libretro-tyrquake/include/zone.h
Kevin Shanahan b4989d267c zone: constify name arguments to alloc functions
Signed-off-by: Kevin Shanahan <kmshanah@disenchant.net>
2012-11-13 10:33:40 +10:30

133 lines
3.1 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef ZONE_H
#define ZONE_H
/*
memory allocation
H_??? The hunk manages the entire memory block given to quake. It must be
contiguous. Memory can be allocated from either the low or high end in a
stack fashion. The only way memory is released is by resetting one of the
pointers.
Hunk allocations should be given a name, so the Hunk_Print () function
can display usage.
Hunk allocations are guaranteed to be 16 byte aligned.
The video buffers are allocated high to avoid leaving a hole underneath
server allocations when changing to a higher video mode.
Z_??? Zone memory functions used for small, dynamic allocations like text
strings from command input. There is only about 48K for it, allocated at
the very bottom of the hunk.
Cache_??? Cache memory is for objects that can be dynamically loaded and
can usefully stay persistant between levels. The size of the cache
fluctuates from level to level.
To allocate a cachable object
Temp_??? Temp memory is used for file loading and surface caching. The size
of the cache memory is adjusted so that there is a minimum of 512k remaining
for temp memory.
------ Top of Memory -------
high hunk allocations
<--- high hunk reset point held by vid
video buffer
z buffer
surface cache
<--- high hunk used
cachable memory
<--- low hunk used
client and server low hunk allocations
<-- low hunk reset point held by host
startup hunk allocations
Zone block
----- Bottom of Memory -----
*/
void Memory_Init(void *buf, int size);
void Z_Free(void *ptr);
void *Z_Malloc(int size); // returns 0 filled memory
void *Z_Realloc(void *ptr, int size);
void *Hunk_Alloc(int size); // returns 0 filled memory
void *Hunk_AllocName(int size, const char *name);
void *Hunk_HighAllocName(int size, const char *name);
int Hunk_LowMark(void);
void Hunk_FreeToLowMark(int mark);
int Hunk_HighMark(void);
void Hunk_FreeToHighMark(int mark);
void *Hunk_TempAlloc(int size);
void *Hunk_TempAllocExtend(int size);
void Hunk_Check(void);
typedef struct cache_user_s {
void *data;
} cache_user_t;
void Cache_Flush(void);
void *Cache_Check(cache_user_t *c);
// returns the cached data, and moves to the head of the LRU list
// if present, otherwise returns NULL
void Cache_Free(cache_user_t *c);
void *Cache_Alloc(cache_user_t *c, int size, const char *name);
// Returns NULL if all purgable data was tossed and there still
// wasn't enough room.
void Cache_Report(void);
#endif /* ZONE_H */