pcsx2/plugins/PeopsSPU2/dma.c
Jake.Stine 6ebfae8ef1 Re-Added eol-style:native properties to the repository. The settings got lost when we merged from Playground to Official.
Added interface.cpp (plugin/pcsx2 interface) and savestate.cpp to SPU2ghz, to help clean up SPU2.cpp.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@463 96395faa-99c1-11dd-bbfe-3dabce05a288
2009-02-09 21:15:56 +00:00

414 lines
12 KiB
C

/***************************************************************************
dma.c - description
-------------------
begin : Wed May 15 2002
copyright : (C) 2002 by Pete Bernert
email : BlackDove@addcom.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. See also the license.txt file for *
* additional informations. *
* *
***************************************************************************/
//*************************************************************************//
// History of changes:
//
// 2004/04/04 - Pete
// - changed plugin to emulate PS2 spu
//
// 2002/05/15 - Pete
// - generic cleanup for the Peops release
//
//*************************************************************************//
#include "stdafx.h"
#include "externals.h"
#include "registers.h"
#include "debug.h"
extern void (CALLBACK *irqCallbackDMA4)(); // func of main emu, called on spu irq
extern void (CALLBACK *irqCallbackDMA7)(); // func of main emu, called on spu irq
extern void (CALLBACK *irqCallbackSPU2)(); // func of main emu, called on spu irq
unsigned short interrupt;
extern unsigned long SPUCycles;
unsigned long SPUStartCycle[2];
unsigned long SPUTargetCycle[2];
unsigned long MemAddr[2];
ADMA Adma4;
ADMA Adma7;
////////////////////////////////////////////////////////////////////////
// READ DMA (many values)
////////////////////////////////////////////////////////////////////////
EXPORT_GCC void CALLBACK SPU2readDMA4Mem(unsigned short * pusPSXMem,int iSize)
{
int i;
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("READDMA4 %X - %X\r\n",spuAddr2[0],iSize);
if(spuAddr2[0]<=0x1fff)
logprintf("# OUTPUT AREA ACCESS #############\r\n");
}
#endif
for(i=0;i<iSize;i++)
{
*pusPSXMem++=spuMem[spuAddr2[0]]; // spu addr 0 got by writeregister
if(spuCtrl2[0]&0x40 && spuIrq2[0] == spuAddr2[0]){
regArea[0x7C0] |= 0x4;
regArea[PS2_IRQINFO] |= 0x4;
irqCallbackSPU2();
}
spuAddr2[0]++; // inc spu addr
MemAddr[0]+=2;
if(spuAddr2[0]>0xfffff) spuAddr2[0]=0; // wrap
}
spuAddr2[0]+=19; //Transfer Local To Host TSAH/L + Data Size + 20 (already +1'd)
iSpuAsyncWait=0;
// got from J.F. and Kanodin... is it needed?
spuStat2[0]&=~0x80; // DMA complete
//if(regArea[(PS2_C0_ADMAS)>>1] != 1) {
// if((regArea[(PS2_C0_ATTR)>>1] & 0x30)) {
SPUStartCycle[0] = SPUCycles;
SPUTargetCycle[0] = iSize;
interrupt |= (1<<1);
// }
//}
//regArea[(PS2_C0_ADMAS)>>1] = 0;
}
EXPORT_GCC void CALLBACK SPU2readDMA7Mem(unsigned short * pusPSXMem,int iSize)
{
int i;
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("READDMA7 %X - %X\r\n",spuAddr2[1],iSize);
if(spuAddr2[1]<=0x1fff)
logprintf("# OUTPUT AREA ACCESS #############\r\n");
}
#endif
for(i=0;i<iSize;i++)
{
*pusPSXMem++=spuMem[spuAddr2[1]]; // spu addr 1 got by writeregister
if(spuCtrl2[1]&0x40 && spuIrq2[1] == spuAddr2[1]){
regArea[0x7C0] |= 0x8;
regArea[PS2_IRQINFO] |= 0x8;
irqCallbackSPU2();
}
spuAddr2[1]++; // inc spu addr
MemAddr[1]+=2;
if(spuAddr2[1]>0xfffff) spuAddr2[1]=0; // wrap
}
spuAddr2[1]+=19; //Transfer Local To Host TSAH/L + Data Size + 20 (already +1'd)
iSpuAsyncWait=0;
// got from J.F. and Kanodin... is it needed?
spuStat2[1]&=~0x80; // DMA complete
// if(regArea[(PS2_C1_ADMAS)>>1] != 2) {
// if((regArea[(PS2_C1_ATTR)>>1] & 0x30)) {
SPUStartCycle[1] = SPUCycles;
SPUTargetCycle[1] = iSize;
interrupt |= (1<<2);
// }
//}
//regArea[(PS2_C1_ADMAS)>>1] = 0;
}
////////////////////////////////////////////////////////////////////////
// WRITE DMA (many values)
////////////////////////////////////////////////////////////////////////
// AutoDMA's are used to transfer to the DIRECT INPUT area of the spu2 memory
// Left and Right channels are always interleaved together in the transfer so
// the AutoDMA's deinterleaves them and transfers them. An interrupt is
// generated when half of the buffer (256 short-words for left and 256
// short-words for right ) has been transferred. Another interrupt occurs at
// the end of the transfer.
int ADMAS4Write()
{
if(interrupt & 0x2) return 0;
if(Adma4.AmountLeft <= 0) {
if(Adma4.TempAmount == 0) return 1;
Adma4.AmountLeft = Adma4.TempAmount;
Adma4.MemAddr = Adma4.TempMem;
Adma4.TempMem = NULL;
Adma4.TempAmount = 0;
}
Adma4.TransferAmount = min(512, Adma4.AmountLeft);
if(Adma4.ADMAPos == 512) Adma4.ADMAPos = 0;
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("ADMAWRITE4 %X - %X\r\n",spuAddr2[0],Adma4.AmountLeft);
if(Adma4.AmountLeft<512) logprintf("FUCK YOU %X\r\n",Adma4.AmountLeft);
}
#endif
// SPU2 Deinterleaves the Left and Right Channels
memcpy((short*)(spuMem + Adma4.ADMAPos + 0x2000),(short*)Adma4.MemAddr,Adma4.TransferAmount);
Adma4.MemAddr += Adma4.TransferAmount / 2;
memcpy((short*)(spuMem + Adma4.ADMAPos + 0x2200),(short*)Adma4.MemAddr,Adma4.TransferAmount);
Adma4.MemAddr += Adma4.TransferAmount / 2;
Adma4.ADMAPos += Adma4.TransferAmount / 2;
MemAddr[0] += Adma4.TransferAmount * 2;
//MemAddr[0] += 1024;
Adma4.AmountLeft-= Adma4.TransferAmount;
spuStat2[0]&=~0x80;
if(Adma4.AmountLeft == 0)
{
if(Adma4.IRQ == 0){
Adma4.IRQ = 1;
irqCallbackDMA4();
}
}
return 0;
}
int ADMAS7Write()
{
if(interrupt & 0x4) return 0;
if(Adma7.AmountLeft <= 0) {
if(Adma7.TempAmount == 0) return 1;
Adma7.AmountLeft = Adma7.TempAmount;
Adma7.MemAddr = Adma7.TempMem;
Adma7.TempMem = NULL;
Adma7.TempAmount = 0;
}
Adma7.TransferAmount = min(512, Adma7.AmountLeft);
if(Adma7.ADMAPos == 512) Adma7.ADMAPos = 0;
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("ADMAWRITE7 %X - %X\r\n",spuAddr2[1],Adma7.AmountLeft);
if(Adma7.AmountLeft<512) logprintf("FUCK YOU %X\r\n",Adma7.AmountLeft);
}
#endif
// SPU2 Deinterleaves the Left and Right Channels
memcpy((short*)(spuMem + Adma7.ADMAPos + 0x2400),(short*)Adma7.MemAddr,Adma7.TransferAmount);
Adma7.MemAddr += Adma7.TransferAmount / 2;
memcpy((short*)(spuMem + Adma7.ADMAPos + 0x2600),(short*)Adma7.MemAddr,Adma7.TransferAmount);
Adma7.MemAddr += Adma7.TransferAmount / 2;
Adma7.ADMAPos += Adma7.TransferAmount / 2;
MemAddr[1] += Adma7.TransferAmount * 2;
//MemAddr[1] += 1024;
Adma7.AmountLeft-=Adma7.TransferAmount;
spuStat2[1]&=~0x80;
if(Adma7.AmountLeft == 0)
{
if(Adma7.IRQ == 0){
Adma7.IRQ = 1;
irqCallbackDMA7();
}
}
return 0;
}
#include <stdio.h>
extern FILE * LogFile;
EXPORT_GCC void CALLBACK SPU2writeDMA4Mem(short * pMem,unsigned int iSize)
{
//if(Adma4.AmountLeft > 0) return;
if(regArea[PS2_C0_ADMAS] & 0x1 && (spuCtrl2[0] & 0x30) == 0 && iSize)
{
//fwrite(pMem,iSize<<1,1,LogFile);
// memset(&Adma4,0,sizeof(ADMA));
//if( !Adma4.Enabled )
// Adma4.Index = 0;
//Adma4.ADMAPos = 0;
if((Adma4.ADMAPos == 512 && Adma4.Index <= 256) || (Adma4.ADMAPos == 256 && Adma4.Index >= 256) || Adma4.AmountLeft >= 512) {
Adma4.TempMem = pMem;
Adma4.TempAmount = iSize;
} else {
Adma4.MemAddr = pMem;
Adma4.AmountLeft += iSize;
ADMAS4Write();
}
return;
}
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("WRITEDMA4 %X - %X\r\n",spuAddr2[0],iSize);
}
#endif
memcpy((unsigned char*)(spuMem+spuAddr2[0]),(unsigned char*)pMem,iSize<<1);
if(spuCtrl2[0]&0x40 && (spuIrq2[0] >= spuAddr2[0] && spuIrq2[0] <= (spuAddr2[0] + iSize))){
regArea[0x7C0] |= 0x4;
regArea[PS2_IRQINFO] |= 0x4;
irqCallbackSPU2();
}
spuAddr2[0] += iSize;
if(spuAddr2[0]>0x23FF) spuAddr2[0] = 0x2000;
MemAddr[0] += iSize<<1;
spuStat2[0]&=~0x80;
SPUStartCycle[0] = SPUCycles;
SPUTargetCycle[0] = 1;//iSize;
interrupt |= (1<<1);
}
void LogRawSound(void* pleft, int leftstride, void* pright, int rightstride, int numsamples)
{
#ifdef _DEBUG
static FILE* g_fLogSound = NULL;
char* left = (char*)pleft;
char* right = (char*)pright;
unsigned short* tempbuf;
int i;
if( g_fLogSound == NULL ) {
g_fLogSound = fopen("rawsndbuf.pcm", "wb");
if( g_fLogSound == NULL )
return;
}
tempbuf = (unsigned short*)malloc(4*numsamples);
for(i = 0; i < numsamples; ++i) {
tempbuf[2*i+0] = *(unsigned short*)left;
tempbuf[2*i+1] = *(unsigned short*)right;
left += leftstride;
right += rightstride;
}
fwrite(&tempbuf[0], 4*numsamples, 1, g_fLogSound);
free(tempbuf);
#endif
}
EXPORT_GCC void CALLBACK SPU2writeDMA7Mem(unsigned short * pMem,int iSize)
{
// For AutoDMA, the ATTR register's bit 5 and 6 are cleared.
// bit 5 means Data Input Thru Register
// bit 6 means Data Input Thru DMA
//if(Adma7.AmountLeft > 0) return;
if((regArea[PS2_C1_ADMAS] & 0x2) && (spuCtrl2[1] & 0x30) == 0 && iSize)
{
//fwrite(pMem,iSize<<1,1,LogFile);
// memset(&Adma7,0,sizeof(ADMA));
//if( !Adma7.Enabled )
// Adma7.Index = 0;
//Adma7.ADMAPos = 0;
if((Adma7.ADMAPos == 512 && Adma7.Index <= 256) || (Adma7.ADMAPos == 256 && Adma7.Index >= 256) || Adma7.AmountLeft >= 512) {
Adma7.TempMem = pMem;
Adma7.TempAmount = iSize;
} else {
Adma7.MemAddr = pMem;
Adma7.AmountLeft += iSize;
ADMAS7Write();
}
return;
}
#ifdef _WINDOWS
if(iDebugMode==1)
{
logprintf("WRITEDMA7 %X - %X\r\n",spuAddr2[1],iSize);
}
#endif
memcpy((short*)(spuMem+spuAddr2[1]),(short*)pMem,iSize<<1);
if(spuCtrl2[1]&0x40 && (spuIrq2[1] >= spuAddr2[1] && spuIrq2[1] <= (spuAddr2[1] + iSize))){
regArea[0x7C0] |= 0x8;
regArea[PS2_IRQINFO] |= 8;
irqCallbackSPU2();
}
spuAddr2[1] += iSize;
if(spuAddr2[1]>0x27FF) spuAddr2[1] = 0x2400;
MemAddr[1] += iSize<<1;
spuStat2[1]&=~0x80;
SPUStartCycle[1] = SPUCycles;
SPUTargetCycle[1] = 1;//iSize;
interrupt |= (1<<2);
}
////////////////////////////////////////////////////////////////////////
// INTERRUPTS
////////////////////////////////////////////////////////////////////////
void InterruptDMA4(void)
{
// taken from linuzappz NULL spu2
// spu2Rs16(CORE0_ATTR)&= ~0x30;
// spu2Rs16(REG__1B0) = 0;
// spu2Rs16(SPU2_STATX_WRDY_M)|= 0x80;
#ifdef _WINDOWS
if(iDebugMode==1) logprintf("IRQDMA4\r\n");
#endif
Adma4.IRQ = 0;
spuCtrl2[0]&=~0x30;
spuStat2[0]|=0x80;
}
EXPORT_GCC void CALLBACK SPU2interruptDMA4(void)
{
InterruptDMA4();
}
void InterruptDMA7(void)
{
// taken from linuzappz NULL spu2
// spu2Rs16(CORE1_ATTR)&= ~0x30;
// spu2Rs16(REG__5B0) = 0;
// spu2Rs16(SPU2_STATX_DREQ)|= 0x80;
#ifdef _WINDOWS
if(iDebugMode==1) logprintf("IRQDMA7\r\n");
#endif
Adma7.IRQ = 0;
spuStat2[1]|=0x80;
spuCtrl2[1]&=~0x30;
}
EXPORT_GCC void CALLBACK SPU2interruptDMA7(void)
{
InterruptDMA7();
}
EXPORT_GCC void CALLBACK SPU2WriteMemAddr(int core, unsigned long value)
{
MemAddr[core] = value;
}
EXPORT_GCC unsigned long CALLBACK SPU2ReadMemAddr(int core)
{
return MemAddr[core];
}