Remove libflac and zlib parts that we don't need

This commit is contained in:
twinaphex 2021-04-10 15:52:40 +02:00
parent 04b1f85aa5
commit 67288881c0
15 changed files with 0 additions and 13504 deletions

View File

@ -2604,9 +2604,7 @@ SOURCES_C += \
$(CORE_DIR)/lib/mame-chd/mame_sha1.c
SOURCES_C += \
$(CORE_DIR)/libretro-deps/libFLAC/bitmath.c \
$(CORE_DIR)/libretro-deps/libFLAC/bitreader.c \
$(CORE_DIR)/libretro-deps/libFLAC/bitwriter.c \
$(CORE_DIR)/libretro-deps/libFLAC/cpu.c \
$(CORE_DIR)/libretro-deps/libFLAC/crc.c \
$(CORE_DIR)/libretro-deps/libFLAC/fixed.c \
@ -2616,8 +2614,6 @@ SOURCES_C += \
$(CORE_DIR)/libretro-deps/libFLAC/md5.c \
$(CORE_DIR)/libretro-deps/libFLAC/memory.c \
$(CORE_DIR)/libretro-deps/libFLAC/stream_decoder.c \
$(CORE_DIR)/libretro-deps/libFLAC/stream_encoder.c \
$(CORE_DIR)/libretro-deps/libFLAC/stream_encoder_framing.c \
$(CORE_DIR)/libretro-deps/libFLAC/window.c
ifeq ($(STATIC_LINKING),1)
@ -2637,13 +2633,8 @@ SOURCES_C += \
$(LIBRETRO_COMM_DIR)/vfs/vfs_implementation.c \
$(LIBRETRO_COMM_DIR)/time/rtime.c \
$(CORE_DIR)/lib/zlib/adler32.c \
$(CORE_DIR)/lib/zlib/compress.c \
$(CORE_DIR)/lib/zlib/crc32.c \
$(CORE_DIR)/lib/zlib/deflate.c \
$(CORE_DIR)/lib/zlib/gzclose.c \
$(CORE_DIR)/lib/zlib/gzlib.c \
$(CORE_DIR)/lib/zlib/gzread.c \
$(CORE_DIR)/lib/zlib/gzwrite.c \
$(CORE_DIR)/lib/zlib/inffast.c \
$(CORE_DIR)/lib/zlib/inflate.c \
$(CORE_DIR)/lib/zlib/inftrees.c \

View File

@ -1,70 +0,0 @@
/* compress.c -- compress a memory buffer
* Copyright (C) 1995-2005 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#define ZLIB_INTERNAL
#include <zlib.h>
/* ===========================================================================
Compresses the source buffer into the destination buffer. The level
parameter has the same meaning as in deflateInit. sourceLen is the byte
length of the source buffer. Upon entry, destLen is the total size of the
destination buffer, which must be at least 0.1% larger than sourceLen plus
12 bytes. Upon exit, destLen is the actual size of the compressed buffer.
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
Z_STREAM_ERROR if the level parameter is invalid.
*/
int ZEXPORT compress2 (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)
{
z_stream stream;
int err;
stream.next_in = (Bytef *)source;
stream.avail_in = (uInt)sourceLen;
#ifdef MAXSEG_64K
/* Check for source > 64K on 16-bit machine: */
if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR;
#endif
stream.next_out = dest;
stream.avail_out = (uInt)*destLen;
if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = (voidpf)0;
err = deflateInit(&stream, level);
if (err != Z_OK) return err;
err = deflate(&stream, Z_FINISH);
if (err != Z_STREAM_END) {
deflateEnd(&stream);
return err == Z_OK ? Z_BUF_ERROR : err;
}
*destLen = stream.total_out;
err = deflateEnd(&stream);
return err;
}
/* ===========================================================================
*/
int ZEXPORT compress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)
{
return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION);
}
/* ===========================================================================
If the default memLevel or windowBits for deflateInit() is changed, then
this function needs to be updated.
*/
uLong ZEXPORT compressBound (uLong sourceLen)
{
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
(sourceLen >> 25) + 13;
}

View File

@ -1,27 +0,0 @@
/* gzclose.c -- zlib gzclose() function
* Copyright (C) 2004, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
extern int gzclose_w(gzFile file);
extern int gzclose_r(gzFile file);
/* gzclose() is in a separate file so that it is linked in only if it is used.
That way the other gzclose functions can be used instead to avoid linking in
unneeded compression or decompression routines. */
int gzclose(gzFile file)
{
#ifndef NO_GZCOMPRESS
gz_statep state;
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file);
#else
return gzclose_r(file);
#endif
}

View File

@ -1,604 +0,0 @@
/* gzlib.c -- zlib functions common to reading and writing gzip files
* Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
#if defined(_WIN32) && !defined(__BORLANDC__)
# define LSEEK _lseeki64
#else
#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
# define LSEEK lseek64
#else
# define LSEEK lseek
#endif
#endif
/* Forward declarations */
z_off_t ZEXPORT gzoffset(gzFile file);
int ZEXPORT gzbuffer(gzFile file, unsigned size);
/* Local functions */
local void gz_reset OF((gz_statep));
local gzFile gz_open OF((const void *, int, const char *));
#if defined UNDER_CE
/* Map the Windows error number in ERROR to a locale-dependent error message
string and return a pointer to it. Typically, the values for ERROR come
from GetLastError.
The string pointed to shall not be modified by the application, but may be
overwritten by a subsequent call to gz_strwinerror
The gz_strwinerror function does not change the current setting of
GetLastError. */
char ZLIB_INTERNAL *gz_strwinerror (error)
DWORD error;
{
static char buf[1024];
wchar_t *msgbuf;
DWORD lasterr = GetLastError();
DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER,
NULL,
error,
0, /* Default language */
(LPVOID)&msgbuf,
0,
NULL);
if (chars != 0) {
/* If there is an \r\n appended, zap it. */
if (chars >= 2
&& msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') {
chars -= 2;
msgbuf[chars] = 0;
}
if (chars > sizeof (buf) - 1) {
chars = sizeof (buf) - 1;
msgbuf[chars] = 0;
}
wcstombs(buf, msgbuf, chars + 1);
LocalFree(msgbuf);
}
else {
sprintf(buf, "unknown win32 error (%ld)", error);
}
SetLastError(lasterr);
return buf;
}
#endif /* UNDER_CE */
/* Reset gzip file state */
local void gz_reset(gz_statep state)
{
state->x.have = 0; /* no output data available */
if (state->mode == GZ_READ) { /* for reading ... */
state->eof = 0; /* not at end of file */
state->past = 0; /* have not read past end yet */
state->how = LOOK; /* look for gzip header */
}
state->seek = 0; /* no seek request pending */
gz_error(state, Z_OK, NULL); /* clear error */
state->x.pos = 0; /* no uncompressed data yet */
state->strm.avail_in = 0; /* no input data yet */
}
/* Open a gzip file either by name or file descriptor. */
local gzFile gz_open(const void *path, int fd, const char *mode)
{
gz_statep state;
size_t len;
int oflag;
#ifdef O_CLOEXEC
int cloexec = 0;
#endif
#ifdef O_EXCL
int exclusive = 0;
#endif
/* check input */
if (path == NULL)
return NULL;
/* allocate gzFile structure to return */
state = (gz_statep)malloc(sizeof(gz_state));
if (state == NULL)
return NULL;
state->size = 0; /* no buffers allocated yet */
state->want = GZBUFSIZE; /* requested buffer size */
state->msg = NULL; /* no error message yet */
/* interpret mode */
state->mode = GZ_NONE;
state->level = Z_DEFAULT_COMPRESSION;
state->strategy = Z_DEFAULT_STRATEGY;
state->direct = 0;
while (*mode) {
if (*mode >= '0' && *mode <= '9')
state->level = *mode - '0';
else
switch (*mode) {
case 'r':
state->mode = GZ_READ;
break;
#ifndef NO_GZCOMPRESS
case 'w':
state->mode = GZ_WRITE;
break;
case 'a':
state->mode = GZ_APPEND;
break;
#endif
case '+': /* can't read and write at the same time */
free(state);
return NULL;
case 'b': /* ignore -- will request binary anyway */
break;
#ifdef O_CLOEXEC
case 'e':
cloexec = 1;
break;
#endif
#ifdef O_EXCL
case 'x':
exclusive = 1;
break;
#endif
case 'f':
state->strategy = Z_FILTERED;
break;
case 'h':
state->strategy = Z_HUFFMAN_ONLY;
break;
case 'R':
state->strategy = Z_RLE;
break;
case 'F':
state->strategy = Z_FIXED;
break;
case 'T':
state->direct = 1;
break;
default: /* could consider as an error, but just ignore */
;
}
mode++;
}
/* must provide an "r", "w", or "a" */
if (state->mode == GZ_NONE) {
free(state);
return NULL;
}
/* can't force transparent read */
if (state->mode == GZ_READ) {
if (state->direct) {
free(state);
return NULL;
}
state->direct = 1; /* for empty file */
}
/* save the path name for error messages */
#ifdef _WIN32
if (fd == -2) {
len = wcstombs(NULL, (const wchar_t*)path, 0);
if (len == (size_t)-1)
len = 0;
}
else
#endif
len = strlen((const char *)path);
state->path = (char *)malloc(len + 1);
if (state->path == NULL) {
free(state);
return NULL;
}
#ifdef _WIN32
if (fd == -2)
if (len)
wcstombs(state->path, (const wchar_t*)path, len + 1);
else
*(state->path) = 0;
else
#endif
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
snprintf(state->path, len + 1, "%s", (const char *)path);
#else
strlcpy(state->path, path, sizeof(state->path));
#endif
/* compute the flags for open() */
oflag =
#ifdef O_LARGEFILE
O_LARGEFILE |
#endif
#ifdef O_BINARY
O_BINARY |
#endif
#ifdef O_CLOEXEC
(cloexec ? O_CLOEXEC : 0) |
#endif
(state->mode == GZ_READ ?
O_RDONLY :
(O_WRONLY | O_CREAT |
#ifdef O_EXCL
(exclusive ? O_EXCL : 0) |
#endif
(state->mode == GZ_WRITE ?
O_TRUNC :
O_APPEND)));
/* open the file with the appropriate flags (or just use fd) */
state->fd = fd > -1 ? fd : (
#ifdef _WIN32
fd == -2 ? _wopen((const wchar_t*)path, oflag, 0666) :
#endif
open((const char *)path, oflag, 0666));
if (state->fd == -1) {
free(state->path);
free(state);
return NULL;
}
if (state->mode == GZ_APPEND)
state->mode = GZ_WRITE; /* simplify later checks */
/* save the current position for rewinding (only if reading) */
if (state->mode == GZ_READ) {
state->start = LSEEK(state->fd, 0, SEEK_CUR);
if (state->start == -1) state->start = 0;
}
/* initialize stream */
gz_reset(state);
/* return stream */
return (gzFile)state;
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen(const char *path, const char *mode)
{
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen64(const char *path, const char *mode)
{
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzdopen(int fd, const char *mode)
{
char *path; /* identifier for error messages */
gzFile gz;
if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL)
return NULL;
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
snprintf(path, 7 + 3 * sizeof(int), "<fd:%d>", fd); /* for debugging */
#else
sprintf(path, "<fd:%d>", fd); /* for debugging */
#endif
gz = gz_open(path, fd, mode);
free(path);
return gz;
}
/* -- see zlib.h -- */
#ifdef _WIN32
gzFile ZEXPORT gzopen_w(const wchar_t *path, const char *mode)
{
return gz_open(path, -2, mode);
}
#endif
/* -- see zlib.h -- */
int ZEXPORT gzbuffer(gzFile file, unsigned size)
{
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* make sure we haven't already allocated memory */
if (state->size != 0)
return -1;
/* check and set requested size */
if (size < 2)
size = 2; /* need two bytes to check magic header */
state->want = size;
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzrewind(gzFile file)
{
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* back up and start over */
if (LSEEK(state->fd, state->start, SEEK_SET) == -1)
return -1;
gz_reset(state);
return 0;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzseek64(gzFile file, z_off64_t offset, int whence)
{
unsigned n;
z_off64_t ret;
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* check that there's no error */
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
/* can only seek from start or relative to current position */
if (whence != SEEK_SET && whence != SEEK_CUR)
return -1;
/* normalize offset to a SEEK_CUR specification */
if (whence == SEEK_SET)
offset -= state->x.pos;
else if (state->seek)
offset += state->skip;
state->seek = 0;
/* if within raw area while reading, just go there */
if (state->mode == GZ_READ && state->how == MODE_COPY &&
state->x.pos + offset >= 0) {
ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR);
if (ret == -1)
return -1;
state->x.have = 0;
state->eof = 0;
state->past = 0;
state->seek = 0;
gz_error(state, Z_OK, NULL);
state->strm.avail_in = 0;
state->x.pos += offset;
return state->x.pos;
}
/* calculate skip amount, rewinding if needed for back seek when reading */
if (offset < 0) {
if (state->mode != GZ_READ) /* writing -- can't go backwards */
return -1;
offset += state->x.pos;
if (offset < 0) /* before start of file! */
return -1;
if (gzrewind(file) == -1) /* rewind, then skip to offset */
return -1;
}
/* if reading, skip what's in output buffer (one less gzgetc() check) */
if (state->mode == GZ_READ) {
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ?
(unsigned)offset : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
offset -= n;
}
/* request skip (if not zero) */
if (offset) {
state->seek = 1;
state->skip = offset;
}
return state->x.pos + offset;
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzseek(gzFile file, z_off_t offset, int whence)
{
z_off64_t ret;
ret = gzseek64(file, (z_off64_t)offset, whence);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gztell64(gzFile file)
{
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* return position */
return state->x.pos + (state->seek ? state->skip : 0);
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gztell(gzFile file)
{
z_off64_t ret;
ret = gztell64(file);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzoffset64(gzFile file)
{
z_off64_t offset;
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* compute and return effective offset in file */
offset = LSEEK(state->fd, 0, SEEK_CUR);
if (offset == -1)
return -1;
if (state->mode == GZ_READ) /* reading */
offset -= state->strm.avail_in; /* don't count buffered input */
return offset;
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzoffset(gzFile file)
{
z_off64_t ret = gzoffset64(file);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
int ZEXPORT gzeof(gzFile file)
{
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return 0;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return 0;
/* return end-of-file state */
return state->mode == GZ_READ ? state->past : 0;
}
/* -- see zlib.h -- */
const char * ZEXPORT gzerror(gzFile file, int *errnum)
{
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return NULL;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return NULL;
/* return error information */
if (errnum != NULL)
*errnum = state->err;
return state->err == Z_MEM_ERROR ? "out of memory" :
(state->msg == NULL ? "" : state->msg);
}
/* -- see zlib.h -- */
void ZEXPORT gzclearerr(gzFile file)
{
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return;
/* clear error and end-of-file */
if (state->mode == GZ_READ) {
state->eof = 0;
state->past = 0;
}
gz_error(state, Z_OK, NULL);
}
/* Create an error message in allocated memory and set state->err and
state->msg accordingly. Free any previous error message already there. Do
not try to free or allocate space if the error is Z_MEM_ERROR (out of
memory). Simply save the error message as a static string. If there is an
allocation failure constructing the error message, then convert the error to
out of memory. */
void ZLIB_INTERNAL gz_error(gz_statep state, int err, const char *msg)
{
/* free previously allocated message and clear */
if (state->msg != NULL) {
if (state->err != Z_MEM_ERROR)
free(state->msg);
state->msg = NULL;
}
/* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */
if (err != Z_OK && err != Z_BUF_ERROR)
state->x.have = 0;
/* set error code, and if no message, then done */
state->err = err;
if (msg == NULL)
return;
/* for an out of memory error, return literal string when requested */
if (err == Z_MEM_ERROR)
return;
/* construct error message with path */
if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) ==
NULL) {
state->err = Z_MEM_ERROR;
return;
}
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
snprintf(state->msg, strlen(state->path) + strlen(msg) + 3,
"%s%s%s", state->path, ": ", msg);
#else
strlcpy(state->msg, state->path, sizeof(state->msg));
strlcat(state->msg, ": ", sizeof(state->msg));
strlcat(state->msg, msg, sizeof(state->msg));
#endif
return;
}
#ifndef INT_MAX
/* portably return maximum value for an int (when limits.h presumed not
available) -- we need to do this to cover cases where 2's complement not
used, since C standard permits 1's complement and sign-bit representations,
otherwise we could just use ((unsigned)-1) >> 1 */
unsigned ZLIB_INTERNAL gz_intmax()
{
unsigned p, q;
p = 1;
do {
q = p;
p <<= 1;
p++;
} while (p > q);
return q >> 1;
}
#endif

View File

@ -1,575 +0,0 @@
/* gzread.c -- zlib functions for reading gzip files
* Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
/* Local functions */
local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *));
local int gz_avail OF((gz_statep));
local int gz_look OF((gz_statep));
local int gz_decomp OF((gz_statep));
local int gz_fetch OF((gz_statep));
local int gz_skip OF((gz_statep, z_off64_t));
int ZEXPORT gzgetc_(gzFile file);
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
state->fd, and update state->eof, state->err, and state->msg as appropriate.
This function needs to loop on read(), since read() is not guaranteed to
read the number of bytes requested, depending on the type of descriptor. */
local int gz_load(gz_statep state, unsigned char *buf, unsigned len, unsigned *have)
{
int ret;
*have = 0;
do {
ret = read(state->fd, buf + *have, len - *have);
if (ret <= 0)
break;
*have += ret;
} while (*have < len);
if (ret < 0) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
if (ret == 0)
state->eof = 1;
return 0;
}
/* Load up input buffer and set eof flag if last data loaded -- return -1 on
error, 0 otherwise. Note that the eof flag is set when the end of the input
file is reached, even though there may be unused data in the buffer. Once
that data has been used, no more attempts will be made to read the file.
If strm->avail_in != 0, then the current data is moved to the beginning of
the input buffer, and then the remainder of the buffer is loaded with the
available data from the input file. */
local int gz_avail(gz_statep state)
{
unsigned got;
z_streamp strm = &(state->strm);
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
if (state->eof == 0) {
if (strm->avail_in) { /* copy what's there to the start */
unsigned char *p = state->in;
unsigned const char *q = strm->next_in;
unsigned n = strm->avail_in;
do {
*p++ = *q++;
} while (--n);
}
if (gz_load(state, state->in + strm->avail_in,
state->size - strm->avail_in, &got) == -1)
return -1;
strm->avail_in += got;
strm->next_in = state->in;
}
return 0;
}
/* Look for gzip header, set up for inflate or copy. state->x.have must be 0.
If this is the first time in, allocate required memory. state->how will be
left unchanged if there is no more input data available, will be set to COPY
if there is no gzip header and direct copying will be performed, or it will
be set to GZIP for decompression. If direct copying, then leftover input
data from the input buffer will be copied to the output buffer. In that
case, all further file reads will be directly to either the output buffer or
a user buffer. If decompressing, the inflate state will be initialized.
gz_look() will return 0 on success or -1 on failure. */
local int gz_look(gz_statep state)
{
z_streamp strm = &(state->strm);
/* allocate read buffers and inflate memory */
if (state->size == 0) {
/* allocate buffers */
state->in = (unsigned char *)malloc(state->want);
state->out = (unsigned char *)malloc(state->want << 1);
if (state->in == NULL || state->out == NULL) {
if (state->out != NULL)
free(state->out);
if (state->in != NULL)
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
state->size = state->want;
/* allocate inflate memory */
state->strm.zalloc = Z_NULL;
state->strm.zfree = Z_NULL;
state->strm.opaque = Z_NULL;
state->strm.avail_in = 0;
state->strm.next_in = Z_NULL;
if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */
free(state->out);
free(state->in);
state->size = 0;
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
}
/* get at least the magic bytes in the input buffer */
if (strm->avail_in < 2) {
if (gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0)
return 0;
}
/* look for gzip magic bytes -- if there, do gzip decoding (note: there is
a logical dilemma here when considering the case of a partially written
gzip file, to wit, if a single 31 byte is written, then we cannot tell
whether this is a single-byte file, or just a partially written gzip
file -- for here we assume that if a gzip file is being written, then
the header will be written in a single operation, so that reading a
single byte is sufficient indication that it is not a gzip file) */
if (strm->avail_in > 1 &&
strm->next_in[0] == 31 && strm->next_in[1] == 139) {
inflateReset(strm);
state->how = MODE_GZIP;
state->direct = 0;
return 0;
}
/* no gzip header -- if we were decoding gzip before, then this is trailing
garbage. Ignore the trailing garbage and finish. */
if (state->direct == 0) {
strm->avail_in = 0;
state->eof = 1;
state->x.have = 0;
return 0;
}
/* doing raw i/o, copy any leftover input to output -- this assumes that
the output buffer is larger than the input buffer, which also assures
space for gzungetc() */
state->x.next = state->out;
if (strm->avail_in) {
memcpy(state->x.next, strm->next_in, strm->avail_in);
state->x.have = strm->avail_in;
strm->avail_in = 0;
}
state->how = MODE_COPY;
state->direct = 1;
return 0;
}
/* Decompress from input to the provided next_out and avail_out in the state.
On return, state->x.have and state->x.next point to the just decompressed
data. If the gzip stream completes, state->how is reset to LOOK to look for
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
on success, -1 on failure. */
local int gz_decomp(gz_statep state)
{
int ret = Z_OK;
unsigned had;
z_streamp strm = &(state->strm);
/* fill output buffer up to end of deflate stream */
had = strm->avail_out;
do {
/* get more input for inflate() */
if (strm->avail_in == 0 && gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0) {
gz_error(state, Z_BUF_ERROR, "unexpected end of file");
break;
}
/* decompress and handle errors */
ret = inflate(strm, Z_NO_FLUSH);
if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) {
gz_error(state, Z_STREAM_ERROR,
"internal error: inflate stream corrupt");
return -1;
}
if (ret == Z_MEM_ERROR) {
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
if (ret == Z_DATA_ERROR) { /* deflate stream invalid */
gz_error(state, Z_DATA_ERROR,
strm->msg == NULL ? "compressed data error" : strm->msg);
return -1;
}
} while (strm->avail_out && ret != Z_STREAM_END);
/* update available output */
state->x.have = had - strm->avail_out;
state->x.next = strm->next_out - state->x.have;
/* if the gzip stream completed successfully, look for another */
if (ret == Z_STREAM_END)
state->how = LOOK;
/* good decompression */
return 0;
}
/* Fetch data and put it in the output buffer. Assumes state->x.have is 0.
Data is either copied from the input file or decompressed from the input
file depending on state->how. If state->how is LOOK, then a gzip header is
looked for to determine whether to copy or decompress. Returns -1 on error,
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
end of the input file has been reached and all data has been processed. */
local int gz_fetch(gz_statep state)
{
z_streamp strm = &(state->strm);
do {
switch(state->how) {
case LOOK: /* -> LOOK, MODE_COPY (only if never GZIP), or MODE_GZIP */
if (gz_look(state) == -1)
return -1;
if (state->how == LOOK)
return 0;
break;
case MODE_COPY: /* -> MODE_COPY */
if (gz_load(state, state->out, state->size << 1, &(state->x.have))
== -1)
return -1;
state->x.next = state->out;
return 0;
case MODE_GZIP: /* -> GZIP or LOOK (if end of gzip stream) */
strm->avail_out = state->size << 1;
strm->next_out = state->out;
if (gz_decomp(state) == -1)
return -1;
}
} while (state->x.have == 0 && (!state->eof || strm->avail_in));
return 0;
}
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
local int gz_skip(gz_statep state, z_off64_t len)
{
unsigned n;
/* skip over len bytes or reach end-of-file, whichever comes first */
while (len)
/* skip over whatever is in output buffer */
if (state->x.have) {
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ?
(unsigned)len : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
len -= n;
}
/* output buffer empty -- return if we're at the end of the input */
else if (state->eof && state->strm.avail_in == 0)
break;
/* need more data to skip -- load up output buffer */
else {
/* get more output, looking for header if required */
if (gz_fetch(state) == -1)
return -1;
}
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzread(gzFile file, voidp buf, unsigned len)
{
unsigned got, n;
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return -1;
}
/* if len is zero, avoid unnecessary operations */
if (len == 0)
return 0;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return -1;
}
/* get len bytes to buf, or less than len if at the end */
got = 0;
n = 0;
do {
/* first just try copying data from the output buffer */
if (state->x.have) {
n = state->x.have > len ? len : state->x.have;
memcpy(buf, state->x.next, n);
state->x.next += n;
state->x.have -= n;
}
/* output buffer empty -- return if we're at the end of the input */
else if (state->eof && strm->avail_in == 0) {
state->past = 1; /* tried to read past end */
break;
}
/* need output data -- for small len or new stream load up our output
buffer */
else if (state->how == LOOK || len < (state->size << 1)) {
/* get more output, looking for header if required */
if (gz_fetch(state) == -1)
return -1;
continue; /* no progress yet -- go back to copy above */
/* the copy above assures that we will leave with space in the
output buffer, allowing at least one gzungetc() to succeed */
}
/* large len -- read directly into user buffer */
else if (state->how == MODE_COPY) { /* read directly */
if (gz_load(state, (unsigned char *)buf, len, &n) == -1)
return -1;
}
/* large len -- decompress directly into user buffer */
else { /* state->how == GZIP */
strm->avail_out = len;
strm->next_out = (unsigned char *)buf;
if (gz_decomp(state) == -1)
return -1;
n = state->x.have;
state->x.have = 0;
}
/* update progress */
len -= n;
buf = (char *)buf + n;
got += n;
state->x.pos += n;
} while (len);
/* return number of bytes read into user buffer (will fit in int) */
return (int)got;
}
/* -- see zlib.h -- */
#ifdef Z_PREFIX_SET
# undef z_gzgetc
#else
# undef gzgetc
#endif
int ZEXPORT gzgetc(gzFile file)
{
int ret;
unsigned char buf[1];
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* try output buffer (no need to check for skip request) */
if (state->x.have) {
state->x.have--;
state->x.pos++;
return *(state->x.next)++;
}
/* nothing there -- try gzread() */
ret = gzread(file, buf, 1);
return ret < 1 ? -1 : buf[0];
}
int ZEXPORT gzgetc_(gzFile file)
{
return gzgetc(file);
}
/* -- see zlib.h -- */
int ZEXPORT gzungetc(int c, gzFile file)
{
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return -1;
}
/* can't push EOF */
if (c < 0)
return -1;
/* if output buffer empty, put byte at end (allows more pushing) */
if (state->x.have == 0) {
state->x.have = 1;
state->x.next = state->out + (state->size << 1) - 1;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
/* if no room, give up (must have already done a gzungetc()) */
if (state->x.have == (state->size << 1)) {
gz_error(state, Z_DATA_ERROR, "out of room to push characters");
return -1;
}
/* slide output data if needed and insert byte before existing data */
if (state->x.next == state->out) {
unsigned char *src = state->out + state->x.have;
unsigned char *dest = state->out + (state->size << 1);
while (src > state->out)
*--dest = *--src;
state->x.next = dest;
}
state->x.have++;
state->x.next--;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
/* -- see zlib.h -- */
char * ZEXPORT gzgets(gzFile file, char *buf, int len)
{
unsigned left, n;
char *str;
unsigned char *eol;
gz_statep state;
/* check parameters and get internal structure */
if (file == NULL || buf == NULL || len < 1)
return NULL;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
return NULL;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return NULL;
}
/* copy output bytes up to new line or len - 1, whichever comes first --
append a terminating zero to the string (we don't check for a zero in
the contents, let the user worry about that) */
str = buf;
left = (unsigned)len - 1;
if (left) do {
/* assure that something is in the output buffer */
if (state->x.have == 0 && gz_fetch(state) == -1)
return NULL; /* error */
if (state->x.have == 0) { /* end of file */
state->past = 1; /* read past end */
break; /* return what we have */
}
/* look for end-of-line in current output buffer */
n = state->x.have > left ? left : state->x.have;
eol = (unsigned char *)memchr(state->x.next, '\n', n);
if (eol != NULL)
n = (unsigned)(eol - state->x.next) + 1;
/* copy through end-of-line, or remainder if not found */
memcpy(buf, state->x.next, n);
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
left -= n;
buf += n;
} while (left && eol == NULL);
/* return terminated string, or if nothing, end of file */
if (buf == str)
return NULL;
buf[0] = 0;
return str;
}
/* -- see zlib.h -- */
int ZEXPORT gzdirect(gzFile file)
{
gz_statep state;
/* get internal structure */
if (file == NULL)
return 0;
state = (gz_statep)file;
/* if the state is not known, but we can find out, then do so (this is
mainly for right after a gzopen() or gzdopen()) */
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
(void)gz_look(state);
/* return 1 if transparent, 0 if processing a gzip stream */
return state->direct;
}
/* -- see zlib.h -- */
int gzclose_r(gzFile file)
{
int ret, err;
gz_statep state;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
/* check that we're reading */
if (state->mode != GZ_READ)
return Z_STREAM_ERROR;
/* free memory and close file */
if (state->size) {
inflateEnd(&(state->strm));
free(state->out);
free(state->in);
}
err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK;
gz_error(state, Z_OK, NULL);
free(state->path);
ret = close(state->fd);
free(state);
return ret ? Z_ERRNO : err;
}

View File

@ -1,557 +0,0 @@
/* gzwrite.c -- zlib functions for writing gzip files
* Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
/* Local functions */
local int gz_init OF((gz_statep));
local int gz_comp OF((gz_statep, int));
local int gz_zero OF((gz_statep, z_off64_t));
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va);
/* Initialize state for writing a gzip file. Mark initialization by setting
state->size to non-zero. Return -1 on failure or 0 on success. */
local int gz_init(gz_statep state)
{
int ret;
z_streamp strm = &(state->strm);
/* allocate input buffer */
state->in = (unsigned char *)malloc(state->want);
if (state->in == NULL) {
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* only need output buffer and deflate state if compressing */
if (!state->direct) {
/* allocate output buffer */
state->out = (unsigned char *)malloc(state->want);
if (state->out == NULL) {
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* allocate deflate memory, set up for gzip compression */
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
strm->opaque = Z_NULL;
ret = deflateInit2(strm, state->level, Z_DEFLATED,
MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy);
if (ret != Z_OK) {
free(state->out);
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
}
/* mark state as initialized */
state->size = state->want;
/* initialize write buffer if compressing */
if (!state->direct) {
strm->avail_out = state->size;
strm->next_out = state->out;
state->x.next = strm->next_out;
}
return 0;
}
/* Compress whatever is at avail_in and next_in and write to the output file.
Return -1 if there is an error writing to the output file, otherwise 0.
flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH,
then the deflate() state is reset to start a new gzip stream. If gz->direct
is true, then simply write to the output file without compressing, and
ignore flush. */
local int gz_comp(gz_statep state, int flush)
{
int ret, got;
unsigned have;
z_streamp strm = &(state->strm);
/* allocate memory if this is the first time through */
if (state->size == 0 && gz_init(state) == -1)
return -1;
/* write directly if requested */
if (state->direct) {
got = write(state->fd, strm->next_in, strm->avail_in);
if (got < 0 || (unsigned)got != strm->avail_in) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
strm->avail_in = 0;
return 0;
}
/* run deflate() on provided input until it produces no more output */
ret = Z_OK;
do {
/* write out current buffer contents if full, or if flushing, but if
doing Z_FINISH then don't write until we get to Z_STREAM_END */
if (strm->avail_out == 0 || (flush != Z_NO_FLUSH &&
(flush != Z_FINISH || ret == Z_STREAM_END))) {
have = (unsigned)(strm->next_out - state->x.next);
if (have && ((got = write(state->fd, state->x.next, have)) < 0 ||
(unsigned)got != have)) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
if (strm->avail_out == 0) {
strm->avail_out = state->size;
strm->next_out = state->out;
}
state->x.next = strm->next_out;
}
/* compress */
have = strm->avail_out;
ret = deflate(strm, flush);
if (ret == Z_STREAM_ERROR) {
gz_error(state, Z_STREAM_ERROR,
"internal error: deflate stream corrupt");
return -1;
}
have -= strm->avail_out;
} while (have);
/* if that completed a deflate stream, allow another to start */
if (flush == Z_FINISH)
deflateReset(strm);
/* all done, no errors */
return 0;
}
/* Compress len zeros to output. Return -1 on error, 0 on success. */
local int gz_zero(gz_statep state, z_off64_t len)
{
int first;
unsigned n;
z_streamp strm = &(state->strm);
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return -1;
/* compress len zeros (len guaranteed > 0) */
first = 1;
while (len) {
n = GT_OFF(state->size) || (z_off64_t)state->size > len ?
(unsigned)len : state->size;
if (first) {
memset(state->in, 0, n);
first = 0;
}
strm->avail_in = n;
strm->next_in = state->in;
state->x.pos += n;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return -1;
len -= n;
}
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len)
{
unsigned put = len;
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return 0;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return 0;
}
/* if len is zero, avoid unnecessary operations */
if (len == 0)
return 0;
/* allocate memory if this is the first time through */
if (state->size == 0 && gz_init(state) == -1)
return 0;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return 0;
}
/* for small len, copy to input buffer, otherwise compress directly */
if (len < state->size) {
/* copy to input buffer, compress when full */
do {
unsigned have, copy;
if (strm->avail_in == 0)
strm->next_in = state->in;
have = (unsigned)((strm->next_in + strm->avail_in) - state->in);
copy = state->size - have;
if (copy > len)
copy = len;
memcpy(state->in + have, buf, copy);
strm->avail_in += copy;
state->x.pos += copy;
buf = (const char *)buf + copy;
len -= copy;
if (len && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
} while (len);
}
else {
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
/* directly compress user buffer to file */
strm->avail_in = len;
strm->next_in = (Bytef *)buf;
state->x.pos += len;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
}
/* input was all buffered or compressed (put will fit in int) */
return (int)put;
}
/* -- see zlib.h -- */
int ZEXPORT gzputc(gzFile file, int c)
{
unsigned have;
unsigned char buf[1];
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return -1;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* try writing to input buffer for speed (state->size == 0 if buffer not
initialized) */
if (state->size) {
if (strm->avail_in == 0)
strm->next_in = state->in;
have = (unsigned)((strm->next_in + strm->avail_in) - state->in);
if (have < state->size) {
state->in[have] = c;
strm->avail_in++;
state->x.pos++;
return c & 0xff;
}
}
/* no room in buffer or not initialized, use gz_write() */
buf[0] = c;
if (gzwrite(file, buf, 1) != 1)
return -1;
return c & 0xff;
}
/* -- see zlib.h -- */
int ZEXPORT gzputs(gzFile file, const char *str)
{
int ret;
unsigned len;
/* write string */
len = (unsigned)strlen(str);
ret = gzwrite(file, str, len);
return ret == 0 && len != 0 ? -1 : ret;
}
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
#include <stdarg.h>
/* -- see zlib.h -- */
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va)
{
int size, len;
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
/* make sure we have some buffer space */
if (state->size == 0 && gz_init(state) == -1)
return 0;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return 0;
}
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
/* do the printf() into the input buffer, put length in len */
size = (int)(state->size);
state->in[size - 1] = 0;
#ifdef NO_vsnprintf
# ifdef HAS_vsprintf_void
(void)vsprintf((char *)(state->in), format, va);
for (len = 0; len < size; len++)
if (state->in[len] == 0) break;
# else
len = vsprintf((char *)(state->in), format, va);
# endif
#else
# ifdef HAS_vsnprintf_void
(void)vsnprintf((char *)(state->in), size, format, va);
len = strlen((char *)(state->in));
# else
len = vsnprintf((char *)(state->in), size, format, va);
# endif
#endif
/* check that printf() results fit in buffer */
if (len <= 0 || len >= (int)size || state->in[size - 1] != 0)
return 0;
/* update buffer and position, defer compression until needed */
strm->avail_in = (unsigned)len;
strm->next_in = state->in;
state->x.pos += len;
return len;
}
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...)
{
va_list va;
int ret;
va_start(va, format);
ret = gzvprintf(file, format, va);
va_end(va);
return ret;
}
#else /* !STDC && !Z_HAVE_STDARG_H */
/* -- see zlib.h -- */
int ZEXPORTVA gzprintf (gzFile file, const char *format, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8, int a9, int a10,
int a11, int a12, int a13, int a14, int a15, int a16, int a17, int a18, int a19, int a20)
{
int size, len;
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that can really pass pointer in ints */
if (sizeof(int) != sizeof(void *))
return 0;
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
/* make sure we have some buffer space */
if (state->size == 0 && gz_init(state) == -1)
return 0;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return 0;
}
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
/* do the printf() into the input buffer, put length in len */
size = (int)(state->size);
state->in[size - 1] = 0;
#ifdef NO_snprintf
# ifdef HAS_sprintf_void
sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
for (len = 0; len < size; len++)
if (state->in[len] == 0) break;
# else
len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
# endif
#else
# ifdef HAS_snprintf_void
snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
len = strlen((char *)(state->in));
# else
len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6,
a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18,
a19, a20);
# endif
#endif
/* check that printf() results fit in buffer */
if (len <= 0 || len >= (int)size || state->in[size - 1] != 0)
return 0;
/* update buffer and position, defer compression until needed */
strm->avail_in = (unsigned)len;
strm->next_in = state->in;
state->x.pos += len;
return len;
}
#endif
/* -- see zlib.h -- */
int ZEXPORT gzflush(gzFile file, int flush)
{
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return Z_STREAM_ERROR;
/* check flush parameter */
if (flush < 0 || flush > Z_FINISH)
return Z_STREAM_ERROR;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* compress remaining data with requested flush */
gz_comp(state, flush);
return state->err;
}
/* -- see zlib.h -- */
int ZEXPORT gzsetparams(gzFile file, int level, int strategy)
{
gz_statep state;
z_streamp strm;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return Z_STREAM_ERROR;
/* if no change is requested, then do nothing */
if (level == state->level && strategy == state->strategy)
return Z_OK;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* change compression parameters for subsequent input */
if (state->size) {
/* flush previous input with previous parameters before changing */
if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1)
return state->err;
deflateParams(strm, level, strategy);
}
state->level = level;
state->strategy = strategy;
return Z_OK;
}
/* -- see zlib.h -- */
int gzclose_w(gzFile file)
{
int ret = Z_OK;
gz_statep state;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
/* check that we're writing */
if (state->mode != GZ_WRITE)
return Z_STREAM_ERROR;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
ret = state->err;
}
/* flush, free memory, and close file */
if (gz_comp(state, Z_FINISH) == -1)
ret = state->err;
if (state->size) {
if (!state->direct) {
(void)deflateEnd(&(state->strm));
free(state->out);
}
free(state->in);
}
gz_error(state, Z_OK, NULL);
free(state->path);
if (close(state->fd) == -1)
ret = Z_ERRNO;
free(state);
return ret;
}

View File

@ -1,110 +0,0 @@
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2001-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "private/bitmath.h"
#include "FLAC/assert.h"
/* An example of what FLAC__bitmath_silog2() computes:
*
* silog2(-10) = 5
* silog2(- 9) = 5
* silog2(- 8) = 4
* silog2(- 7) = 4
* silog2(- 6) = 4
* silog2(- 5) = 4
* silog2(- 4) = 3
* silog2(- 3) = 3
* silog2(- 2) = 2
* silog2(- 1) = 2
* silog2( 0) = 0
* silog2( 1) = 2
* silog2( 2) = 3
* silog2( 3) = 3
* silog2( 4) = 4
* silog2( 5) = 4
* silog2( 6) = 4
* silog2( 7) = 4
* silog2( 8) = 5
* silog2( 9) = 5
* silog2( 10) = 5
*/
unsigned FLAC__bitmath_silog2(int v)
{
while(1) {
if(v == 0) {
return 0;
}
else if(v > 0) {
unsigned l = 0;
while(v) {
l++;
v >>= 1;
}
return l+1;
}
else if(v == -1) {
return 2;
}
else {
v++;
v = -v;
}
}
}
unsigned FLAC__bitmath_silog2_wide(FLAC__int64 v)
{
while(1) {
if(v == 0) {
return 0;
}
else if(v > 0) {
unsigned l = 0;
while(v) {
l++;
v >>= 1;
}
return l+1;
}
else if(v == -1) {
return 2;
}
else {
v++;
v = -v;
}
}
}

View File

@ -1,846 +0,0 @@
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h>
#include <string.h>
#include "private/bitwriter.h"
#include "private/crc.h"
#include "private/macros.h"
#include "FLAC/assert.h"
#include "share/alloc.h"
#include "share/compat.h"
#include "share/endswap.h"
#include <retro_inline.h>
#include <retro_miscellaneous.h>
/* Things should be fastest when this matches the machine word size */
/* WATCHOUT: if you change this you must also change the following #defines down to SWAP_BE_WORD_TO_HOST below to match */
/* WATCHOUT: there are a few places where the code will not work unless uint32_t is >= 32 bits wide */
#define FLAC__BYTES_PER_WORD 4
#define FLAC__BITS_PER_WORD 32
#define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff)
/* SWAP_BE_WORD_TO_HOST swaps bytes in a uint32_t (which is always big-endian) if necessary to match host byte order */
#ifdef MSB_FIRST
#define SWAP_BE_WORD_TO_HOST(x) (x)
#else
#define SWAP_BE_WORD_TO_HOST(x) ENDSWAP_32(x)
#endif
/*
* The default capacity here doesn't matter too much. The buffer always grows
* to hold whatever is written to it. Usually the encoder will stop adding at
* a frame or metadata block, then write that out and clear the buffer for the
* next one.
*/
static const unsigned FLAC__BITWRITER_DEFAULT_CAPACITY = 32768u / sizeof(uint32_t); /* size in words */
/* When growing, increment 4K at a time */
static const unsigned FLAC__BITWRITER_DEFAULT_INCREMENT = 4096u / sizeof(uint32_t); /* size in words */
#define FLAC__WORDS_TO_BITS(words) ((words) * FLAC__BITS_PER_WORD)
#define FLAC__TOTAL_BITS(bw) (FLAC__WORDS_TO_BITS((bw)->words) + (bw)->bits)
struct FLAC__BitWriter {
uint32_t *buffer;
uint32_t accum; /* accumulator; bits are right-justified; when full, accum is appended to buffer */
unsigned capacity; /* capacity of buffer in words */
unsigned words; /* # of complete words in buffer */
unsigned bits; /* # of used bits in accum */
};
/* * WATCHOUT: The current implementation only grows the buffer. */
#ifndef __SUNPRO_C
static
#endif
FLAC__bool bitwriter_grow_(FLAC__BitWriter *bw, unsigned bits_to_add)
{
unsigned new_capacity;
uint32_t *new_buffer;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
/* calculate total words needed to store 'bits_to_add' additional bits */
new_capacity = bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD);
/* it's possible (due to pessimism in the growth estimation that
* leads to this call) that we don't actually need to grow
*/
if(bw->capacity >= new_capacity)
return true;
/* round up capacity increase to the nearest FLAC__BITWRITER_DEFAULT_INCREMENT */
if((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT)
new_capacity += FLAC__BITWRITER_DEFAULT_INCREMENT - ((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT);
/* make sure we got everything right */
FLAC__ASSERT(0 == (new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT);
FLAC__ASSERT(new_capacity > bw->capacity);
FLAC__ASSERT(new_capacity >= bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD));
new_buffer = (uint32_t*)safe_realloc_mul_2op_(bw->buffer, sizeof(uint32_t), /*times*/new_capacity);
if(new_buffer == 0)
return false;
bw->buffer = new_buffer;
bw->capacity = new_capacity;
return true;
}
/***********************************************************************
*
* Class constructor/destructor
*
***********************************************************************/
FLAC__BitWriter *FLAC__bitwriter_new(void)
{
FLAC__BitWriter *bw = (FLAC__BitWriter*)calloc(1, sizeof(FLAC__BitWriter));
/* note that calloc() sets all members to 0 for us */
return bw;
}
void FLAC__bitwriter_delete(FLAC__BitWriter *bw)
{
FLAC__ASSERT(0 != bw);
FLAC__bitwriter_free(bw);
free(bw);
}
/***********************************************************************
*
* Public class methods
*
***********************************************************************/
FLAC__bool FLAC__bitwriter_init(FLAC__BitWriter *bw)
{
FLAC__ASSERT(0 != bw);
bw->words = bw->bits = 0;
bw->capacity = FLAC__BITWRITER_DEFAULT_CAPACITY;
bw->buffer = (uint32_t*)malloc(sizeof(uint32_t) * bw->capacity);
if(bw->buffer == 0)
return false;
return true;
}
void FLAC__bitwriter_free(FLAC__BitWriter *bw)
{
FLAC__ASSERT(0 != bw);
if(0 != bw->buffer)
free(bw->buffer);
bw->buffer = 0;
bw->capacity = 0;
bw->words = bw->bits = 0;
}
void FLAC__bitwriter_clear(FLAC__BitWriter *bw)
{
bw->words = bw->bits = 0;
}
void FLAC__bitwriter_dump(const FLAC__BitWriter *bw, FILE *out)
{
unsigned i, j;
if(bw == 0) {
fprintf(out, "bitwriter is NULL\n");
}
else {
fprintf(out, "bitwriter: capacity=%u words=%u bits=%u total_bits=%u\n", bw->capacity, bw->words, bw->bits, FLAC__TOTAL_BITS(bw));
for(i = 0; i < bw->words; i++) {
fprintf(out, "%08X: ", i);
for(j = 0; j < FLAC__BITS_PER_WORD; j++)
fprintf(out, "%01u", bw->buffer[i] & (1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0);
fprintf(out, "\n");
}
if(bw->bits > 0) {
fprintf(out, "%08X: ", i);
for(j = 0; j < bw->bits; j++)
fprintf(out, "%01u", bw->accum & (1 << (bw->bits-j-1)) ? 1:0);
fprintf(out, "\n");
}
}
}
FLAC__bool FLAC__bitwriter_get_write_crc16(FLAC__BitWriter *bw, FLAC__uint16 *crc)
{
const FLAC__byte *buffer;
size_t bytes;
FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */
if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes))
return false;
*crc = (FLAC__uint16)FLAC__crc16(buffer, bytes);
FLAC__bitwriter_release_buffer(bw);
return true;
}
FLAC__bool FLAC__bitwriter_get_write_crc8(FLAC__BitWriter *bw, FLAC__byte *crc)
{
const FLAC__byte *buffer;
size_t bytes;
FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */
if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes))
return false;
*crc = FLAC__crc8(buffer, bytes);
FLAC__bitwriter_release_buffer(bw);
return true;
}
FLAC__bool FLAC__bitwriter_is_byte_aligned(const FLAC__BitWriter *bw)
{
return ((bw->bits & 7) == 0);
}
unsigned FLAC__bitwriter_get_input_bits_unconsumed(const FLAC__BitWriter *bw)
{
return FLAC__TOTAL_BITS(bw);
}
FLAC__bool FLAC__bitwriter_get_buffer(FLAC__BitWriter *bw, const FLAC__byte **buffer, size_t *bytes)
{
FLAC__ASSERT((bw->bits & 7) == 0);
/* double protection */
if(bw->bits & 7)
return false;
/* if we have bits in the accumulator we have to flush those to the buffer first */
if(bw->bits) {
FLAC__ASSERT(bw->words <= bw->capacity);
if(bw->words == bw->capacity && !bitwriter_grow_(bw, FLAC__BITS_PER_WORD))
return false;
/* append bits as complete word to buffer, but don't change bw->accum or bw->bits */
bw->buffer[bw->words] = SWAP_BE_WORD_TO_HOST(bw->accum << (FLAC__BITS_PER_WORD-bw->bits));
}
/* now we can just return what we have */
*buffer = (FLAC__byte*)bw->buffer;
*bytes = (FLAC__BYTES_PER_WORD * bw->words) + (bw->bits >> 3);
return true;
}
void FLAC__bitwriter_release_buffer(FLAC__BitWriter *bw)
{
/* nothing to do. in the future, strict checking of a 'writer-is-in-
* get-mode' flag could be added everywhere and then cleared here
*/
(void)bw;
}
FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, unsigned bits)
{
unsigned n;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
if(bits == 0)
return true;
/* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */
if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits))
return false;
/* first part gets to word alignment */
if(bw->bits) {
n = MIN(FLAC__BITS_PER_WORD - bw->bits, bits);
bw->accum <<= n;
bits -= n;
bw->bits += n;
if(bw->bits == FLAC__BITS_PER_WORD) {
bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum);
bw->bits = 0;
}
else
return true;
}
/* do whole words */
while(bits >= FLAC__BITS_PER_WORD) {
bw->buffer[bw->words++] = 0;
bits -= FLAC__BITS_PER_WORD;
}
/* do any leftovers */
if(bits > 0) {
bw->accum = 0;
bw->bits = bits;
}
return true;
}
FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, unsigned bits)
{
register unsigned left;
/* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */
FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32);
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(bits <= 32);
if(bits == 0)
return true;
/* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */
if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits))
return false;
left = FLAC__BITS_PER_WORD - bw->bits;
if(bits < left) {
bw->accum <<= bits;
bw->accum |= val;
bw->bits += bits;
}
else if(bw->bits) { /* WATCHOUT: if bw->bits == 0, left==FLAC__BITS_PER_WORD and bw->accum<<=left is a NOP instead of setting to 0 */
bw->accum <<= left;
bw->accum |= val >> (bw->bits = bits - left);
bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum);
bw->accum = val;
}
else {
bw->accum = val;
bw->bits = 0;
bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(val);
}
return true;
}
FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, unsigned bits)
{
/* zero-out unused bits */
if(bits < 32)
val &= (~(0xffffffff << bits));
return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits);
}
FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, unsigned bits)
{
/* this could be a little faster but it's not used for much */
if(bits > 32) {
return
FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(val>>32), bits-32) &&
FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 32);
}
else
return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits);
}
FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val)
{
/* this doesn't need to be that fast as currently it is only used for vorbis comments */
if(!FLAC__bitwriter_write_raw_uint32(bw, val & 0xff, 8))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>8) & 0xff, 8))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, (val>>16) & 0xff, 8))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, val>>24, 8))
return false;
return true;
}
FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], unsigned nvals)
{
unsigned i;
/* this could be faster but currently we don't need it to be since it's only used for writing metadata */
for(i = 0; i < nvals; i++) {
if(!FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(vals[i]), 8))
return false;
}
return true;
}
FLAC__bool FLAC__bitwriter_write_unary_unsigned(FLAC__BitWriter *bw, unsigned val)
{
if(val < 32)
return FLAC__bitwriter_write_raw_uint32(bw, 1, ++val);
else
return
FLAC__bitwriter_write_zeroes(bw, val) &&
FLAC__bitwriter_write_raw_uint32(bw, 1, 1);
}
unsigned FLAC__bitwriter_rice_bits(FLAC__int32 val, unsigned parameter)
{
FLAC__uint32 uval;
FLAC__ASSERT(parameter < sizeof(unsigned)*8);
/* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */
uval = (val<<1) ^ (val>>31);
return 1 + parameter + (uval >> parameter);
}
#if 0 /* UNUSED */
unsigned FLAC__bitwriter_golomb_bits_signed(int val, unsigned parameter)
{
unsigned bits, msbs, uval;
unsigned k;
FLAC__ASSERT(parameter > 0);
/* fold signed to unsigned */
if(val < 0)
uval = (unsigned)(((-(++val)) << 1) + 1);
else
uval = (unsigned)(val << 1);
k = FLAC__bitmath_ilog2(parameter);
if(parameter == 1u<<k) {
FLAC__ASSERT(k <= 30);
msbs = uval >> k;
bits = 1 + k + msbs;
}
else {
unsigned q, r, d;
d = (1 << (k+1)) - parameter;
q = uval / parameter;
r = uval - (q * parameter);
bits = 1 + q + k;
if(r >= d)
bits++;
}
return bits;
}
unsigned FLAC__bitwriter_golomb_bits_unsigned(unsigned uval, unsigned parameter)
{
unsigned bits, msbs;
unsigned k;
FLAC__ASSERT(parameter > 0);
k = FLAC__bitmath_ilog2(parameter);
if(parameter == 1u<<k) {
FLAC__ASSERT(k <= 30);
msbs = uval >> k;
bits = 1 + k + msbs;
}
else {
unsigned q, r, d;
d = (1 << (k+1)) - parameter;
q = uval / parameter;
r = uval - (q * parameter);
bits = 1 + q + k;
if(r >= d)
bits++;
}
return bits;
}
#endif /* UNUSED */
FLAC__bool FLAC__bitwriter_write_rice_signed(FLAC__BitWriter *bw, FLAC__int32 val, unsigned parameter)
{
unsigned total_bits, interesting_bits, msbs;
FLAC__uint32 uval, pattern;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(parameter < 8*sizeof(uval));
/* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */
uval = (val<<1) ^ (val>>31);
msbs = uval >> parameter;
interesting_bits = 1 + parameter;
total_bits = interesting_bits + msbs;
pattern = 1 << parameter; /* the unary end bit */
pattern |= (uval & ((1<<parameter)-1)); /* the binary LSBs */
if(total_bits <= 32)
return FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits);
else
return
FLAC__bitwriter_write_zeroes(bw, msbs) && /* write the unary MSBs */
FLAC__bitwriter_write_raw_uint32(bw, pattern, interesting_bits); /* write the unary end bit and binary LSBs */
}
FLAC__bool FLAC__bitwriter_write_rice_signed_block(FLAC__BitWriter *bw, const FLAC__int32 *vals, unsigned nvals, unsigned parameter)
{
const FLAC__uint32 mask1 = FLAC__WORD_ALL_ONES << parameter; /* we val|=mask1 to set the stop bit above it... */
const FLAC__uint32 mask2 = FLAC__WORD_ALL_ONES >> (31-parameter); /* ...then mask off the bits above the stop bit with val&=mask2*/
FLAC__uint32 uval;
unsigned left;
const unsigned lsbits = 1 + parameter;
unsigned msbits;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(parameter < 8*sizeof(uint32_t)-1);
/* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */
FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32);
while(nvals) {
/* fold signed to unsigned; actual formula is: negative(v)? -2v-1 : 2v */
uval = (*vals<<1) ^ (*vals>>31);
msbits = uval >> parameter;
if(bw->bits && bw->bits + msbits + lsbits < FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current uint32_t */
/* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free uint32_t to work in */
bw->bits = bw->bits + msbits + lsbits;
uval |= mask1; /* set stop bit */
uval &= mask2; /* mask off unused top bits */
bw->accum <<= msbits + lsbits;
bw->accum |= uval;
}
else {
/* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+msbits+lsbits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */
/* OPT: pessimism may cause flurry of false calls to grow_ which eat up all savings before it */
if(bw->capacity <= bw->words + bw->bits + msbits + 1/*lsbits always fit in 1 uint32_t*/ && !bitwriter_grow_(bw, msbits+lsbits))
return false;
if(msbits) {
/* first part gets to word alignment */
if(bw->bits) {
left = FLAC__BITS_PER_WORD - bw->bits;
if(msbits < left) {
bw->accum <<= msbits;
bw->bits += msbits;
goto break1;
}
else {
bw->accum <<= left;
msbits -= left;
bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum);
bw->bits = 0;
}
}
/* do whole words */
while(msbits >= FLAC__BITS_PER_WORD) {
bw->buffer[bw->words++] = 0;
msbits -= FLAC__BITS_PER_WORD;
}
/* do any leftovers */
if(msbits > 0) {
bw->accum = 0;
bw->bits = msbits;
}
}
break1:
uval |= mask1; /* set stop bit */
uval &= mask2; /* mask off unused top bits */
left = FLAC__BITS_PER_WORD - bw->bits;
if(lsbits < left) {
bw->accum <<= lsbits;
bw->accum |= uval;
bw->bits += lsbits;
}
else {
/* if bw->bits == 0, left==FLAC__BITS_PER_WORD which will always
* be > lsbits (because of previous assertions) so it would have
* triggered the (lsbits<left) case above.
*/
FLAC__ASSERT(bw->bits);
FLAC__ASSERT(left < FLAC__BITS_PER_WORD);
bw->accum <<= left;
bw->accum |= uval >> (bw->bits = lsbits - left);
bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum);
bw->accum = uval;
}
}
vals++;
nvals--;
}
return true;
}
#if 0 /* UNUSED */
FLAC__bool FLAC__bitwriter_write_golomb_signed(FLAC__BitWriter *bw, int val, unsigned parameter)
{
unsigned total_bits, msbs, uval;
unsigned k;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(parameter > 0);
/* fold signed to unsigned */
if(val < 0)
uval = (unsigned)(((-(++val)) << 1) + 1);
else
uval = (unsigned)(val << 1);
k = FLAC__bitmath_ilog2(parameter);
if(parameter == 1u<<k) {
unsigned pattern;
FLAC__ASSERT(k <= 30);
msbs = uval >> k;
total_bits = 1 + k + msbs;
pattern = 1 << k; /* the unary end bit */
pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */
if(total_bits <= 32) {
if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits))
return false;
}
else {
/* write the unary MSBs */
if(!FLAC__bitwriter_write_zeroes(bw, msbs))
return false;
/* write the unary end bit and binary LSBs */
if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1))
return false;
}
}
else {
unsigned q, r, d;
d = (1 << (k+1)) - parameter;
q = uval / parameter;
r = uval - (q * parameter);
/* write the unary MSBs */
if(!FLAC__bitwriter_write_zeroes(bw, q))
return false;
/* write the unary end bit */
if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1))
return false;
/* write the binary LSBs */
if(r >= d) {
if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1))
return false;
}
else {
if(!FLAC__bitwriter_write_raw_uint32(bw, r, k))
return false;
}
}
return true;
}
FLAC__bool FLAC__bitwriter_write_golomb_unsigned(FLAC__BitWriter *bw, unsigned uval, unsigned parameter)
{
unsigned total_bits, msbs;
unsigned k;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(parameter > 0);
k = FLAC__bitmath_ilog2(parameter);
if(parameter == 1u<<k) {
unsigned pattern;
FLAC__ASSERT(k <= 30);
msbs = uval >> k;
total_bits = 1 + k + msbs;
pattern = 1 << k; /* the unary end bit */
pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */
if(total_bits <= 32) {
if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits))
return false;
}
else {
/* write the unary MSBs */
if(!FLAC__bitwriter_write_zeroes(bw, msbs))
return false;
/* write the unary end bit and binary LSBs */
if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1))
return false;
}
}
else {
unsigned q, r, d;
d = (1 << (k+1)) - parameter;
q = uval / parameter;
r = uval - (q * parameter);
/* write the unary MSBs */
if(!FLAC__bitwriter_write_zeroes(bw, q))
return false;
/* write the unary end bit */
if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1))
return false;
/* write the binary LSBs */
if(r >= d) {
if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1))
return false;
}
else {
if(!FLAC__bitwriter_write_raw_uint32(bw, r, k))
return false;
}
}
return true;
}
#endif /* UNUSED */
FLAC__bool FLAC__bitwriter_write_utf8_uint32(FLAC__BitWriter *bw, FLAC__uint32 val)
{
FLAC__bool ok = 1;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(!(val & 0x80000000)); /* this version only handles 31 bits */
if(val < 0x80) {
return FLAC__bitwriter_write_raw_uint32(bw, val, 8);
}
else if(val < 0x800) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (val>>6), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8);
}
else if(val < 0x10000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (val>>12), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8);
}
else if(val < 0x200000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (val>>18), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8);
}
else if(val < 0x4000000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (val>>24), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8);
}
else {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (val>>30), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>24)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>18)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | ((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (val&0x3F), 8);
}
return ok;
}
FLAC__bool FLAC__bitwriter_write_utf8_uint64(FLAC__BitWriter *bw, FLAC__uint64 val)
{
FLAC__bool ok = 1;
FLAC__ASSERT(0 != bw);
FLAC__ASSERT(0 != bw->buffer);
FLAC__ASSERT(!(val & FLAC__U64L(0xFFFFFFF000000000))); /* this version only handles 36 bits */
if(val < 0x80) {
return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, 8);
}
else if(val < 0x800) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xC0 | (FLAC__uint32)(val>>6), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
else if(val < 0x10000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xE0 | (FLAC__uint32)(val>>12), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
else if(val < 0x200000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF0 | (FLAC__uint32)(val>>18), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
else if(val < 0x4000000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xF8 | (FLAC__uint32)(val>>24), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
else if(val < 0x80000000) {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFC | (FLAC__uint32)(val>>30), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
else {
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0xFE, 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>30)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8);
ok &= FLAC__bitwriter_write_raw_uint32(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8);
}
return ok;
}
FLAC__bool FLAC__bitwriter_zero_pad_to_byte_boundary(FLAC__BitWriter *bw)
{
/* 0-pad to byte boundary */
if(bw->bits & 7u)
return FLAC__bitwriter_write_zeroes(bw, 8 - (bw->bits & 7u));
else
return true;
}
/* These functions are declared inline in this file but are also callable as
* externs from elsewhere.
* According to the C99 spec, section 6.7.4, simply providing a function
* prototype in a header file without 'inline' and making the function inline
* in this file should be sufficient.
* Unfortunately, the Microsoft VS compiler doesn't pick them up externally. To
* fix that we add extern declarations here.
*/
extern FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, unsigned bits);
extern FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, unsigned bits);
extern FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, unsigned bits);
extern FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val);
extern FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], unsigned nvals);

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,210 +0,0 @@
/* libFLAC - Free Lossless Audio Codec
* Copyright (C) 2004-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h> /* for malloc() */
#include <string.h> /* for memcmp(), memcpy() */
#include "FLAC/assert.h"
#include "share/alloc.h"
#include "private/ogg_helper.h"
#include "protected/stream_encoder.h"
static FLAC__bool full_read_(FLAC__StreamEncoder *encoder, FLAC__byte *buffer, size_t bytes, FLAC__StreamEncoderReadCallback read_callback, void *client_data)
{
while(bytes > 0) {
size_t bytes_read = bytes;
switch(read_callback(encoder, buffer, &bytes_read, client_data)) {
case FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE:
bytes -= bytes_read;
buffer += bytes_read;
break;
case FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM:
if(bytes_read == 0) {
encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
return false;
}
bytes -= bytes_read;
buffer += bytes_read;
break;
case FLAC__STREAM_ENCODER_READ_STATUS_ABORT:
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
case FLAC__STREAM_ENCODER_READ_STATUS_UNSUPPORTED:
return false;
default:
/* double protection: */
FLAC__ASSERT(0);
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
}
}
return true;
}
void simple_ogg_page__init(ogg_page *page)
{
page->header = 0;
page->header_len = 0;
page->body = 0;
page->body_len = 0;
}
void simple_ogg_page__clear(ogg_page *page)
{
if(page->header)
free(page->header);
if(page->body)
free(page->body);
simple_ogg_page__init(page);
}
FLAC__bool simple_ogg_page__get_at(FLAC__StreamEncoder *encoder, FLAC__uint64 position, ogg_page *page, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderReadCallback read_callback, void *client_data)
{
static const unsigned OGG_HEADER_FIXED_PORTION_LEN = 27;
static const unsigned OGG_MAX_HEADER_LEN = 27/*OGG_HEADER_FIXED_PORTION_LEN*/ + 255;
FLAC__byte crc[4];
FLAC__StreamEncoderSeekStatus seek_status;
FLAC__ASSERT(page->header == 0);
FLAC__ASSERT(page->header_len == 0);
FLAC__ASSERT(page->body == 0);
FLAC__ASSERT(page->body_len == 0);
/* move the stream pointer to the supposed beginning of the page */
if(0 == seek_callback)
return false;
if((seek_status = seek_callback((FLAC__StreamEncoder*)encoder, position, client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
}
/* allocate space for the page header */
if(0 == (page->header = safe_malloc_(OGG_MAX_HEADER_LEN))) {
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/* read in the fixed part of the page header (up to but not including
* the segment table */
if(!full_read_(encoder, page->header, OGG_HEADER_FIXED_PORTION_LEN, read_callback, client_data))
return false;
page->header_len = OGG_HEADER_FIXED_PORTION_LEN + page->header[26];
/* check to see if it's a correct, "simple" page (one packet only) */
if(
memcmp(page->header, "OggS", 4) || /* doesn't start with OggS */
(page->header[5] & 0x01) || /* continued packet */
memcmp(page->header+6, "\0\0\0\0\0\0\0\0", 8) || /* granulepos is non-zero */
page->header[26] == 0 /* packet is 0-size */
) {
encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
return false;
}
/* read in the segment table */
if(!full_read_(encoder, page->header + OGG_HEADER_FIXED_PORTION_LEN, page->header[26], read_callback, client_data))
return false;
{
unsigned i;
/* check to see that it specifies a single packet */
for(i = 0; i < (unsigned)page->header[26] - 1; i++) {
if(page->header[i + OGG_HEADER_FIXED_PORTION_LEN] != 255) {
encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
return false;
}
}
page->body_len = 255 * i + page->header[i + OGG_HEADER_FIXED_PORTION_LEN];
}
/* allocate space for the page body */
if(0 == (page->body = safe_malloc_(page->body_len))) {
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/* read in the page body */
if(!full_read_(encoder, page->body, page->body_len, read_callback, client_data))
return false;
/* check the CRC */
memcpy(crc, page->header+22, 4);
ogg_page_checksum_set(page);
if(memcmp(crc, page->header+22, 4)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
return false;
}
return true;
}
FLAC__bool simple_ogg_page__set_at(FLAC__StreamEncoder *encoder, FLAC__uint64 position, ogg_page *page, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderWriteCallback write_callback, void *client_data)
{
FLAC__StreamEncoderSeekStatus seek_status;
FLAC__ASSERT(page->header != 0);
FLAC__ASSERT(page->header_len != 0);
FLAC__ASSERT(page->body != 0);
FLAC__ASSERT(page->body_len != 0);
/* move the stream pointer to the supposed beginning of the page */
if(0 == seek_callback)
return false;
if((seek_status = seek_callback((FLAC__StreamEncoder*)encoder, position, client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
}
ogg_page_checksum_set(page);
/* re-write the page */
if(write_callback((FLAC__StreamEncoder*)encoder, page->header, page->header_len, 0, 0, client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
}
if(write_callback((FLAC__StreamEncoder*)encoder, page->body, page->body_len, 0, 0, client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
return false;
}
return true;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,549 +0,0 @@
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <string.h> /* for strlen() */
#include "private/stream_encoder_framing.h"
#include "private/crc.h"
#include "FLAC/assert.h"
static FLAC__bool add_entropy_coding_method_(FLAC__BitWriter *bw, const FLAC__EntropyCodingMethod *method);
static FLAC__bool add_residual_partitioned_rice_(FLAC__BitWriter *bw, const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameters[], const unsigned raw_bits[], const unsigned partition_order, const FLAC__bool is_extended);
FLAC__bool FLAC__add_metadata_block(const FLAC__StreamMetadata *metadata, FLAC__BitWriter *bw)
{
unsigned i, j;
const unsigned vendor_string_length = (unsigned)strlen(FLAC__VENDOR_STRING);
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->is_last, FLAC__STREAM_METADATA_IS_LAST_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->type, FLAC__STREAM_METADATA_TYPE_LEN))
return false;
/*
* First, for VORBIS_COMMENTs, adjust the length to reflect our vendor string
*/
i = metadata->length;
if(metadata->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) {
FLAC__ASSERT(metadata->data.vorbis_comment.vendor_string.length == 0 || 0 != metadata->data.vorbis_comment.vendor_string.entry);
i -= metadata->data.vorbis_comment.vendor_string.length;
i += vendor_string_length;
}
FLAC__ASSERT(i < (1u << FLAC__STREAM_METADATA_LENGTH_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, i, FLAC__STREAM_METADATA_LENGTH_LEN))
return false;
switch(metadata->type) {
case FLAC__METADATA_TYPE_STREAMINFO:
FLAC__ASSERT(metadata->data.stream_info.min_blocksize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.min_blocksize, FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN))
return false;
FLAC__ASSERT(metadata->data.stream_info.max_blocksize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.max_blocksize, FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN))
return false;
FLAC__ASSERT(metadata->data.stream_info.min_framesize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.min_framesize, FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN))
return false;
FLAC__ASSERT(metadata->data.stream_info.max_framesize < (1u << FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.max_framesize, FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN))
return false;
FLAC__ASSERT(FLAC__format_sample_rate_is_valid(metadata->data.stream_info.sample_rate));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.sample_rate, FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN))
return false;
FLAC__ASSERT(metadata->data.stream_info.channels > 0);
FLAC__ASSERT(metadata->data.stream_info.channels <= (1u << FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.channels-1, FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN))
return false;
FLAC__ASSERT(metadata->data.stream_info.bits_per_sample > 0);
FLAC__ASSERT(metadata->data.stream_info.bits_per_sample <= (1u << FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN));
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.stream_info.bits_per_sample-1, FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.stream_info.total_samples, FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.stream_info.md5sum, 16))
return false;
break;
case FLAC__METADATA_TYPE_PADDING:
if(!FLAC__bitwriter_write_zeroes(bw, metadata->length * 8))
return false;
break;
case FLAC__METADATA_TYPE_APPLICATION:
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.application.id, FLAC__STREAM_METADATA_APPLICATION_ID_LEN / 8))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.application.data, metadata->length - (FLAC__STREAM_METADATA_APPLICATION_ID_LEN / 8)))
return false;
break;
case FLAC__METADATA_TYPE_SEEKTABLE:
for(i = 0; i < metadata->data.seek_table.num_points; i++) {
if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.seek_table.points[i].sample_number, FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.seek_table.points[i].stream_offset, FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.seek_table.points[i].frame_samples, FLAC__STREAM_METADATA_SEEKPOINT_FRAME_SAMPLES_LEN))
return false;
}
break;
case FLAC__METADATA_TYPE_VORBIS_COMMENT:
if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, vendor_string_length))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)FLAC__VENDOR_STRING, vendor_string_length))
return false;
if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, metadata->data.vorbis_comment.num_comments))
return false;
for(i = 0; i < metadata->data.vorbis_comment.num_comments; i++) {
if(!FLAC__bitwriter_write_raw_uint32_little_endian(bw, metadata->data.vorbis_comment.comments[i].length))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.vorbis_comment.comments[i].entry, metadata->data.vorbis_comment.comments[i].length))
return false;
}
break;
case FLAC__METADATA_TYPE_CUESHEET:
FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN % 8 == 0);
if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)metadata->data.cue_sheet.media_catalog_number, FLAC__STREAM_METADATA_CUESHEET_MEDIA_CATALOG_NUMBER_LEN/8))
return false;
if(!FLAC__bitwriter_write_raw_uint64(bw, metadata->data.cue_sheet.lead_in, FLAC__STREAM_METADATA_CUESHEET_LEAD_IN_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.cue_sheet.is_cd? 1 : 0, FLAC__STREAM_METADATA_CUESHEET_IS_CD_LEN))
return false;
if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_RESERVED_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.cue_sheet.num_tracks, FLAC__STREAM_METADATA_CUESHEET_NUM_TRACKS_LEN))
return false;
for(i = 0; i < metadata->data.cue_sheet.num_tracks; i++) {
const FLAC__StreamMetadata_CueSheet_Track *track = metadata->data.cue_sheet.tracks + i;
if(!FLAC__bitwriter_write_raw_uint64(bw, track->offset, FLAC__STREAM_METADATA_CUESHEET_TRACK_OFFSET_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, track->number, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUMBER_LEN))
return false;
FLAC__ASSERT(FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN % 8 == 0);
if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)track->isrc, FLAC__STREAM_METADATA_CUESHEET_TRACK_ISRC_LEN/8))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, track->type, FLAC__STREAM_METADATA_CUESHEET_TRACK_TYPE_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, track->pre_emphasis, FLAC__STREAM_METADATA_CUESHEET_TRACK_PRE_EMPHASIS_LEN))
return false;
if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_TRACK_RESERVED_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, track->num_indices, FLAC__STREAM_METADATA_CUESHEET_TRACK_NUM_INDICES_LEN))
return false;
for(j = 0; j < track->num_indices; j++) {
const FLAC__StreamMetadata_CueSheet_Index *indx = track->indices + j;
if(!FLAC__bitwriter_write_raw_uint64(bw, indx->offset, FLAC__STREAM_METADATA_CUESHEET_INDEX_OFFSET_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, indx->number, FLAC__STREAM_METADATA_CUESHEET_INDEX_NUMBER_LEN))
return false;
if(!FLAC__bitwriter_write_zeroes(bw, FLAC__STREAM_METADATA_CUESHEET_INDEX_RESERVED_LEN))
return false;
}
}
break;
case FLAC__METADATA_TYPE_PICTURE:
{
size_t len;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.type, FLAC__STREAM_METADATA_PICTURE_TYPE_LEN))
return false;
len = strlen(metadata->data.picture.mime_type);
if(!FLAC__bitwriter_write_raw_uint32(bw, len, FLAC__STREAM_METADATA_PICTURE_MIME_TYPE_LENGTH_LEN))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, (const FLAC__byte*)metadata->data.picture.mime_type, len))
return false;
len = strlen((const char *)metadata->data.picture.description);
if(!FLAC__bitwriter_write_raw_uint32(bw, len, FLAC__STREAM_METADATA_PICTURE_DESCRIPTION_LENGTH_LEN))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.picture.description, len))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.width, FLAC__STREAM_METADATA_PICTURE_WIDTH_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.height, FLAC__STREAM_METADATA_PICTURE_HEIGHT_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.depth, FLAC__STREAM_METADATA_PICTURE_DEPTH_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.colors, FLAC__STREAM_METADATA_PICTURE_COLORS_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, metadata->data.picture.data_length, FLAC__STREAM_METADATA_PICTURE_DATA_LENGTH_LEN))
return false;
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.picture.data, metadata->data.picture.data_length))
return false;
}
break;
default:
if(!FLAC__bitwriter_write_byte_block(bw, metadata->data.unknown.data, metadata->length))
return false;
break;
}
FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(bw));
return true;
}
FLAC__bool FLAC__frame_add_header(const FLAC__FrameHeader *header, FLAC__BitWriter *bw)
{
unsigned u, blocksize_hint, sample_rate_hint;
FLAC__byte crc;
FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(bw));
if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__FRAME_HEADER_SYNC, FLAC__FRAME_HEADER_SYNC_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, 0, FLAC__FRAME_HEADER_RESERVED_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, (header->number_type == FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER)? 0 : 1, FLAC__FRAME_HEADER_BLOCKING_STRATEGY_LEN))
return false;
FLAC__ASSERT(header->blocksize > 0 && header->blocksize <= FLAC__MAX_BLOCK_SIZE);
/* when this assertion holds true, any legal blocksize can be expressed in the frame header */
FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535u);
blocksize_hint = 0;
switch(header->blocksize) {
case 192: u = 1; break;
case 576: u = 2; break;
case 1152: u = 3; break;
case 2304: u = 4; break;
case 4608: u = 5; break;
case 256: u = 8; break;
case 512: u = 9; break;
case 1024: u = 10; break;
case 2048: u = 11; break;
case 4096: u = 12; break;
case 8192: u = 13; break;
case 16384: u = 14; break;
case 32768: u = 15; break;
default:
if(header->blocksize <= 0x100)
blocksize_hint = u = 6;
else
blocksize_hint = u = 7;
break;
}
if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_BLOCK_SIZE_LEN))
return false;
FLAC__ASSERT(FLAC__format_sample_rate_is_valid(header->sample_rate));
sample_rate_hint = 0;
switch(header->sample_rate) {
case 88200: u = 1; break;
case 176400: u = 2; break;
case 192000: u = 3; break;
case 8000: u = 4; break;
case 16000: u = 5; break;
case 22050: u = 6; break;
case 24000: u = 7; break;
case 32000: u = 8; break;
case 44100: u = 9; break;
case 48000: u = 10; break;
case 96000: u = 11; break;
default:
if(header->sample_rate <= 255000 && header->sample_rate % 1000 == 0)
sample_rate_hint = u = 12;
else if(header->sample_rate % 10 == 0)
sample_rate_hint = u = 14;
else if(header->sample_rate <= 0xffff)
sample_rate_hint = u = 13;
else
u = 0;
break;
}
if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_SAMPLE_RATE_LEN))
return false;
FLAC__ASSERT(header->channels > 0 && header->channels <= (1u << FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN) && header->channels <= FLAC__MAX_CHANNELS);
switch(header->channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
u = header->channels - 1;
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
FLAC__ASSERT(header->channels == 2);
u = 8;
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
FLAC__ASSERT(header->channels == 2);
u = 9;
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
FLAC__ASSERT(header->channels == 2);
u = 10;
break;
default:
FLAC__ASSERT(0);
}
if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_CHANNEL_ASSIGNMENT_LEN))
return false;
FLAC__ASSERT(header->bits_per_sample > 0 && header->bits_per_sample <= (1u << FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN));
switch(header->bits_per_sample) {
case 8 : u = 1; break;
case 12: u = 2; break;
case 16: u = 4; break;
case 20: u = 5; break;
case 24: u = 6; break;
default: u = 0; break;
}
if(!FLAC__bitwriter_write_raw_uint32(bw, u, FLAC__FRAME_HEADER_BITS_PER_SAMPLE_LEN))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, 0, FLAC__FRAME_HEADER_ZERO_PAD_LEN))
return false;
if(header->number_type == FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER) {
if(!FLAC__bitwriter_write_utf8_uint32(bw, header->number.frame_number))
return false;
}
else {
if(!FLAC__bitwriter_write_utf8_uint64(bw, header->number.sample_number))
return false;
}
if(blocksize_hint)
if(!FLAC__bitwriter_write_raw_uint32(bw, header->blocksize-1, (blocksize_hint==6)? 8:16))
return false;
switch(sample_rate_hint) {
case 12:
if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate / 1000, 8))
return false;
break;
case 13:
if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate, 16))
return false;
break;
case 14:
if(!FLAC__bitwriter_write_raw_uint32(bw, header->sample_rate / 10, 16))
return false;
break;
}
/* write the CRC */
if(!FLAC__bitwriter_get_write_crc8(bw, &crc))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, crc, FLAC__FRAME_HEADER_CRC_LEN))
return false;
return true;
}
FLAC__bool FLAC__subframe_add_constant(const FLAC__Subframe_Constant *subframe, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw)
{
FLAC__bool ok;
ok =
FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_CONSTANT_BYTE_ALIGNED_MASK | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN) &&
(wasted_bits? FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1) : true) &&
FLAC__bitwriter_write_raw_int32(bw, subframe->value, subframe_bps)
;
return ok;
}
FLAC__bool FLAC__subframe_add_fixed(const FLAC__Subframe_Fixed *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw)
{
unsigned i;
if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_FIXED_BYTE_ALIGNED_MASK | (subframe->order<<1) | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN))
return false;
if(wasted_bits)
if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1))
return false;
for(i = 0; i < subframe->order; i++)
if(!FLAC__bitwriter_write_raw_int32(bw, subframe->warmup[i], subframe_bps))
return false;
if(!add_entropy_coding_method_(bw, &subframe->entropy_coding_method))
return false;
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2:
if(!add_residual_partitioned_rice_(
bw,
subframe->residual,
residual_samples,
subframe->order,
subframe->entropy_coding_method.data.partitioned_rice.contents->parameters,
subframe->entropy_coding_method.data.partitioned_rice.contents->raw_bits,
subframe->entropy_coding_method.data.partitioned_rice.order,
/*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2
))
return false;
break;
default:
FLAC__ASSERT(0);
}
return true;
}
FLAC__bool FLAC__subframe_add_lpc(const FLAC__Subframe_LPC *subframe, unsigned residual_samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw)
{
unsigned i;
if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_LPC_BYTE_ALIGNED_MASK | ((subframe->order-1)<<1) | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN))
return false;
if(wasted_bits)
if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1))
return false;
for(i = 0; i < subframe->order; i++)
if(!FLAC__bitwriter_write_raw_int32(bw, subframe->warmup[i], subframe_bps))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, subframe->qlp_coeff_precision-1, FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN))
return false;
if(!FLAC__bitwriter_write_raw_int32(bw, subframe->quantization_level, FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN))
return false;
for(i = 0; i < subframe->order; i++)
if(!FLAC__bitwriter_write_raw_int32(bw, subframe->qlp_coeff[i], subframe->qlp_coeff_precision))
return false;
if(!add_entropy_coding_method_(bw, &subframe->entropy_coding_method))
return false;
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2:
if(!add_residual_partitioned_rice_(
bw,
subframe->residual,
residual_samples,
subframe->order,
subframe->entropy_coding_method.data.partitioned_rice.contents->parameters,
subframe->entropy_coding_method.data.partitioned_rice.contents->raw_bits,
subframe->entropy_coding_method.data.partitioned_rice.order,
/*is_extended=*/subframe->entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2
))
return false;
break;
default:
FLAC__ASSERT(0);
}
return true;
}
FLAC__bool FLAC__subframe_add_verbatim(const FLAC__Subframe_Verbatim *subframe, unsigned samples, unsigned subframe_bps, unsigned wasted_bits, FLAC__BitWriter *bw)
{
unsigned i;
const FLAC__int32 *signal = subframe->data;
if(!FLAC__bitwriter_write_raw_uint32(bw, FLAC__SUBFRAME_TYPE_VERBATIM_BYTE_ALIGNED_MASK | (wasted_bits? 1:0), FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN))
return false;
if(wasted_bits)
if(!FLAC__bitwriter_write_unary_unsigned(bw, wasted_bits-1))
return false;
for(i = 0; i < samples; i++)
if(!FLAC__bitwriter_write_raw_int32(bw, signal[i], subframe_bps))
return false;
return true;
}
FLAC__bool add_entropy_coding_method_(FLAC__BitWriter *bw, const FLAC__EntropyCodingMethod *method)
{
if(!FLAC__bitwriter_write_raw_uint32(bw, method->type, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN))
return false;
switch(method->type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2:
if(!FLAC__bitwriter_write_raw_uint32(bw, method->data.partitioned_rice.order, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
return false;
break;
default:
FLAC__ASSERT(0);
}
return true;
}
FLAC__bool add_residual_partitioned_rice_(FLAC__BitWriter *bw, const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameters[], const unsigned raw_bits[], const unsigned partition_order, const FLAC__bool is_extended)
{
const unsigned plen = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
const unsigned pesc = is_extended? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
if(partition_order == 0) {
unsigned i;
if(raw_bits[0] == 0) {
if(!FLAC__bitwriter_write_raw_uint32(bw, rice_parameters[0], plen))
return false;
if(!FLAC__bitwriter_write_rice_signed_block(bw, residual, residual_samples, rice_parameters[0]))
return false;
}
else {
FLAC__ASSERT(rice_parameters[0] == 0);
if(!FLAC__bitwriter_write_raw_uint32(bw, pesc, plen))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, raw_bits[0], FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN))
return false;
for(i = 0; i < residual_samples; i++) {
if(!FLAC__bitwriter_write_raw_int32(bw, residual[i], raw_bits[0]))
return false;
}
}
return true;
}
else {
unsigned i, j, k = 0, k_last = 0;
unsigned partition_samples;
const unsigned default_partition_samples = (residual_samples+predictor_order) >> partition_order;
for(i = 0; i < (1u<<partition_order); i++) {
partition_samples = default_partition_samples;
if(i == 0)
partition_samples -= predictor_order;
k += partition_samples;
if(raw_bits[i] == 0) {
if(!FLAC__bitwriter_write_raw_uint32(bw, rice_parameters[i], plen))
return false;
if(!FLAC__bitwriter_write_rice_signed_block(bw, residual+k_last, k-k_last, rice_parameters[i]))
return false;
}
else {
if(!FLAC__bitwriter_write_raw_uint32(bw, pesc, plen))
return false;
if(!FLAC__bitwriter_write_raw_uint32(bw, raw_bits[i], FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN))
return false;
for(j = k_last; j < k; j++) {
if(!FLAC__bitwriter_write_raw_int32(bw, residual[j], raw_bits[i]))
return false;
}
}
k_last = k;
}
return true;
}
}

View File

@ -1,158 +0,0 @@
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
#include "private/stream_encoder.h"
#ifdef FLAC__SSE2_SUPPORTED
#include <stdlib.h> /* for abs() */
#include <emmintrin.h> /* SSE2 */
#include "FLAC/assert.h"
FLAC__SSE_TARGET("sse2")
void FLAC__precompute_partition_info_sums_intrin_sse2(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[],
unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order, unsigned bps)
{
const unsigned default_partition_samples = (residual_samples + predictor_order) >> max_partition_order;
unsigned partitions = 1u << max_partition_order;
FLAC__ASSERT(default_partition_samples > predictor_order);
/* first do max_partition_order */
{
unsigned partition, residual_sample, end = (unsigned)(-(int)predictor_order);
unsigned e1, e3;
__m128i mm_res, mm_sum, mm_mask;
if(bps <= 16) {
for(partition = residual_sample = 0; partition < partitions; partition++) {
end += default_partition_samples;
mm_sum = _mm_setzero_si128();
e1 = (residual_sample + 3) & ~3; e3 = end & ~3;
if(e1 > end)
e1 = end; /* try flac -l 1 -b 16 and you'll be here */
/* assumption: residual[] is properly aligned so (residual + e1) is properly aligned too and _mm_loadu_si128() is fast */
for( ; residual_sample < e1; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
for( ; residual_sample < e3; residual_sample+=4) {
mm_res = _mm_loadu_si128((const __m128i*)(residual+residual_sample));
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask);
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
for( ; residual_sample < end; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask);
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
mm_sum = _mm_add_epi32(mm_sum, _mm_srli_si128(mm_sum, 8));
mm_sum = _mm_add_epi32(mm_sum, _mm_srli_si128(mm_sum, 4));
abs_residual_partition_sums[partition] = _mm_cvtsi128_si32(mm_sum);
}
}
else { /* have to pessimistically use 64 bits for accumulator */
for(partition = residual_sample = 0; partition < partitions; partition++) {
end += default_partition_samples;
mm_sum = _mm_setzero_si128();
e1 = (residual_sample + 1) & ~1; e3 = end & ~1;
FLAC__ASSERT(e1 <= end);
for( ; residual_sample < e1; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]); /* 0 0 0 r0 */
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask); /* 0 0 0 |r0| == 00 |r0_64| */
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
for( ; residual_sample < e3; residual_sample+=2) {
mm_res = _mm_loadl_epi64((const __m128i*)(residual+residual_sample)); /* 0 0 r1 r0 */
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask); /* 0 0 |r1| |r0| */
mm_res = _mm_shuffle_epi32(mm_res, _MM_SHUFFLE(3,1,2,0)); /* 0 |r1| 0 |r0| == |r1_64| |r0_64| */
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
for( ; residual_sample < end; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_mask = _mm_srai_epi32(mm_res, 31);
mm_res = _mm_xor_si128(mm_res, mm_mask);
mm_res = _mm_sub_epi32(mm_res, mm_mask);
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
mm_sum = _mm_add_epi64(mm_sum, _mm_srli_si128(mm_sum, 8));
_mm_storel_epi64((__m128i*)(abs_residual_partition_sums+partition), mm_sum);
}
}
}
/* now merge partitions for lower orders */
{
unsigned from_partition = 0, to_partition = partitions;
int partition_order;
for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) {
unsigned i;
partitions >>= 1;
for(i = 0; i < partitions; i++) {
abs_residual_partition_sums[to_partition++] =
abs_residual_partition_sums[from_partition ] +
abs_residual_partition_sums[from_partition+1];
from_partition += 2;
}
}
}
}
#endif /* FLAC__SSE2_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */

View File

@ -1,146 +0,0 @@
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2013 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
#include "private/stream_encoder.h"
#ifdef FLAC__SSSE3_SUPPORTED
#include <stdlib.h> /* for abs() */
#include <tmmintrin.h> /* SSSE3 */
#include "FLAC/assert.h"
FLAC__SSE_TARGET("ssse3")
void FLAC__precompute_partition_info_sums_intrin_ssse3(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[],
unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order, unsigned bps)
{
const unsigned default_partition_samples = (residual_samples + predictor_order) >> max_partition_order;
unsigned partitions = 1u << max_partition_order;
FLAC__ASSERT(default_partition_samples > predictor_order);
/* first do max_partition_order */
{
unsigned partition, residual_sample, end = (unsigned)(-(int)predictor_order);
unsigned e1, e3;
__m128i mm_res, mm_sum;
if(bps <= 16) {
for(partition = residual_sample = 0; partition < partitions; partition++) {
end += default_partition_samples;
mm_sum = _mm_setzero_si128();
e1 = (residual_sample + 3) & ~3; e3 = end & ~3;
if(e1 > end)
e1 = end; /* try flac -l 1 -b 16 and you'll be here */
/* assumption: residual[] is properly aligned so (residual + e1) is properly aligned too and _mm_loadu_si128() is fast */
for( ; residual_sample < e1; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_res = _mm_abs_epi32(mm_res); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
for( ; residual_sample < e3; residual_sample+=4) {
mm_res = _mm_loadu_si128((const __m128i*)(residual+residual_sample));
mm_res = _mm_abs_epi32(mm_res);
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
for( ; residual_sample < end; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_res = _mm_abs_epi32(mm_res);
mm_sum = _mm_add_epi32(mm_sum, mm_res);
}
mm_sum = _mm_hadd_epi32(mm_sum, mm_sum);
mm_sum = _mm_hadd_epi32(mm_sum, mm_sum);
abs_residual_partition_sums[partition] = _mm_cvtsi128_si32(mm_sum);
}
}
else { /* have to pessimistically use 64 bits for accumulator */
for(partition = residual_sample = 0; partition < partitions; partition++) {
end += default_partition_samples;
mm_sum = _mm_setzero_si128();
e1 = (residual_sample + 1) & ~1; e3 = end & ~1;
FLAC__ASSERT(e1 <= end);
for( ; residual_sample < e1; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]); /* 0 0 0 r0 */
mm_res = _mm_abs_epi32(mm_res); /* 0 0 0 |r0| == 00 |r0_64| */
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
for( ; residual_sample < e3; residual_sample+=2) {
mm_res = _mm_loadl_epi64((const __m128i*)(residual+residual_sample)); /* 0 0 r1 r0 */
mm_res = _mm_abs_epi32(mm_res); /* 0 0 |r1| |r0| */
mm_res = _mm_shuffle_epi32(mm_res, _MM_SHUFFLE(3,1,2,0)); /* 0 |r1| 0 |r0| == |r1_64| |r0_64| */
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
for( ; residual_sample < end; residual_sample++) {
mm_res = _mm_cvtsi32_si128(residual[residual_sample]);
mm_res = _mm_abs_epi32(mm_res);
mm_sum = _mm_add_epi64(mm_sum, mm_res);
}
mm_sum = _mm_add_epi64(mm_sum, _mm_srli_si128(mm_sum, 8));
_mm_storel_epi64((__m128i*)(abs_residual_partition_sums+partition), mm_sum);
}
}
}
/* now merge partitions for lower orders */
{
unsigned from_partition = 0, to_partition = partitions;
int partition_order;
for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) {
unsigned i;
partitions >>= 1;
for(i = 0; i < partitions; i++) {
abs_residual_partition_sums[to_partition++] =
abs_residual_partition_sums[from_partition ] +
abs_residual_partition_sums[from_partition+1];
from_partition += 2;
}
}
}
}
#endif /* FLAC__SSSE3_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */