nestopia/source/nes_ntsc/nes_ntsc_impl.h
2019-08-31 21:22:49 -05:00

440 lines
12 KiB
C

/* nes_ntsc 0.2.2. http://www.slack.net/~ant/ */
/* Common implementation of NTSC filters */
#include <assert.h>
#include <math.h>
/* Copyright (C) 2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#define DISABLE_CORRECTION 0
#undef PI
#define PI 3.14159265358979323846f
#ifndef LUMA_CUTOFF
#define LUMA_CUTOFF 0.20
#endif
#ifndef gamma_size
#define gamma_size 1
#endif
#ifndef rgb_bits
#define rgb_bits 8
#endif
#ifndef artifacts_max
#define artifacts_max (artifacts_mid * 1.5f)
#endif
#ifndef fringing_max
#define fringing_max (fringing_mid * 2)
#endif
#ifndef STD_HUE_CONDITION
#define STD_HUE_CONDITION( setup ) 1
#endif
#define ext_decoder_hue (std_decoder_hue + 15)
#define rgb_unit (1 << rgb_bits)
#define rgb_offset (rgb_unit * 2 + 0.5f)
enum { burst_size = nes_ntsc_entry_size / burst_count };
enum { kernel_half = 16 };
enum { kernel_size = kernel_half * 2 + 1 };
typedef struct init_t
{
float to_rgb [burst_count * 6];
float to_float [gamma_size];
float contrast;
float brightness;
float artifacts;
float fringing;
float kernel [rescale_out * kernel_size * 2];
} init_t;
#define ROTATE_IQ( i, q, sin_b, cos_b ) {\
float t;\
t = i * cos_b - q * sin_b;\
q = i * sin_b + q * cos_b;\
i = t;\
}
static void init_filters( init_t* impl, nes_ntsc_setup_t const* setup )
{
#if rescale_out > 1
float kernels [kernel_size * 2];
#else
float* const kernels = impl->kernel;
#endif
/* generate luma (y) filter using sinc kernel */
{
/* sinc with rolloff (dsf) */
float const rolloff = 1 + (float) setup->sharpness * (float) 0.032;
float const maxh = 32;
float const pow_a_n = (float) pow( rolloff, maxh );
float sum;
int i;
/* quadratic mapping to reduce negative (blurring) range */
float to_angle = (float) setup->resolution + 1;
to_angle = PI / maxh * (float) LUMA_CUTOFF * (to_angle * to_angle + 1);
kernels [kernel_size * 3 / 2] = maxh; /* default center value */
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
int x = i - kernel_half;
float angle = x * to_angle;
/* instability occurs at center point with rolloff very close to 1.0 */
if ( x || pow_a_n > (float) 1.056 || pow_a_n < (float) 0.981 )
{
float rolloff_cos_a = rolloff * (float) cos( angle );
float num = 1 - rolloff_cos_a -
pow_a_n * (float) cos( maxh * angle ) +
pow_a_n * rolloff * (float) cos( (maxh - 1) * angle );
float den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
float dsf = num / den;
kernels [kernel_size * 3 / 2 - kernel_half + i] = dsf - (float) 0.5;
}
}
/* apply blackman window and find sum */
sum = 0;
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
float x = PI * 2 / (kernel_half * 2) * i;
float blackman = 0.42f - 0.5f * (float) cos( x ) + 0.08f * (float) cos( x * 2 );
sum += (kernels [kernel_size * 3 / 2 - kernel_half + i] *= blackman);
}
/* normalize kernel */
sum = 1.0f / sum;
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
int x = kernel_size * 3 / 2 - kernel_half + i;
kernels [x] *= sum;
assert( kernels [x] == kernels [x] ); /* catch numerical instability */
}
}
/* generate chroma (iq) filter using gaussian kernel */
{
float const cutoff_factor = -0.03125f;
float cutoff = (float) setup->bleed;
int i;
if ( cutoff < 0 )
{
/* keep extreme value accessible only near upper end of scale (1.0) */
cutoff *= cutoff;
cutoff *= cutoff;
cutoff *= cutoff;
cutoff *= -30.0f / 0.65f;
}
cutoff = cutoff_factor - 0.65f * cutoff_factor * cutoff;
for ( i = -kernel_half; i <= kernel_half; i++ )
kernels [kernel_size / 2 + i] = (float) exp( i * i * cutoff );
/* normalize even and odd phases separately */
for ( i = 0; i < 2; i++ )
{
float sum = 0;
int x;
for ( x = i; x < kernel_size; x += 2 )
sum += kernels [x];
sum = 1.0f / sum;
for ( x = i; x < kernel_size; x += 2 )
{
kernels [x] *= sum;
assert( kernels [x] == kernels [x] ); /* catch numerical instability */
}
}
}
/*
printf( "luma:\n" );
for ( i = kernel_size; i < kernel_size * 2; i++ )
printf( "%f\n", kernels [i] );
printf( "chroma:\n" );
for ( i = 0; i < kernel_size; i++ )
printf( "%f\n", kernels [i] );
*/
/* generate linear rescale kernels */
#if rescale_out > 1
{
float weight = 1.0f;
float* out = impl->kernel;
int n = rescale_out;
do
{
float remain = 0;
int i;
weight -= 1.0f / rescale_in;
for ( i = 0; i < kernel_size * 2; i++ )
{
float cur = kernels [i];
float m = cur * weight;
*out++ = m + remain;
remain = cur - m;
}
}
while ( --n );
}
#endif
}
static float const default_decoder [6] =
{ 0.956f, 0.621f, -0.272f, -0.647f, -1.105f, 1.702f };
static void init( init_t* impl, nes_ntsc_setup_t const* setup )
{
impl->brightness = (float) setup->brightness * (0.5f * rgb_unit) + rgb_offset;
impl->contrast = (float) setup->contrast * (0.5f * rgb_unit) + rgb_unit;
#ifdef default_palette_contrast
if ( !setup->palette )
impl->contrast *= default_palette_contrast;
#endif
impl->artifacts = (float) setup->artifacts;
if ( impl->artifacts > 0 )
impl->artifacts *= artifacts_max - artifacts_mid;
impl->artifacts = impl->artifacts * artifacts_mid + artifacts_mid;
impl->fringing = (float) setup->fringing;
if ( impl->fringing > 0 )
impl->fringing *= fringing_max - fringing_mid;
impl->fringing = impl->fringing * fringing_mid + fringing_mid;
init_filters( impl, setup );
/* generate gamma table */
if ( gamma_size > 1 )
{
float const to_float = 1.0f / (gamma_size - (gamma_size > 1));
float const gamma = 1.1333f - (float) setup->gamma * 0.5f;
/* match common PC's 2.2 gamma to TV's 2.65 gamma */
int i;
for ( i = 0; i < gamma_size; i++ )
impl->to_float [i] =
(float) pow( i * to_float, gamma ) * impl->contrast + impl->brightness;
}
/* setup decoder matricies */
{
float hue = (float) setup->hue * PI + PI / 180 * ext_decoder_hue;
float sat = (float) setup->saturation + 1;
float const* decoder = setup->decoder_matrix;
if ( !decoder )
{
decoder = default_decoder;
if ( STD_HUE_CONDITION( setup ) )
hue += PI / 180 * (std_decoder_hue - ext_decoder_hue);
}
{
float s = (float) sin( hue ) * sat;
float c = (float) cos( hue ) * sat;
float* out = impl->to_rgb;
int n;
n = burst_count;
do
{
float const* in = decoder;
int n = 3;
do
{
float i = *in++;
float q = *in++;
*out++ = i * c - q * s;
*out++ = i * s + q * c;
}
while ( --n );
if ( burst_count <= 1 )
break;
ROTATE_IQ( s, c, 0.866025f, -0.5f ); /* +120 degrees */
}
while ( --n );
}
}
}
/* kernel generation */
#define RGB_TO_YIQ( r, g, b, y, i ) (\
(y = (r) * 0.299f + (g) * 0.587f + (b) * 0.114f),\
(i = (r) * 0.596f - (g) * 0.275f - (b) * 0.321f),\
((r) * 0.212f - (g) * 0.523f + (b) * 0.311f)\
)
#define YIQ_TO_RGB( y, i, q, to_rgb, type, r, g ) (\
r = (type) (y + to_rgb [0] * i + to_rgb [1] * q),\
g = (type) (y + to_rgb [2] * i + to_rgb [3] * q),\
(type) (y + to_rgb [4] * i + to_rgb [5] * q)\
)
#define PACK_RGB( r, g, b ) ((r) << 21 | (g) << 11 | (b) << 1)
enum { rgb_kernel_size = burst_size / alignment_count };
enum { rgb_bias = rgb_unit * 2 * nes_ntsc_rgb_builder };
typedef struct pixel_info_t
{
int offset;
float negate;
float kernel [4];
} pixel_info_t;
#if rescale_in > 1
#define PIXEL_OFFSET_( ntsc, scaled ) \
(kernel_size / 2 + ntsc + (scaled != 0) + (rescale_out - scaled) % rescale_out + \
(kernel_size * 2 * scaled))
#define PIXEL_OFFSET( ntsc, scaled ) \
PIXEL_OFFSET_( ((ntsc) - (scaled) / rescale_out * rescale_in),\
(((scaled) + rescale_out * 10) % rescale_out) ),\
(1.0f - (((ntsc) + 100) & 2))
#else
#define PIXEL_OFFSET( ntsc, scaled ) \
(kernel_size / 2 + (ntsc) - (scaled)),\
(1.0f - (((ntsc) + 100) & 2))
#endif
extern pixel_info_t const nes_ntsc_pixels [alignment_count];
/* Generate pixel at all burst phases and column alignments */
static void gen_kernel( init_t* impl, float y, float i, float q, nes_ntsc_rgb_t* out )
{
/* generate for each scanline burst phase */
float const* to_rgb = impl->to_rgb;
int burst_remain = burst_count;
y -= rgb_offset;
do
{
/* Encode yiq into *two* composite signals (to allow control over artifacting).
Convolve these with kernels which: filter respective components, apply
sharpening, and rescale horizontally. Convert resulting yiq to rgb and pack
into integer. Based on algorithm by NewRisingSun. */
pixel_info_t const* pixel = nes_ntsc_pixels;
int alignment_remain = alignment_count;
do
{
/* negate is -1 when composite starts at odd multiple of 2 */
float const yy = y * impl->fringing * pixel->negate;
float const ic0 = (i + yy) * pixel->kernel [0];
float const qc1 = (q + yy) * pixel->kernel [1];
float const ic2 = (i - yy) * pixel->kernel [2];
float const qc3 = (q - yy) * pixel->kernel [3];
float const factor = impl->artifacts * pixel->negate;
float const ii = i * factor;
float const yc0 = (y + ii) * pixel->kernel [0];
float const yc2 = (y - ii) * pixel->kernel [2];
float const qq = q * factor;
float const yc1 = (y + qq) * pixel->kernel [1];
float const yc3 = (y - qq) * pixel->kernel [3];
float const* k = &impl->kernel [pixel->offset];
int n;
++pixel;
for ( n = rgb_kernel_size; n; --n )
{
float i = k[0]*ic0 + k[2]*ic2;
float q = k[1]*qc1 + k[3]*qc3;
float y = k[kernel_size+0]*yc0 + k[kernel_size+1]*yc1 +
k[kernel_size+2]*yc2 + k[kernel_size+3]*yc3 + rgb_offset;
if ( rescale_out <= 1 )
k--;
else if ( k < &impl->kernel [kernel_size * 2 * (rescale_out - 1)] )
k += kernel_size * 2 - 1;
else
k -= kernel_size * 2 * (rescale_out - 1) + 2;
{
int r, g, b = YIQ_TO_RGB( y, i, q, to_rgb, int, r, g );
*out++ = PACK_RGB( r, g, b ) - rgb_bias;
}
}
}
while ( alignment_count > 1 && --alignment_remain );
if ( burst_count <= 1 )
break;
to_rgb += 6;
ROTATE_IQ( i, q, -0.866025f, -0.5f ); /* -120 degrees */
}
while ( --burst_remain );
}
static void correct_errors( nes_ntsc_rgb_t color, nes_ntsc_rgb_t* out );
#if DISABLE_CORRECTION
#define CORRECT_ERROR( a ) { out [i] += rgb_bias; }
#define DISTRIBUTE_ERROR( a, b, c ) { out [i] += rgb_bias; }
#else
#define CORRECT_ERROR( a ) { out [a] += error; }
#define DISTRIBUTE_ERROR( a, b, c ) {\
nes_ntsc_rgb_t fourth = (error + 2 * nes_ntsc_rgb_builder) >> 2;\
fourth &= (rgb_bias >> 1) - nes_ntsc_rgb_builder;\
fourth -= rgb_bias >> 2;\
out [a] += fourth;\
out [b] += fourth;\
out [c] += fourth;\
out [i] += error - (fourth * 3);\
}
#endif
#define RGB_PALETTE_OUT( rgb, out_ )\
{\
unsigned char* out = (out_);\
nes_ntsc_rgb_t clamped = (rgb);\
NES_NTSC_CLAMP_( clamped, (8 - rgb_bits) );\
out [0] = (unsigned char) (clamped >> 21);\
out [1] = (unsigned char) (clamped >> 11);\
out [2] = (unsigned char) (clamped >> 1);\
}
/* blitter related */
#ifndef restrict
#if defined (__GNUC__)
#define restrict __restrict__
#elif defined (_MSC_VER) && _MSC_VER > 1300
#define restrict __restrict
#else
/* no support for restricted pointers */
#define restrict
#endif
#endif
#include <limits.h>
#if NES_NTSC_OUT_DEPTH <= 16
#if USHRT_MAX == 0xFFFF
typedef unsigned short nes_ntsc_out_t;
#else
#error "Need 16-bit int type"
#endif
#else
#if UINT_MAX == 0xFFFFFFFF
typedef unsigned int nes_ntsc_out_t;
#elif ULONG_MAX == 0xFFFFFFFF
typedef unsigned long nes_ntsc_out_t;
#else
#error "Need 32-bit int type"
#endif
#endif