENGTH;OUTPUT_GAMMA;PHOSPHOR_LAYOUT;MASK_INTENSITY"
BEAM_PROFILE = "0.000000"
HFILTER_PROFILE = "0.000000"
BEAM_MIN_WIDTH = "0.860000"
BEAM_MAX_WIDTH = "1.000000"
SCANLINES_STRENGTH = "0.580000"
COLOR_BOOST = "1.250000"
HFILTER_SHARPNESS = "1.000000"
CRT_ANTI_RINGING = "1.000000"
InputGamma = "1.000000"
OutputGamma = "1.000000"
VSCANLINES = "0.000000"
CRT_CURVATURE = "1.000000"
CRT_warpX = "0.031000"
CRT_warpY = "0.041000"
CRT_cornersize = "0.010000"
CRT_cornersmooth = "1000.000000"
GLOW_WHITEPOINT = "0.500000"
GLOW_ROLLOFF = "1.200000"
BLOOM_STRENGTH = "0.150000"
OUTPUT_GAMMA = "2.200000"
PHOSPHOR_LAYOUT = "4.000000"
MASK_INTENSITY = "0.500000"

View File

@ -0,0 +1,62 @@
shaders = "4"
shader0 = "../dithering/shaders/sgenpt-mix.glsl"
filter_linear0 = "false"
wrap_mode0 = "clamp_to_border"
mipmap_input0 = "false"
alias0 = ""
float_framebuffer0 = "false"
srgb_framebuffer0 = "false"
scale_type_x0 = "source"
scale_x0 = "2.000000"
scale_type_y0 = "source"
scale_y0 = "2.000000"
shader1 = "../blurs/smart-blur.glsl"
filter_linear1 = "false"
wrap_mode1 = "clamp_to_border"
mipmap_input1 = "false"
alias1 = ""
float_framebuffer1 = "false"
srgb_framebuffer1 = "false"
scale_type_x1 = "source"
scale_x1 = "1.000000"
scale_type_y1 = "source"
scale_y1 = "1.000000"
shader2 = "../stock.glsl"
filter_linear2 = "false"
wrap_mode2 = "clamp_to_border"
mipmap_input2 = "false"
alias2 = ""
float_framebuffer2 = "false"
srgb_framebuffer2 = "false"
scale_type_x2 = "source"
scale_x2 = "0.500000"
scale_type_y2 = "source"
scale_y2 = "0.500000"
shader3 = "../crt/shaders/hyllian/crt-hyllian.glsl"
filter_linear3 = "false"
wrap_mode3 = "clamp_to_border"
mipmap_input3 = "false"
alias3 = ""
float_framebuffer3 = "false"
srgb_framebuffer3 = "false"
parameters = "SGPT_BLEND_OPTION;SGPT_BLEND_LEVEL;SGPT_ADJUST_VIEW;SGPT_LINEAR_GAMMA;SB_BLUR_LEVEL;SB_RED_THRESHOLD;SB_GREEN_THRESHOLD;SB_BLUE_THRESHOLD;BEAM_PROFILE;BEAM_MIN_WIDTH;BEAM_MAX_WIDTH;SCANLINES_STRENGTH;COLOR_BOOST;HFILTER_SHARPNESS;PHOSPHOR_LAYOUT;MASK_INTENSITY;CRT_ANTI_RINGING;InputGamma;OutputGamma;VSCANLINES"
SGPT_BLEND_OPTION = "2.000000"
SGPT_BLEND_LEVEL = "0.200000"
SGPT_ADJUST_VIEW = "0.000000"
SGPT_LINEAR_GAMMA = "1.000000"
SB_BLUR_LEVEL = "0.660000"
SB_RED_THRESHOLD = "0.200000"
SB_GREEN_THRESHOLD = "0.200000"
SB_BLUE_THRESHOLD = "0.200000"
BEAM_PROFILE = "0.000000"
BEAM_MIN_WIDTH = "0.860000"
BEAM_MAX_WIDTH = "1.000000"
SCANLINES_STRENGTH = "0.580000"
COLOR_BOOST = "1.250000"
HFILTER_SHARPNESS = "1.000000"
PHOSPHOR_LAYOUT = "4.000000"
MASK_INTENSITY = "0.500000"
CRT_ANTI_RINGING = "1.000000"
InputGamma = "2.400000"
OutputGamma = "2.200000"
VSCANLINES = "0.000000"