GregMiscellaneous: zzogl-pg: Mega clean of zerogsmath.h (1000 lines to 80...) which is good because the file does not have a clear copyright status.

It remains mostly trivial things and basic vector operations.


git-svn-id: http://pcsx2.googlecode.com/svn/branches/GregMiscellaneous@3774 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
gregory.hainaut@gmail.com 2010-09-15 21:57:24 +00:00
parent a51455656a
commit 16a86bef44

View File

@ -17,31 +17,7 @@
#include <math.h>
#include <assert.h>
#ifndef PI
#define PI ((dReal)3.141592654)
#endif
#define rswap(x, y) *(int*)&(x) ^= *(int*)&(y) ^= *(int*)&(x) ^= *(int*)&(y);
template <class T> inline T RAD_2_DEG(T radians) { return (radians * (T)57.29577951); }
class Transform;
class TransformMatrix;
typedef float dReal;
typedef dReal dMatrix3[3*4];
inline dReal* normalize3(dReal* pfout, const dReal* pf);
inline dReal* normalize4(dReal* pfout, const dReal* pf);
inline dReal* cross3(dReal* pfout, const dReal* pf1, const dReal* pf2);
// multiplies 3x3 matrices
inline dReal* mult3(dReal* pfres, const dReal* pf1, const dReal* pf2);
inline double* mult3(double* pfres, const double* pf1, const double* pf2);
inline dReal* inv3(const dReal* pf, dReal* pfres, int stride);
inline dReal* inv4(const dReal* pf, dReal* pfres);
// class used for 3 and 4 dim vectors and quaternions
// It is better to use this for a 3 dim vector because it is 16byte aligned and SIMD instructions can be used
@ -65,7 +41,6 @@ class Vector
// SCALAR FUNCTIONS
inline dReal dot(const Vector &v) const { return x*v.x + y*v.y + z*v.z + w*v.w; }
inline void normalize() { normalize4(&x, &x); }
inline void Set3(const float* pvals) { x = pvals[0]; y = pvals[1]; z = pvals[2]; }
inline void Set4(const float* pvals) { x = pvals[0]; y = pvals[1]; z = pvals[2]; w = pvals[3]; }
inline void SetColor(u32 color)
@ -77,9 +52,7 @@ class Vector
// 3 dim cross product, w is not touched
/// this = this x v
inline void Cross(const Vector &v) { cross3(&x, &x, v); }
/// this = u x v
inline void Cross(const Vector &u, const Vector &v) { cross3(&x, u, v); }
inline Vector operator-() const { Vector v; v.x = -x; v.y = -y; v.z = -z; v.w = -w; return v; }
inline Vector operator+(const Vector &r) const { Vector v; v.x = x + r.x; v.y = y + r.y; v.z = z + r.z; v.w = w + r.w; return v; }
inline Vector operator-(const Vector &r) const { Vector v; v.x = x - r.x; v.y = y - r.y; v.z = z - r.z; v.w = w - r.w; return v; }
@ -104,947 +77,4 @@ inline Vector operator*(float f, const Vector& left)
return v;
}
struct AABB
{
Vector pos, extents;
};
struct OBB
{
Vector right, up, dir, pos, extents;
};
struct TRIANGLE
{
TRIANGLE() {}
TRIANGLE(const Vector& v1, const Vector& v2, const Vector& v3) : v1(v1), v2(v2), v3(v3) {}
~TRIANGLE() {}
Vector v1, v2, v3; //!< the vertices of the triangle
const Vector& operator[](int i) const { return (&v1)[i]; }
Vector& operator[](int i) { return (&v1)[i]; }
/// assumes CCW ordering of vertices
inline Vector ComputeNormal()
{
Vector normal;
cross3(normal, v2 - v1, v3 - v1);
return normal;
}
};
// Routines made for 3D graphics that deal with 3 or 4 dim algebra structures
// Functions with postfix 3 are for 3x3 operations, etc
// all fns return pfout on success or NULL on failure
// results and arguments can share pointers
// multiplies 4x4 matrices
inline dReal* mult4(dReal* pfres, const dReal* pf1, const dReal* pf2);
inline double* mult4(double* pfres, const double* pf1, const double* pf2);
// pf1^T * pf2
inline dReal* multtrans3(dReal* pfres, const dReal* pf1, const dReal* pf2);
inline double* multtrans3(double* pfres, const double* pf1, const double* pf2);
inline dReal* multtrans4(dReal* pfres, const dReal* pf1, const dReal* pf2);
inline double* multtrans4(double* pfres, const double* pf1, const double* pf2);
inline dReal* transpose3(const dReal* pf, dReal* pfres);
inline double* transpose3(const double* pf, double* pfres);
inline dReal* transpose4(const dReal* pf, dReal* pfres);
inline double* transpose4(const double* pf, double* pfres);
inline dReal dot2(const dReal* pf1, const dReal* pf2);
inline dReal dot3(const dReal* pf1, const dReal* pf2);
inline dReal dot4(const dReal* pf1, const dReal* pf2);
inline dReal lengthsqr2(const dReal* pf);
inline dReal lengthsqr3(const dReal* pf);
inline dReal lengthsqr4(const dReal* pf);
inline dReal* normalize2(dReal* pfout, const dReal* pf);
inline dReal* normalize3(dReal* pfout, const dReal* pf);
inline dReal* normalize4(dReal* pfout, const dReal* pf);
////
// More complex ops that deal with arbitrary matrices //
////
// extract eigen values and vectors from a 2x2 matrix and returns true if all values are real
// returned eigen vectors are normalized
inline bool eig2(const dReal* pfmat, dReal* peigs, dReal& fv1x, dReal& fv1y, dReal& fv2x, dReal& fv2y);
// Simple routines for linear algebra algorithms //
int CubicRoots(double c0, double c1, double c2, double *r0, double *r1, double *r2);
bool QLAlgorithm3(dReal* m_aafEntry, dReal* afDiag, dReal* afSubDiag);
void EigenSymmetric3(dReal* fCovariance, dReal* eval, dReal* fAxes);
void GetCovarBasisVectors(dReal fCovariance[3][3], Vector* vRight, Vector* vUp, Vector* vDir);
// first root returned is always >= second, roots are defined if the quadratic doesn't have real solutions
void QuadraticSolver(dReal* pfQuadratic, dReal* pfRoots);
int insideQuadrilateral(const Vector* p0, const Vector* p1, const Vector* p2, const Vector* p3);
int insideTriangle(const Vector* p0, const Vector* p1, const Vector* p2);
// multiplies a matrix by a scalar
template <class T> inline void mult(T* pf, T fa, int r);
// multiplies a r1xc1 by c1xc2 matrix into pfres, if badd is true adds the result to pfres
// does not handle cases where pfres is equal to pf1 or pf2, use multtox for those cases
template <class T, class S, class R>
inline T* mult(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd = false);
// pf1 is transposed before mult
// rows of pf2 must equal rows of pf1
// pfres will be c1xc2 matrix
template <class T, class S, class R>
inline T* multtrans(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd = false);
// pf2 is transposed before mult
// the columns of both matrices must be the same and equal to c1
// r2 is the number of rows in pf2
// pfres must be an r1xr2 matrix
template <class T, class S, class R>
inline T* multtrans_to2(T* pf1, R* pf2, int r1, int c1, int r2, S* pfres, bool badd = false);
// multiplies rxc matrix pf1 and cxc matrix pf2 and stores the result in pf1,
// the function needs a temporary buffer the size of c doubles, if pftemp == NULL,
// the function will allocate the necessary memory, otherwise pftemp should be big
// enough to store all the entries
template <class T> inline T* multto1(T* pf1, T* pf2, int r1, int c1, T* pftemp = NULL);
// same as multto1 except stores the result in pf2, pf1 has to be an r2xr2 matrix
// pftemp must be of size r2 if not NULL
template <class T, class S> inline T* multto2(T* pf1, S* pf2, int r2, int c2, S* pftemp = NULL);
// add pf1 + pf2 and store in pf1
template <class T> inline void sub(T* pf1, T* pf2, int r);
template <class T> inline T normsqr(T* pf1, int r);
template <class T> inline T lengthsqr(T* pf1, T* pf2, int length);
template <class T> inline T dot(T* pf1, T* pf2, int length);
template <class T> inline T sum(T* pf, int length);
// takes the inverse of the 3x3 matrix pf and stores it into pfres, returns true if matrix is invertible
template <class T> inline bool inv2(T* pf, T* pfres);
///////////////////////
// Function Definitions
///////////////////////
bool eig2(const dReal* pfmat, dReal* peigs, dReal& fv1x, dReal& fv1y, dReal& fv2x, dReal& fv2y)
{
// x^2 + bx + c
dReal a, b, c, d;
b = -(pfmat[0] + pfmat[3]);
c = pfmat[0] * pfmat[3] - pfmat[1] * pfmat[2];
d = b * b - 4.0f * c + 1e-16f;
if (d < 0) return false;
if (d < 1e-16f)
{
a = -0.5f * b;
peigs[0] = a;
peigs[1] = a;
fv1x = pfmat[1];
fv1y = a - pfmat[0];
c = 1 / sqrtf(fv1x * fv1x + fv1y * fv1y);
fv1x *= c;
fv1y *= c;
fv2x = -fv1y;
fv2y = fv1x;
return true;
}
// two roots
d = sqrtf(d);
a = -0.5f * (b + d);
peigs[0] = a;
fv1x = pfmat[1];
fv1y = a - pfmat[0];
c = 1 / sqrtf(fv1x * fv1x + fv1y * fv1y);
fv1x *= c;
fv1y *= c;
a += d;
peigs[1] = a;
fv2x = pfmat[1];
fv2y = a - pfmat[0];
c = 1 / sqrtf(fv2x * fv2x + fv2y * fv2y);
fv2x *= c;
fv2y *= c;
return true;
}
//#ifndef TI_USING_IPP
// Functions that are replacable by ipp library funcs
template <class T> inline T* _mult3(T* pfres, const T* pf1, const T* pf2)
{
assert(pf1 != NULL && pf2 != NULL && pfres != NULL);
T* pfres2;
if (pfres == pf1 || pfres == pf2)
pfres2 = (T*)alloca(9 * sizeof(T));
else
pfres2 = pfres;
pfres2[0*4+0] = pf1[0*4+0] * pf2[0*4+0] + pf1[0*4+1] * pf2[1*4+0] + pf1[0*4+2] * pf2[2*4+0];
pfres2[0*4+1] = pf1[0*4+0] * pf2[0*4+1] + pf1[0*4+1] * pf2[1*4+1] + pf1[0*4+2] * pf2[2*4+1];
pfres2[0*4+2] = pf1[0*4+0] * pf2[0*4+2] + pf1[0*4+1] * pf2[1*4+2] + pf1[0*4+2] * pf2[2*4+2];
pfres2[1*4+0] = pf1[1*4+0] * pf2[0*4+0] + pf1[1*4+1] * pf2[1*4+0] + pf1[1*4+2] * pf2[2*4+0];
pfres2[1*4+1] = pf1[1*4+0] * pf2[0*4+1] + pf1[1*4+1] * pf2[1*4+1] + pf1[1*4+2] * pf2[2*4+1];
pfres2[1*4+2] = pf1[1*4+0] * pf2[0*4+2] + pf1[1*4+1] * pf2[1*4+2] + pf1[1*4+2] * pf2[2*4+2];
pfres2[2*4+0] = pf1[2*4+0] * pf2[0*4+0] + pf1[2*4+1] * pf2[1*4+0] + pf1[2*4+2] * pf2[2*4+0];
pfres2[2*4+1] = pf1[2*4+0] * pf2[0*4+1] + pf1[2*4+1] * pf2[1*4+1] + pf1[2*4+2] * pf2[2*4+1];
pfres2[2*4+2] = pf1[2*4+0] * pf2[0*4+2] + pf1[2*4+1] * pf2[1*4+2] + pf1[2*4+2] * pf2[2*4+2];
if (pfres2 != pfres) memcpy(pfres, pfres2, 9*sizeof(T));
return pfres;
}
inline dReal* mult3(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _mult3<dReal>(pfres, pf1, pf2); }
inline double* mult3(double* pfres, const double* pf1, const double* pf2) { return _mult3<double>(pfres, pf1, pf2); }
template <class T>
inline T* _mult4(T* pfres, const T* p1, const T* p2)
{
assert(pfres != NULL && p1 != NULL && p2 != NULL);
T* pfres2;
if (pfres == p1 || pfres == p2)
pfres2 = (T*)alloca(16 * sizeof(T));
else
pfres2 = pfres;
pfres2[0*4+0] = p1[0*4+0] * p2[0*4+0] + p1[0*4+1] * p2[1*4+0] + p1[0*4+2] * p2[2*4+0] + p1[0*4+3] * p2[3*4+0];
pfres2[0*4+1] = p1[0*4+0] * p2[0*4+1] + p1[0*4+1] * p2[1*4+1] + p1[0*4+2] * p2[2*4+1] + p1[0*4+3] * p2[3*4+1];
pfres2[0*4+2] = p1[0*4+0] * p2[0*4+2] + p1[0*4+1] * p2[1*4+2] + p1[0*4+2] * p2[2*4+2] + p1[0*4+3] * p2[3*4+2];
pfres2[0*4+3] = p1[0*4+0] * p2[0*4+3] + p1[0*4+1] * p2[1*4+3] + p1[0*4+2] * p2[2*4+3] + p1[0*4+3] * p2[3*4+3];
pfres2[1*4+0] = p1[1*4+0] * p2[0*4+0] + p1[1*4+1] * p2[1*4+0] + p1[1*4+2] * p2[2*4+0] + p1[1*4+3] * p2[3*4+0];
pfres2[1*4+1] = p1[1*4+0] * p2[0*4+1] + p1[1*4+1] * p2[1*4+1] + p1[1*4+2] * p2[2*4+1] + p1[1*4+3] * p2[3*4+1];
pfres2[1*4+2] = p1[1*4+0] * p2[0*4+2] + p1[1*4+1] * p2[1*4+2] + p1[1*4+2] * p2[2*4+2] + p1[1*4+3] * p2[3*4+2];
pfres2[1*4+3] = p1[1*4+0] * p2[0*4+3] + p1[1*4+1] * p2[1*4+3] + p1[1*4+2] * p2[2*4+3] + p1[1*4+3] * p2[3*4+3];
pfres2[2*4+0] = p1[2*4+0] * p2[0*4+0] + p1[2*4+1] * p2[1*4+0] + p1[2*4+2] * p2[2*4+0] + p1[2*4+3] * p2[3*4+0];
pfres2[2*4+1] = p1[2*4+0] * p2[0*4+1] + p1[2*4+1] * p2[1*4+1] + p1[2*4+2] * p2[2*4+1] + p1[2*4+3] * p2[3*4+1];
pfres2[2*4+2] = p1[2*4+0] * p2[0*4+2] + p1[2*4+1] * p2[1*4+2] + p1[2*4+2] * p2[2*4+2] + p1[2*4+3] * p2[3*4+2];
pfres2[2*4+3] = p1[2*4+0] * p2[0*4+3] + p1[2*4+1] * p2[1*4+3] + p1[2*4+2] * p2[2*4+3] + p1[2*4+3] * p2[3*4+3];
pfres2[3*4+0] = p1[3*4+0] * p2[0*4+0] + p1[3*4+1] * p2[1*4+0] + p1[3*4+2] * p2[2*4+0] + p1[3*4+3] * p2[3*4+0];
pfres2[3*4+1] = p1[3*4+0] * p2[0*4+1] + p1[3*4+1] * p2[1*4+1] + p1[3*4+2] * p2[2*4+1] + p1[3*4+3] * p2[3*4+1];
pfres2[3*4+2] = p1[3*4+0] * p2[0*4+2] + p1[3*4+1] * p2[1*4+2] + p1[3*4+2] * p2[2*4+2] + p1[3*4+3] * p2[3*4+2];
pfres2[3*4+3] = p1[3*4+0] * p2[0*4+3] + p1[3*4+1] * p2[1*4+3] + p1[3*4+2] * p2[2*4+3] + p1[3*4+3] * p2[3*4+3];
if (pfres != pfres2) memcpy(pfres, pfres2, sizeof(T)*16);
return pfres;
}
inline dReal* mult4(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _mult4<dReal>(pfres, pf1, pf2); }
inline double* mult4(double* pfres, const double* pf1, const double* pf2) { return _mult4<double>(pfres, pf1, pf2); }
template <class T>
inline T* _multtrans3(T* pfres, const T* pf1, const T* pf2)
{
T* pfres2;
if (pfres == pf1)
pfres2 = (T*)alloca(9 * sizeof(T));
else
pfres2 = pfres;
pfres2[0] = pf1[0] * pf2[0] + pf1[3] * pf2[3] + pf1[6] * pf2[6];
pfres2[1] = pf1[0] * pf2[1] + pf1[3] * pf2[4] + pf1[6] * pf2[7];
pfres2[2] = pf1[0] * pf2[2] + pf1[3] * pf2[5] + pf1[6] * pf2[8];
pfres2[3] = pf1[1] * pf2[0] + pf1[4] * pf2[3] + pf1[7] * pf2[6];
pfres2[4] = pf1[1] * pf2[1] + pf1[4] * pf2[4] + pf1[7] * pf2[7];
pfres2[5] = pf1[1] * pf2[2] + pf1[4] * pf2[5] + pf1[7] * pf2[8];
pfres2[6] = pf1[2] * pf2[0] + pf1[5] * pf2[3] + pf1[8] * pf2[6];
pfres2[7] = pf1[2] * pf2[1] + pf1[5] * pf2[4] + pf1[8] * pf2[7];
pfres2[8] = pf1[2] * pf2[2] + pf1[5] * pf2[5] + pf1[8] * pf2[8];
if (pfres2 != pfres) memcpy(pfres, pfres2, 9*sizeof(T));
return pfres;
}
template <class T>
inline T* _multtrans4(T* pfres, const T* pf1, const T* pf2)
{
T* pfres2;
if (pfres == pf1)
pfres2 = (T*)alloca(16 * sizeof(T));
else
pfres2 = pfres;
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
pfres[4*i+j] = pf1[i] * pf2[j] + pf1[i+4] * pf2[j+4] + pf1[i+8] * pf2[j+8] + pf1[i+12] * pf2[j+12];
}
}
return pfres;
}
inline dReal* multtrans3(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _multtrans3<dReal>(pfres, pf1, pf2); }
inline double* multtrans3(double* pfres, const double* pf1, const double* pf2) { return _multtrans3<double>(pfres, pf1, pf2); }
inline dReal* multtrans4(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _multtrans4<dReal>(pfres, pf1, pf2); }
inline double* multtrans4(double* pfres, const double* pf1, const double* pf2) { return _multtrans4<double>(pfres, pf1, pf2); }
// stride is in T
template <class T> inline T* _inv3(const T* pf, T* pfres, int stride)
{
T* pfres2;
if (pfres == pf)
pfres2 = (T*)alloca(3 * stride * sizeof(T));
else
pfres2 = pfres;
// inverse = C^t / det(pf) where C is the matrix of coefficients
// calc C^t
pfres2[0*stride + 0] = pf[1*stride + 1] * pf[2*stride + 2] - pf[1*stride + 2] * pf[2*stride + 1];
pfres2[0*stride + 1] = pf[0*stride + 2] * pf[2*stride + 1] - pf[0*stride + 1] * pf[2*stride + 2];
pfres2[0*stride + 2] = pf[0*stride + 1] * pf[1*stride + 2] - pf[0*stride + 2] * pf[1*stride + 1];
pfres2[1*stride + 0] = pf[1*stride + 2] * pf[2*stride + 0] - pf[1*stride + 0] * pf[2*stride + 2];
pfres2[1*stride + 1] = pf[0*stride + 0] * pf[2*stride + 2] - pf[0*stride + 2] * pf[2*stride + 0];
pfres2[1*stride + 2] = pf[0*stride + 2] * pf[1*stride + 0] - pf[0*stride + 0] * pf[1*stride + 2];
pfres2[2*stride + 0] = pf[1*stride + 0] * pf[2*stride + 1] - pf[1*stride + 1] * pf[2*stride + 0];
pfres2[2*stride + 1] = pf[0*stride + 1] * pf[2*stride + 0] - pf[0*stride + 0] * pf[2*stride + 1];
pfres2[2*stride + 2] = pf[0*stride + 0] * pf[1*stride + 1] - pf[0*stride + 1] * pf[1*stride + 0];
T fdet = pf[0*stride + 2] * pfres2[2*stride + 0] + pf[1*stride + 2] * pfres2[2*stride + 1] +
pf[2*stride + 2] * pfres2[2*stride + 2];
if (fabs(fdet) < 1e-6) return NULL;
fdet = 1 / fdet;
//if( pfdet != NULL ) *pfdet = fdet;
if (pfres != pf)
{
pfres[0*stride+0] *= fdet;
pfres[0*stride+1] *= fdet;
pfres[0*stride+2] *= fdet;
pfres[1*stride+0] *= fdet;
pfres[1*stride+1] *= fdet;
pfres[1*stride+2] *= fdet;
pfres[2*stride+0] *= fdet;
pfres[2*stride+1] *= fdet;
pfres[2*stride+2] *= fdet;
return pfres;
}
pfres[0*stride+0] = pfres2[0*stride+0] * fdet;
pfres[0*stride+1] = pfres2[0*stride+1] * fdet;
pfres[0*stride+2] = pfres2[0*stride+2] * fdet;
pfres[1*stride+0] = pfres2[1*stride+0] * fdet;
pfres[1*stride+1] = pfres2[1*stride+1] * fdet;
pfres[1*stride+2] = pfres2[1*stride+2] * fdet;
pfres[2*stride+0] = pfres2[2*stride+0] * fdet;
pfres[2*stride+1] = pfres2[2*stride+1] * fdet;
pfres[2*stride+2] = pfres2[2*stride+2] * fdet;
return pfres;
}
inline dReal* inv3(const dReal* pf, dReal* pfres, int stride) { return _inv3<dReal>(pf, pfres, stride); }
// inverse if 92 mults and 39 adds
template <class T> inline T* _inv4(const T* pf, T* pfres)
{
T* pfres2;
if (pfres == pf)
pfres2 = (T*)alloca(16 * sizeof(T));
else
pfres2 = pfres;
// inverse = C^t / det(pf) where C is the matrix of coefficients
// calc C^t
// determinants of all possibel 2x2 submatrices formed by last two rows
T fd0, fd1, fd2;
T f1, f2, f3;
fd0 = pf[2*4 + 0] * pf[3*4 + 1] - pf[2*4 + 1] * pf[3*4 + 0];
fd1 = pf[2*4 + 1] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 1];
fd2 = pf[2*4 + 2] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 2];
f1 = pf[2*4 + 1] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 1];
f2 = pf[2*4 + 0] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 0];
f3 = pf[2*4 + 0] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 0];
pfres2[0*4 + 0] = pf[1*4 + 1] * fd2 - pf[1*4 + 2] * f1 + pf[1*4 + 3] * fd1;
pfres2[0*4 + 1] = -(pf[0*4 + 1] * fd2 - pf[0*4 + 2] * f1 + pf[0*4 + 3] * fd1);
pfres2[1*4 + 0] = -(pf[1*4 + 0] * fd2 - pf[1*4 + 2] * f2 + pf[1*4 + 3] * f3);
pfres2[1*4 + 1] = pf[0*4 + 0] * fd2 - pf[0*4 + 2] * f2 + pf[0*4 + 3] * f3;
pfres2[2*4 + 0] = pf[1*4 + 0] * f1 - pf[1*4 + 1] * f2 + pf[1*4 + 3] * fd0;
pfres2[2*4 + 1] = -(pf[0*4 + 0] * f1 - pf[0*4 + 1] * f2 + pf[0*4 + 3] * fd0);
pfres2[3*4 + 0] = -(pf[1*4 + 0] * fd1 - pf[1*4 + 1] * f3 + pf[1*4 + 2] * fd0);
pfres2[3*4 + 1] = pf[0*4 + 0] * fd1 - pf[0*4 + 1] * f3 + pf[0*4 + 2] * fd0;
// determinants of first 2 rows of 4x4 matrix
fd0 = pf[0*4 + 0] * pf[1*4 + 1] - pf[0*4 + 1] * pf[1*4 + 0];
fd1 = pf[0*4 + 1] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 1];
fd2 = pf[0*4 + 2] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 2];
f1 = pf[0*4 + 1] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 1];
f2 = pf[0*4 + 0] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 0];
f3 = pf[0*4 + 0] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 0];
pfres2[0*4 + 2] = pf[3*4 + 1] * fd2 - pf[3*4 + 2] * f1 + pf[3*4 + 3] * fd1;
pfres2[0*4 + 3] = -(pf[2*4 + 1] * fd2 - pf[2*4 + 2] * f1 + pf[2*4 + 3] * fd1);
pfres2[1*4 + 2] = -(pf[3*4 + 0] * fd2 - pf[3*4 + 2] * f2 + pf[3*4 + 3] * f3);
pfres2[1*4 + 3] = pf[2*4 + 0] * fd2 - pf[2*4 + 2] * f2 + pf[2*4 + 3] * f3;
pfres2[2*4 + 2] = pf[3*4 + 0] * f1 - pf[3*4 + 1] * f2 + pf[3*4 + 3] * fd0;
pfres2[2*4 + 3] = -(pf[2*4 + 0] * f1 - pf[2*4 + 1] * f2 + pf[2*4 + 3] * fd0);
pfres2[3*4 + 2] = -(pf[3*4 + 0] * fd1 - pf[3*4 + 1] * f3 + pf[3*4 + 2] * fd0);
pfres2[3*4 + 3] = pf[2*4 + 0] * fd1 - pf[2*4 + 1] * f3 + pf[2*4 + 2] * fd0;
T fdet = pf[0*4 + 3] * pfres2[3*4 + 0] + pf[1*4 + 3] * pfres2[3*4 + 1] +
pf[2*4 + 3] * pfres2[3*4 + 2] + pf[3*4 + 3] * pfres2[3*4 + 3];
if (fabs(fdet) < 1e-6) return NULL;
fdet = 1 / fdet;
//if( pfdet != NULL ) *pfdet = fdet;
if (pfres2 == pfres)
{
mult(pfres, fdet, 16);
return pfres;
}
int i = 0;
while (i < 16)
{
pfres[i] = pfres2[i] * fdet;
++i;
}
return pfres;
}
inline dReal* inv4(const dReal* pf, dReal* pfres) { return _inv4<dReal>(pf, pfres); }
template <class T> inline T* _transpose3(const T* pf, T* pfres)
{
assert(pf != NULL && pfres != NULL);
if (pf == pfres)
{
rswap(pfres[1], pfres[3]);
rswap(pfres[2], pfres[6]);
rswap(pfres[5], pfres[7]);
return pfres;
}
pfres[0] = pf[0];
pfres[1] = pf[3];
pfres[2] = pf[6];
pfres[3] = pf[1];
pfres[4] = pf[4];
pfres[5] = pf[7];
pfres[6] = pf[2];
pfres[7] = pf[5];
pfres[8] = pf[8];
return pfres;
}
inline dReal* transpose3(const dReal* pf, dReal* pfres) { return _transpose3(pf, pfres); }
inline double* transpose3(const double* pf, double* pfres) { return _transpose3(pf, pfres); }
template <class T> inline T* _transpose4(const T* pf, T* pfres)
{
assert(pf != NULL && pfres != NULL);
if (pf == pfres)
{
rswap(pfres[1], pfres[4]);
rswap(pfres[2], pfres[8]);
rswap(pfres[3], pfres[12]);
rswap(pfres[6], pfres[9]);
rswap(pfres[7], pfres[13]);
rswap(pfres[11], pfres[15]);
return pfres;
}
pfres[0] = pf[0];
pfres[1] = pf[4];
pfres[2] = pf[8];
pfres[3] = pf[12];
pfres[4] = pf[1];
pfres[5] = pf[5];
pfres[6] = pf[9];
pfres[7] = pf[13];
pfres[8] = pf[2];
pfres[9] = pf[6];
pfres[10] = pf[10];
pfres[11] = pf[14];
pfres[12] = pf[3];
pfres[13] = pf[7];
pfres[14] = pf[11];
pfres[15] = pf[15];
return pfres;
}
inline dReal* transpose4(const dReal* pf, dReal* pfres) { return _transpose4(pf, pfres); }
inline double* transpose4(const double* pf, double* pfres) { return _transpose4(pf, pfres); }
inline dReal dot2(const dReal* pf1, const dReal* pf2)
{
assert(pf1 != NULL && pf2 != NULL);
return pf1[0]*pf2[0] + pf1[1]*pf2[1];
}
inline dReal dot3(const dReal* pf1, const dReal* pf2)
{
assert(pf1 != NULL && pf2 != NULL);
return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2];
}
inline dReal dot4(const dReal* pf1, const dReal* pf2)
{
assert(pf1 != NULL && pf2 != NULL);
return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2] + pf1[3] * pf2[3];
}
inline dReal lengthsqr2(const dReal* pf)
{
assert(pf != NULL);
return pf[0] * pf[0] + pf[1] * pf[1];
}
inline dReal lengthsqr3(const dReal* pf)
{
assert(pf != NULL);
return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2];
}
inline dReal lengthsqr4(const dReal* pf)
{
assert(pf != NULL);
return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2] + pf[3] * pf[3];
}
inline dReal* normalize2(dReal* pfout, const dReal* pf)
{
assert(pf != NULL);
dReal f = pf[0] * pf[0] + pf[1] * pf[1];
f = 1.0f / sqrtf(f);
pfout[0] = pf[0] * f;
pfout[1] = pf[1] * f;
return pfout;
}
inline dReal* normalize3(dReal* pfout, const dReal* pf)
{
assert(pf != NULL);
dReal f = pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2];
f = 1.0f / sqrtf(f);
pfout[0] = pf[0] * f;
pfout[1] = pf[1] * f;
pfout[2] = pf[2] * f;
return pfout;
}
inline dReal* normalize4(dReal* pfout, const dReal* pf)
{
assert(pf != NULL);
dReal f = pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2] + pf[3] * pf[3];
f = 1.0f / sqrtf(f);
pfout[0] = pf[0] * f;
pfout[1] = pf[1] * f;
pfout[2] = pf[2] * f;
pfout[3] = pf[3] * f;
return pfout;
}
inline dReal* cross3(dReal* pfout, const dReal* pf1, const dReal* pf2)
{
assert(pfout != NULL && pf1 != NULL && pf2 != NULL);
dReal temp[3];
temp[0] = pf1[1] * pf2[2] - pf1[2] * pf2[1];
temp[1] = pf1[2] * pf2[0] - pf1[0] * pf2[2];
temp[2] = pf1[0] * pf2[1] - pf1[1] * pf2[0];
pfout[0] = temp[0];
pfout[1] = temp[1];
pfout[2] = temp[2];
return pfout;
}
template <class T> inline void mult(T* pf, T fa, int r)
{
assert(pf != NULL);
while (r > 0)
{
--r;
pf[r] *= fa;
}
}
template <class T, class S, class R>
inline T* mult(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd)
{
assert(pf1 != NULL && pf2 != NULL && pfres != NULL);
int j, k;
if (!badd) memset(pfres, 0, sizeof(S) * r1 * c2);
while (r1 > 0)
{
--r1;
j = 0;
while (j < c2)
{
k = 0;
while (k < c1)
{
pfres[j] += pf1[k] * pf2[k*c2 + j];
++k;
}
++j;
}
pf1 += c1;
pfres += c2;
}
return pfres;
}
template <class T, class S, class R>
inline T* multtrans(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd)
{
assert(pf1 != NULL && pf2 != NULL && pfres != NULL);
int i, j, k;
if (!badd) memset(pfres, 0, sizeof(S) * c1 * c2);
i = 0;
while (i < c1)
{
j = 0;
while (j < c2)
{
k = 0;
while (k < r1)
{
pfres[j] += pf1[k*c1] * pf2[k*c2 + j];
++k;
}
++j;
}
pfres += c2;
++pf1;
++i;
}
return pfres;
}
template <class T, class S, class R>
inline T* multtrans_to2(T* pf1, R* pf2, int r1, int c1, int r2, S* pfres, bool badd)
{
assert(pf1 != NULL && pf2 != NULL && pfres != NULL);
int j, k;
if (!badd) memset(pfres, 0, sizeof(S) * r1 * r2);
while (r1 > 0)
{
--r1;
j = 0;
while (j < r2)
{
k = 0;
while (k < c1)
{
pfres[j] += pf1[k] * pf2[j*c1 + k];
++k;
}
++j;
}
pf1 += c1;
pfres += r2;
}
return pfres;
}
template <class T> inline T* multto1(T* pf1, T* pf2, int r, int c, T* pftemp)
{
assert(pf1 != NULL && pf2 != NULL);
int j, k;
bool bdel = false;
if (pftemp == NULL)
{
pftemp = new T[c];
bdel = true;
}
while (r > 0)
{
--r;
j = 0;
while (j < c)
{
pftemp[j] = 0.0;
k = 0;
while (k < c)
{
pftemp[j] += pf1[k] * pf2[k*c + j];
++k;
}
++j;
}
memcpy(pf1, pftemp, c * sizeof(T));
pf1 += c;
}
if (bdel) delete[] pftemp;
return pf1;
}
template <class T, class S> inline T* multto2(T* pf1, S* pf2, int r2, int c2, S* pftemp)
{
assert(pf1 != NULL && pf2 != NULL);
int i, j, k;
bool bdel = false;
if (pftemp == NULL)
{
pftemp = new S[r2];
bdel = true;
}
// do columns first
j = 0;
while (j < c2)
{
i = 0;
while (i < r2)
{
pftemp[i] = 0.0;
k = 0;
while (k < r2)
{
pftemp[i] += pf1[i*r2 + k] * pf2[k*c2 + j];
++k;
}
++i;
}
i = 0;
while (i < r2)
{
*(pf2 + i*c2 + j) = pftemp[i];
++i;
}
++j;
}
if (bdel) delete[] pftemp;
return pf1;
}
template <class T> inline void add(T* pf1, T* pf2, int r)
{
assert(pf1 != NULL && pf2 != NULL);
while (r > 0)
{
--r;
pf1[r] += pf2[r];
}
}
template <class T> inline void sub(T* pf1, T* pf2, int r)
{
assert(pf1 != NULL && pf2 != NULL);
while (r > 0)
{
--r;
pf1[r] -= pf2[r];
}
}
template <class T> inline T normsqr(T* pf1, int r)
{
assert(pf1 != NULL);
T d = 0.0;
while (r > 0)
{
--r;
d += pf1[r] * pf1[r];
}
return d;
}
template <class T> inline T lengthsqr(T* pf1, T* pf2, int length)
{
T d = 0;
while (length > 0)
{
--length;
d += sqr(pf1[length] - pf2[length]);
}
return d;
}
template <class T> inline T dot(T* pf1, T* pf2, int length)
{
T d = 0;
while (length > 0)
{
--length;
d += pf1[length] * pf2[length];
}
return d;
}
template <class T> inline T sum(T* pf, int length)
{
T d = 0;
while (length > 0)
{
--length;
d += pf[length];
}
return d;
}
template <class T> inline bool inv2(T* pf, T* pfres)
{
T fdet = pf[0] * pf[3] - pf[1] * pf[2];
if (fabs(fdet) < 1e-16) return false;
fdet = 1 / fdet;
//if( pfdet != NULL ) *pfdet = fdet;
if (pfres != pf)
{
pfres[0] = fdet * pf[3];
pfres[1] = -fdet * pf[1];
pfres[2] = -fdet * pf[2];
pfres[3] = fdet * pf[0];
return true;
}
dReal ftemp = pf[0];
pfres[0] = pf[3] * fdet;
pfres[1] *= -fdet;
pfres[2] *= -fdet;
pfres[3] = ftemp * pf[0];
return true;
}
#endif