pcsx2/plugins/GSdx/GSDrawScanlineCodeGenerator.x64.avx.cpp
Akash 8038ce1aa9 GSDX: Cleanup warnings on MSVC (#1694)
Explicitly cast some bitfields/local loop variables to uint8 as these functions have uint8 as the parameter datatype.
2016-12-21 23:21:07 +00:00

2083 lines
37 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSDrawScanlineCodeGenerator.h"
#include "GSVertexSW.h"
#if _M_SSE < 0x501 && (defined(_M_AMD64) || defined(_WIN64))
// Ease the reading of the code
#define _m_local r12
#define _m_local__gd r13
#define _m_local__gd__vm a1
#define _m_local__gd__clut r11
#define _m_local__gd__tex a3
// More pretty name
#define _z xmm8
#define _f xmm9
#define _s xmm10
#define _t xmm11
#define _q xmm12
#define _f_rb xmm13
#define _f_ga xmm14
#define _test xmm15
// Extra bonus
#define _rb xmm2
#define _ga xmm3
#define _fm xmm4
#define _zm xmm5
#define _fd xmm6
#define _rip_local(field) (m_rip ? ptr[rip + &m_local.field] : ptr[_m_local + offsetof(GSScanlineLocalData, field)])
#define _rip_global(field) (m_rip ? ptr[rip + &m_local.gd->field] : ptr[_m_local__gd + offsetof(GSScanlineGlobalData, field)])
#ifdef _WIN64
#else
static const int _rz_rbx = -8 * 1;
static const int _rz_r12 = -8 * 2;
static const int _rz_r13 = -8 * 3;
static const int _rz_r14 = -8 * 4;
static const int _rz_r15 = -8 * 5;
static const int _rz_top = -8 * 6;
static const int _rz_zs = -8 * 8;
static const int _rz_zd = -8 * 10;
static const int _rz_cov = -8 * 12;
#endif
void GSDrawScanlineCodeGenerator::Generate_AVX()
{
bool need_tex = m_sel.fb && m_sel.tfx != TFX_NONE;
bool need_clut = need_tex && m_sel.tlu;
m_rip = (size_t)getCurr() < 0x80000000;
m_rip &= (size_t)&m_local < 0x80000000;
m_rip &= (size_t)&m_local.gd < 0x80000000;
#ifdef _WIN64
push(rbx);
push(rsi);
push(rdi);
push(rbp);
push(r12);
push(r13);
sub(rsp, 8 + 10 * 16);
for(int i = 6; i < 16; i++)
{
vmovdqa(ptr[rsp + (i - 6) * 16], Xmm(i));
}
#else
// No reservation on the stack as a red zone is available
push(rbp);
mov(ptr[rsp + _rz_rbx], rbx);
if (!m_rip)
{
mov(ptr[rsp + _rz_r12], r12);
mov(ptr[rsp + _rz_r13], r13);
}
#endif
mov(r10, (size_t)g_const->m_test_128b[0]);
if (!m_rip)
{
mov(_m_local, (size_t)&m_local);
mov(_m_local__gd, _rip_local(gd));
}
if(need_clut)
mov(_m_local__gd__clut, _rip_global(clut));
Init_AVX();
// a0 = steps
// t1 = fza_base
// t0 = fza_offset
// r10 = &m_test[0]
// _m_local = &m_local
// _m_local__gd = m_local->gd
// _m_local__gd__vm = m_local->gd.vm
// xmm7 = vf (sprite && ltf)
// xmm8 = z
// xmm9 = f
// xmm10 = s
// xmm11 = t
// xmm12 = q
// xmm13 = rb
// xmm14 = ga
// xmm15 = test
if(!m_sel.edge)
{
align(16);
}
L("loop");
TestZ_AVX(xmm5, xmm6);
// ebp = za
// FIXME not yet done
if(m_sel.mmin && 0)
{
SampleTextureLOD_AVX();
}
else
{
SampleTexture_AVX();
}
// ebp = za
// xmm2 = rb
// xmm3 = ga
AlphaTFX_AVX();
// ebp = za
// xmm2 = rb
// xmm3 = ga
ReadMask_AVX();
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
TestAlpha_AVX();
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
ColorTFX_AVX();
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
Fog_AVX();
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
ReadFrame_AVX();
// ebx = fa
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
// xmm6 = fd
TestDestAlpha_AVX();
// ebx = fa
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
// xmm6 = fd
WriteMask_AVX();
// ebx = fa
// edx = fzm
// ebp = za
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm5 = zm
// xmm6 = fd
WriteZBuf_AVX();
// ebx = fa
// edx = fzm
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm6 = fd
AlphaBlend_AVX();
// ebx = fa
// edx = fzm
// xmm2 = rb
// xmm3 = ga
// xmm4 = fm
// xmm6 = fd
WriteFrame_AVX();
L("step");
// if(steps <= 0) break;
if(!m_sel.edge)
{
test(a0, a0);
jle("exit", T_NEAR);
Step_AVX();
jmp("loop", T_NEAR);
}
L("exit");
#ifdef _WIN64
for(int i = 6; i < 16; i++)
{
vmovdqa(Xmm(i), ptr[rsp + (i - 6) * 16]);
}
add(rsp, 8 + 10 * 16);
pop(r13);
pop(r12);
pop(rbp);
pop(rdi);
pop(rsi);
pop(rbx);
#else
mov(rbx, ptr[rsp + _rz_rbx]);
if (!m_rip)
{
mov(r12, ptr[rsp + _rz_r12]);
mov(r13, ptr[rsp + _rz_r13]);
}
pop(rbp);
#endif
ret();
}
void GSDrawScanlineCodeGenerator::Init_AVX()
{
if(!m_sel.notest)
{
// int skip = left & 3;
mov(ebx, a1.cvt32());
and(a1.cvt32(), 3);
// left -= skip;
sub(ebx, a1.cvt32());
// int steps = pixels + skip - 4;
lea(a0, ptr[a0 + a1 - 4]);
// GSVector4i test = m_test[skip] | m_test[7 + (steps & (steps >> 31))];
shl(a1.cvt32(), 4); // * sizeof(m_test[0])
vmovdqa(_test, ptr[a1 + r10]);
mov(rax, a0);
sar(rax, 63); // GH: 63 to extract the sign of the register
and(rax, a0);
shl(rax, 4); // * sizeof(m_test[0])
vpor(_test, ptr[rax + r10 + 7 * 16]);
}
else
{
mov(ebx, a1.cvt32()); // left
xor(a1.cvt32(), a1.cvt32()); // skip
lea(a0, ptr[a0 - 4]); // steps
}
// a0 = steps
// a1 = skip
// rbx = left
// GSVector2i* fza_base = &m_local.gd->fzbr[top];
mov(rax, _rip_global(fzbr));
lea(t1, ptr[rax + a2 * 8]);
// GSVector2i* fza_offset = &m_local.gd->fzbc[left >> 2];
mov(rax, _rip_global(fzbc));
lea(t0, ptr[rax + rbx * 2]);
if(m_sel.prim != GS_SPRITE_CLASS && (m_sel.fwrite && m_sel.fge || m_sel.zb) || m_sel.fb && (m_sel.edge || m_sel.tfx != TFX_NONE || m_sel.iip))
{
// a1 = &m_local.d[skip] // note a1 was (skip << 4)
// FIXME
//lea(a1, ptr[a1 * 8 + _m_local + offsetof(GSScanlineLocalData, d)]);
lea(rax, _rip_local(d));
lea(a1, ptr[rax + a1 * 8]);
}
if(m_sel.prim != GS_SPRITE_CLASS)
{
if(m_sel.fwrite && m_sel.fge || m_sel.zb)
{
vmovaps(xmm0, ptr[a3 + offsetof(GSVertexSW, p)]); // v.p
if(m_sel.fwrite && m_sel.fge)
{
// f = GSVector4i(vp).zzzzh().zzzz().add16(m_local.d[skip].f);
vcvttps2dq(_f, xmm0);
vpshufhw(_f, _f, _MM_SHUFFLE(2, 2, 2, 2));
vpshufd(_f, _f, _MM_SHUFFLE(2, 2, 2, 2));
vpaddw(_f, ptr[a1 + 16 * 6]);
}
if(m_sel.zb)
{
// z = vp.zzzz() + m_local.d[skip].z;
vshufps(_z, xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
vaddps(_z, ptr[a1]);
}
}
}
else
{
if(m_sel.ztest)
{
vmovdqa(_z, _rip_local(p.z));
}
if(m_sel.fwrite && m_sel.fge)
vmovdqa(_f, _rip_local(p.f));
}
if(m_sel.fb)
{
if(m_sel.edge || m_sel.tfx != TFX_NONE)
{
vmovaps(xmm0, ptr[a3 + offsetof(GSVertexSW, t)]); // v.t
}
if(m_sel.edge)
{
// m_local.temp.cov = GSVector4i::cast(v.t).zzzzh().wwww().srl16(9);
vpshufhw(xmm1, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
vpshufd(xmm1, xmm1, _MM_SHUFFLE(3, 3, 3, 3));
vpsrlw(xmm1, 9);
#ifdef _WIN64
vmovdqa(_rip_local(temp.cov), xmm1);
#else
vmovdqa(ptr[rsp + _rz_cov], xmm1);
#endif
}
if(m_sel.tfx != TFX_NONE)
{
// a1 = &m_local.d[skip]
if(m_sel.fst)
{
// GSVector4i vti(vt);
vcvttps2dq(xmm0, xmm0);
// s = vti.xxxx() + m_local.d[skip].s;
// t = vti.yyyy(); if(!sprite) t += m_local.d[skip].t;
vpshufd(_s, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vpshufd(_t, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
vpaddd(_s, ptr[a1 + offsetof(GSScanlineLocalData::skip, s)]);
if(m_sel.prim != GS_SPRITE_CLASS || m_sel.mmin)
{
vpaddd(_t, ptr[a1 + offsetof(GSScanlineLocalData::skip, t)]);
}
else if(m_sel.ltf)
{
vpshuflw(xmm7, _t, _MM_SHUFFLE(2, 2, 0, 0));
vpshufhw(xmm7, xmm7, _MM_SHUFFLE(2, 2, 0, 0));
vpsrlw(xmm7, 12);
}
}
else
{
// s = vt.xxxx() + m_local.d[skip].s;
// t = vt.yyyy() + m_local.d[skip].t;
// q = vt.zzzz() + m_local.d[skip].q;
vshufps(_s, xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vshufps(_t, xmm0, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
vshufps(_q, xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
vaddps(_s, ptr[a1 + offsetof(GSScanlineLocalData::skip, s)]);
vaddps(_t, ptr[a1 + offsetof(GSScanlineLocalData::skip, t)]);
vaddps(_q, ptr[a1 + offsetof(GSScanlineLocalData::skip, q)]);
}
}
if(!(m_sel.tfx == TFX_DECAL && m_sel.tcc))
{
if(m_sel.iip)
{
// GSVector4i vc = GSVector4i(v.c);
vcvttps2dq(xmm0, ptr[a3 + offsetof(GSVertexSW, c)]); // v.c
// vc = vc.upl16(vc.zwxy());
vpshufd(xmm1, xmm0, _MM_SHUFFLE(1, 0, 3, 2));
vpunpcklwd(xmm0, xmm1);
// rb = vc.xxxx().add16(m_local.d[skip].rb);
// ga = vc.zzzz().add16(m_local.d[skip].ga);
vpshufd(_f_rb, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vpshufd(_f_ga, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
vpaddw(_f_rb, ptr[a1 + offsetof(GSScanlineLocalData::skip, rb)]);
vpaddw(_f_ga, ptr[a1 + offsetof(GSScanlineLocalData::skip, ga)]);
}
else
{
vmovdqa(_f_rb, _rip_local(c.rb));
vmovdqa(_f_ga, _rip_local(c.ga));
}
vmovdqa(_rb, _f_rb);
vmovdqa(_ga, _f_ga);
}
}
if(m_sel.fwrite && m_sel.fpsm == 2 && m_sel.dthe)
{
// On linux, a2 is edx which will be used for fzm
// In all case, it will require a mov in dthe code, so let's keep the value on the stack
#ifdef _WIN64
ASSERT(0);
#else
mov(ptr[rsp + _rz_top], a2);
#endif
}
mov(_m_local__gd__vm, _rip_global(vm));
if(m_sel.fb && m_sel.tfx != TFX_NONE)
mov(_m_local__gd__tex, _rip_global(tex));
}
void GSDrawScanlineCodeGenerator::Step_AVX()
{
// steps -= 4;
sub(a0, 4);
// fza_offset++;
add(t0, 8);
if(m_sel.prim != GS_SPRITE_CLASS)
{
// z += m_local.d4.z;
if(m_sel.zb)
{
vaddps(_z, _rip_local(d4.z));
}
// f = f.add16(m_local.d4.f);
if(m_sel.fwrite && m_sel.fge)
{
vpaddw(_f, _rip_local(d4.f));
}
}
else
{
if(m_sel.ztest)
{
}
}
if(m_sel.fb)
{
if(m_sel.tfx != TFX_NONE)
{
if(m_sel.fst)
{
// GSVector4i st = m_local.d4.st;
// si += st.xxxx();
// if(!sprite) ti += st.yyyy();
vmovdqa(xmm0, _rip_local(d4.stq));
vpshufd(xmm1, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vpaddd(_s, xmm1);
if(m_sel.prim != GS_SPRITE_CLASS || m_sel.mmin)
{
vpshufd(xmm1, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
vpaddd(_t, xmm1);
}
}
else
{
// GSVector4 stq = m_local.d4.stq;
// s += stq.xxxx();
// t += stq.yyyy();
// q += stq.zzzz();
vmovaps(xmm0, _rip_local(d4.stq));
vshufps(xmm1, xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vshufps(xmm2, xmm0, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
vshufps(xmm3, xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2));
vaddps(_s, xmm1);
vaddps(_t, xmm2);
vaddps(_q, xmm3);
}
}
if(!(m_sel.tfx == TFX_DECAL && m_sel.tcc))
{
if(m_sel.iip)
{
// GSVector4i c = m_local.d4.c;
// rb = rb.add16(c.xxxx());
// ga = ga.add16(c.yyyy());
vmovdqa(xmm0, _rip_local(d4.c));
vpshufd(xmm1, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vpshufd(xmm2, xmm0, _MM_SHUFFLE(1, 1, 1, 1));
vpaddw(_f_rb, xmm1);
vpaddw(_f_ga, xmm2);
// FIXME: color may underflow and roll over at the end of the line, if decreasing
vpxor(xmm0, xmm0);
vpmaxsw(_f_rb, xmm0);
vpmaxsw(_f_ga, xmm0);
}
else
{
if(m_sel.tfx == TFX_NONE)
{
}
}
vmovdqa(_rb, _f_rb);
vmovdqa(_ga, _f_ga);
}
}
if(!m_sel.notest)
{
// test = m_test[7 + (steps & (steps >> 31))];
mov(rax, a0);
sar(rax, 63); // GH: 63 to extract the sign of the register
and(rax, a0);
shl(rax, 4);
vmovdqa(_test, ptr[rax + r10 + 7 * 16]);
}
}
void GSDrawScanlineCodeGenerator::TestZ_AVX(const Xmm& temp1, const Xmm& temp2)
{
if(!m_sel.zb)
{
return;
}
// int za = fza_base.y + fza_offset->y;
mov(ebp, dword[t1 + 4]);
add(ebp, dword[t0 + 4]);
and(ebp, HALF_VM_SIZE - 1);
// GSVector4i zs = zi;
if(m_sel.prim != GS_SPRITE_CLASS)
{
if(m_sel.zoverflow)
{
// zs = (GSVector4i(z * 0.5f) << 1) | (GSVector4i(z) & GSVector4i::x00000001());
mov(rax, (size_t)&GSVector4::m_half);
vbroadcastss(xmm0, ptr[rax]);
vmulps(xmm0, _z);
vcvttps2dq(xmm0, xmm0);
vpslld(xmm0, 1);
vcvttps2dq(xmm1, _z);
vpcmpeqd(xmm2, xmm2);
vpsrld(xmm2, 31);
vpand(xmm1, xmm2);
vpor(xmm0, xmm1);
}
else
{
// zs = GSVector4i(z);
vcvttps2dq(xmm0, _z);
}
if(m_sel.zwrite)
{
#ifdef _WIN64
vmovdqa(_rip_local(temp.zs), xmm0);
#else
vmovdqa(ptr[rsp + _rz_zs], xmm0);
#endif
}
}
else
{
movdqa(xmm0, _z);
}
if(m_sel.ztest)
{
ReadPixel_AVX(xmm1, rbp);
if(m_sel.zwrite && m_sel.zpsm < 2)
{
#ifdef _WIN64
vmovdqa(_rip_local(temp.zd), xmm1);
#else
vmovdqa(ptr[rsp + _rz_zd], xmm1);
#endif
}
// zd &= 0xffffffff >> m_sel.zpsm * 8;
if(m_sel.zpsm)
{
vpslld(xmm1, static_cast<uint8>(m_sel.zpsm * 8));
vpsrld(xmm1, static_cast<uint8>(m_sel.zpsm * 8));
}
if(m_sel.zoverflow || m_sel.zpsm == 0)
{
// GSVector4i o = GSVector4i::x80000000();
vpcmpeqd(xmm2, xmm2);
vpslld(xmm2, 31);
// GSVector4i zso = zs - o;
// GSVector4i zdo = zd - o;
vpsubd(xmm0, xmm2);
vpsubd(xmm1, xmm2);
}
switch(m_sel.ztst)
{
case ZTST_GEQUAL:
// test |= zso < zdo; // ~(zso >= zdo)
vpcmpgtd(xmm1, xmm0);
vpor(_test, xmm1);
break;
case ZTST_GREATER: // TODO: tidus hair and chocobo wings only appear fully when this is tested as ZTST_GEQUAL
// test |= zso <= zdo; // ~(zso > zdo)
vpcmpgtd(xmm0, xmm1);
vpcmpeqd(xmm2, xmm2);
vpxor(xmm0, xmm2);
vpor(_test, xmm0);
break;
}
alltrue(_test);
}
}
void GSDrawScanlineCodeGenerator::SampleTexture_AVX()
{
if(!m_sel.fb || m_sel.tfx == TFX_NONE)
{
return;
}
if(!m_sel.fst)
{
vrcpps(xmm0, _q);
vmulps(xmm4, _s, xmm0);
vmulps(xmm5, _t, xmm0);
vcvttps2dq(xmm4, xmm4);
vcvttps2dq(xmm5, xmm5);
if(m_sel.ltf)
{
// u -= 0x8000;
// v -= 0x8000;
mov(eax, 0x8000);
vmovd(xmm0, eax);
vpshufd(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
vpsubd(xmm4, xmm0);
vpsubd(xmm5, xmm0);
}
}
else
{
vmovdqa(xmm4, _s);
vmovdqa(xmm5, _t);
}
if(m_sel.ltf)
{
// GSVector4i uf = u.xxzzlh().srl16(12);
vpshuflw(xmm6, xmm4, _MM_SHUFFLE(2, 2, 0, 0));
vpshufhw(xmm6, xmm6, _MM_SHUFFLE(2, 2, 0, 0));
vpsrlw(xmm6, 12);
if(m_sel.prim != GS_SPRITE_CLASS)
{
// GSVector4i vf = v.xxzzlh().srl16(12);
vpshuflw(xmm7, xmm5, _MM_SHUFFLE(2, 2, 0, 0));
vpshufhw(xmm7, xmm7, _MM_SHUFFLE(2, 2, 0, 0));
vpsrlw(xmm7, 12);
}
}
// GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16));
vpsrad(xmm4, 16);
vpsrad(xmm5, 16);
vpackssdw(xmm4, xmm5);
if(m_sel.ltf)
{
// GSVector4i uv1 = uv0.add16(GSVector4i::x0001());
vpcmpeqd(xmm0, xmm0);
vpsrlw(xmm0, 15);
vpaddw(xmm5, xmm4, xmm0);
// uv0 = Wrap(uv0);
// uv1 = Wrap(uv1);
Wrap_AVX(xmm4, xmm5);
}
else
{
// uv0 = Wrap(uv0);
Wrap_AVX(xmm4);
}
// xmm4 = uv0
// xmm5 = uv1 (ltf)
// xmm6 = uf
// xmm7 = vf
// GSVector4i x0 = uv0.upl16();
// GSVector4i y0 = uv0.uph16() << tw;
vpxor(xmm0, xmm0);
vpunpcklwd(xmm2, xmm4, xmm0);
vpunpckhwd(xmm3, xmm4, xmm0);
vpslld(xmm3, static_cast<uint8>(m_sel.tw + 3));
// xmm0 = 0
// xmm2 = x0
// xmm3 = y0
// xmm5 = uv1 (ltf)
// xmm6 = uf
// xmm7 = vf
if(m_sel.ltf)
{
// GSVector4i x1 = uv1.upl16();
// GSVector4i y1 = uv1.uph16() << tw;
vpunpcklwd(xmm4, xmm5, xmm0);
vpunpckhwd(xmm5, xmm5, xmm0);
vpslld(xmm5, static_cast<uint8>(m_sel.tw + 3));
// xmm2 = x0
// xmm3 = y0
// xmm4 = x1
// xmm5 = y1
// xmm6 = uf
// xmm7 = vf
// GSVector4i addr00 = y0 + x0;
// GSVector4i addr01 = y0 + x1;
// GSVector4i addr10 = y1 + x0;
// GSVector4i addr11 = y1 + x1;
vpaddd(xmm0, xmm3, xmm2);
vpaddd(xmm1, xmm3, xmm4);
vpaddd(xmm2, xmm5, xmm2);
vpaddd(xmm3, xmm5, xmm4);
// xmm0 = addr00
// xmm1 = addr01
// xmm2 = addr10
// xmm3 = addr11
// xmm6 = uf
// xmm7 = vf
// c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]);
// c01 = addr01.gather32_32((const uint32/uint8*)tex[, clut]);
// c10 = addr10.gather32_32((const uint32/uint8*)tex[, clut]);
// c11 = addr11.gather32_32((const uint32/uint8*)tex[, clut]);
ReadTexel_AVX(4, 0);
// xmm0 = c10
// xmm1 = c11
// xmm4 = c00
// xmm5 = c01
// xmm6 = uf
// xmm7 = vf
// GSVector4i rb00 = c00 & mask;
// GSVector4i ga00 = (c00 >> 8) & mask;
split16_2x8(xmm2, xmm3, xmm4);
// GSVector4i rb01 = c01 & mask;
// GSVector4i ga01 = (c01 >> 8) & mask;
split16_2x8(xmm4, xmm5, xmm5);
// xmm0 = c10
// xmm1 = c11
// xmm2 = rb00
// xmm3 = ga00
// xmm4 = rb01
// xmm5 = ga01
// xmm6 = uf
// xmm7 = vf
// rb00 = rb00.lerp16_4(rb01, uf);
// ga00 = ga00.lerp16_4(ga01, uf);
lerp16_4(xmm4, xmm2, xmm6);
lerp16_4(xmm5, xmm3, xmm6);
// xmm0 = c10
// xmm1 = c11
// xmm4 = rb00
// xmm5 = ga00
// xmm6 = uf
// xmm7 = vf
// GSVector4i rb10 = c10 & mask;
// GSVector4i ga10 = (c10 >> 8) & mask;
split16_2x8(xmm2, xmm3, xmm0);
// GSVector4i rb11 = c11 & mask;
// GSVector4i ga11 = (c11 >> 8) & mask;
split16_2x8(xmm0, xmm1, xmm1);
// xmm0 = rb11
// xmm1 = ga11
// xmm2 = rb10
// xmm3 = ga10
// xmm4 = rb00
// xmm5 = ga00
// xmm6 = uf
// xmm7 = vf
// rb10 = rb10.lerp16_4(rb11, uf);
// ga10 = ga10.lerp16_4(ga11, uf);
lerp16_4(xmm0, xmm2, xmm6);
lerp16_4(xmm1, xmm3, xmm6);
// xmm0 = rb10
// xmm1 = ga10
// xmm4 = rb00
// xmm5 = ga00
// xmm7 = vf
// rb00 = rb00.lerp16_4(rb10, vf);
// ga00 = ga00.lerp16_4(ga10, vf);
lerp16_4(xmm0, xmm4, xmm7);
lerp16_4(xmm1, xmm5, xmm7);
// FIXME not ideal (but allow different source in ReadTexel and less register dependency)
vmovdqa(xmm2, xmm0);
vmovdqa(xmm3, xmm1);
}
else
{
// GSVector4i addr00 = y0 + x0;
vpaddd(xmm0, xmm3, xmm2);
// c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]);
ReadTexel_AVX(1, 0);
// GSVector4i mask = GSVector4i::x00ff();
// c[0] = c00 & mask;
// c[1] = (c00 >> 8) & mask;
split16_2x8(_rb, _ga, xmm4);
}
// xmm2 = rb
// xmm3 = ga
}
void GSDrawScanlineCodeGenerator::Wrap_AVX(const Xmm& uv)
{
// xmm0, xmm1, xmm2, xmm3 = free
int wms_clamp = ((m_sel.wms + 1) >> 1) & 1;
int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1;
int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1;
if(wms_clamp == wmt_clamp)
{
if(wms_clamp)
{
if(region)
{
vpmaxsw(uv, _rip_global(t.min));
}
else
{
vpxor(xmm0, xmm0);
vpmaxsw(uv, xmm0);
}
vpminsw(uv, _rip_global(t.max));
}
else
{
vpand(uv, _rip_global(t.min));
if(region)
{
vpor(uv, _rip_global(t.max));
}
}
}
else
{
vmovdqa(xmm2, _rip_global(t.min));
vmovdqa(xmm3, _rip_global(t.max));
vmovdqa(xmm0, _rip_global(t.mask));
// GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max;
vpand(xmm1, uv, xmm2);
if(region)
{
vpor(xmm1, xmm3);
}
// GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max);
vpmaxsw(uv, xmm2);
vpminsw(uv, xmm3);
// clamp.blend8(repeat, m_local.gd->t.mask);
vpblendvb(uv, xmm1, xmm0);
}
}
void GSDrawScanlineCodeGenerator::Wrap_AVX(const Xmm& uv0, const Xmm& uv1)
{
// xmm0, xmm1, xmm2, xmm3 = free
int wms_clamp = ((m_sel.wms + 1) >> 1) & 1;
int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1;
int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1;
if(wms_clamp == wmt_clamp)
{
if(wms_clamp)
{
if(region)
{
vmovdqa(xmm0, _rip_global(t.min));
vpmaxsw(uv0, xmm0);
vpmaxsw(uv1, xmm0);
}
else
{
vpxor(xmm0, xmm0);
vpmaxsw(uv0, xmm0);
vpmaxsw(uv1, xmm0);
}
vmovdqa(xmm0, _rip_global(t.max));
vpminsw(uv0, xmm0);
vpminsw(uv1, xmm0);
}
else
{
vmovdqa(xmm0, _rip_global(t.min));
vpand(uv0, xmm0);
vpand(uv1, xmm0);
if(region)
{
vmovdqa(xmm0, _rip_global(t.max));
vpor(uv0, xmm0);
vpor(uv1, xmm0);
}
}
}
else
{
vmovdqa(xmm2, _rip_global(t.min));
vmovdqa(xmm3, _rip_global(t.max));
vmovdqa(xmm0, _rip_global(t.mask));
// uv0
// GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max;
vpand(xmm1, uv0, xmm2);
if(region)
{
vpor(xmm1, xmm3);
}
// GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max);
vpmaxsw(uv0, xmm2);
vpminsw(uv0, xmm3);
// clamp.blend8(repeat, m_local.gd->t.mask);
vpblendvb(uv0, xmm1, xmm0);
// uv1
// GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max;
vpand(xmm1, uv1, xmm2);
if(region)
{
vpor(xmm1, xmm3);
}
// GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max);
vpmaxsw(uv1, xmm2);
vpminsw(uv1, xmm3);
// clamp.blend8(repeat, m_local.gd->t.mask);
vpblendvb(uv1, xmm1, xmm0);
}
}
void GSDrawScanlineCodeGenerator::SampleTextureLOD_AVX()
{
}
void GSDrawScanlineCodeGenerator::WrapLOD_AVX(const Xmm& uv)
{
}
void GSDrawScanlineCodeGenerator::WrapLOD_AVX(const Xmm& uv0, const Xmm& uv1)
{
}
void GSDrawScanlineCodeGenerator::AlphaTFX_AVX()
{
if(!m_sel.fb)
{
return;
}
switch(m_sel.tfx)
{
case TFX_MODULATE:
// gat = gat.modulate16<1>(ga).clamp8();
modulate16(_ga, _f_ga, 1);
clamp16(_ga, xmm0);
// if(!tcc) gat = gat.mix16(ga.srl16(7));
if(!m_sel.tcc)
{
vpsrlw(xmm1, _f_ga, 7);
mix16(_ga, xmm1, xmm0);
}
break;
case TFX_DECAL:
// if(!tcc) gat = gat.mix16(ga.srl16(7));
if(!m_sel.tcc)
{
vpsrlw(xmm1, _f_ga, 7);
mix16(_ga, xmm1, xmm0);
}
break;
case TFX_HIGHLIGHT:
// gat = gat.mix16(!tcc ? ga.srl16(7) : gat.addus8(ga.srl16(7)));
vpsrlw(xmm1, _f_ga, 7);
if(m_sel.tcc)
{
vpaddusb(xmm1, _ga);
}
mix16(_ga, xmm1, xmm0);
break;
case TFX_HIGHLIGHT2:
// if(!tcc) gat = gat.mix16(ga.srl16(7));
if(!m_sel.tcc)
{
vpsrlw(xmm1, _f_ga, 7);
mix16(_ga, xmm1, xmm0);
}
break;
case TFX_NONE:
// gat = iip ? ga.srl16(7) : ga;
if(m_sel.iip)
{
vpsrlw(_ga, _f_ga, 7);
}
break;
}
if(m_sel.aa1)
{
// gs_user figure 3-2: anti-aliasing after tfx, before tests, modifies alpha
// FIXME: bios config screen cubes
if(!m_sel.abe)
{
// a = cov
if(m_sel.edge)
{
#ifdef _WIN64
vmovdqa(xmm0, _rip_local(temp.cov));
#else
vmovdqa(xmm0, ptr[rsp + _rz_cov]);
#endif
}
else
{
vpcmpeqd(xmm0, xmm0);
vpsllw(xmm0, 15);
vpsrlw(xmm0, 8);
}
mix16(_ga, xmm0, xmm1);
}
else
{
// a = a == 0x80 ? cov : a
vpcmpeqd(xmm0, xmm0);
vpsllw(xmm0, 15);
vpsrlw(xmm0, 8);
if(m_sel.edge)
{
#ifdef _WIN64
vmovdqa(xmm1, _rip_local(temp.cov));
#else
vmovdqa(xmm1, ptr[rsp + _rz_cov]);
#endif
}
else
{
vmovdqa(xmm1, xmm0);
}
vpcmpeqw(xmm0, _ga);
vpsrld(xmm0, 16);
vpslld(xmm0, 16);
vpblendvb(_ga, xmm1, xmm0);
}
}
}
void GSDrawScanlineCodeGenerator::ReadMask_AVX()
{
if(m_sel.fwrite)
{
vmovdqa(_fm, _rip_global(fm));
}
if(m_sel.zwrite)
{
vmovdqa(_zm, _rip_global(zm));
}
}
void GSDrawScanlineCodeGenerator::TestAlpha_AVX()
{
switch(m_sel.atst)
{
case ATST_NEVER:
// t = GSVector4i::xffffffff();
vpcmpeqd(xmm1, xmm1);
break;
case ATST_ALWAYS:
return;
case ATST_LESS:
case ATST_LEQUAL:
// t = (ga >> 16) > m_local.gd->aref;
vpsrld(xmm1, _ga, 16);
vpcmpgtd(xmm1, _rip_global(aref));
break;
case ATST_EQUAL:
// t = (ga >> 16) != m_local.gd->aref;
vpsrld(xmm1, _ga, 16);
vpcmpeqd(xmm1, _rip_global(aref));
vpcmpeqd(xmm0, xmm0);
vpxor(xmm1, xmm0);
break;
case ATST_GEQUAL:
case ATST_GREATER:
// t = (ga >> 16) < m_local.gd->aref;
vpsrld(xmm0, _ga, 16);
vmovdqa(xmm1, _rip_global(aref));
vpcmpgtd(xmm1, xmm0);
break;
case ATST_NOTEQUAL:
// t = (ga >> 16) == m_local.gd->aref;
vpsrld(xmm1, _ga, 16);
vpcmpeqd(xmm1, _rip_global(aref));
break;
}
switch(m_sel.afail)
{
case AFAIL_KEEP:
// test |= t;
vpor(_test, xmm1);
alltrue(_test);
break;
case AFAIL_FB_ONLY:
// zm |= t;
vpor(_zm, xmm1);
break;
case AFAIL_ZB_ONLY:
// fm |= t;
vpor(_fm, xmm1);
break;
case AFAIL_RGB_ONLY:
// zm |= t;
vpor(_zm, xmm1);
// fm |= t & GSVector4i::xff000000();
vpsrld(xmm1, 24);
vpslld(xmm1, 24);
vpor(_fm, xmm1);
break;
}
}
void GSDrawScanlineCodeGenerator::ColorTFX_AVX()
{
if(!m_sel.fwrite)
{
return;
}
switch(m_sel.tfx)
{
case TFX_MODULATE:
// rbt = rbt.modulate16<1>(rb).clamp8();
modulate16(_rb, _f_rb, 1);
clamp16(_rb, xmm0);
break;
case TFX_DECAL:
break;
case TFX_HIGHLIGHT:
case TFX_HIGHLIGHT2:
// gat = gat.modulate16<1>(ga).add16(af).clamp8().mix16(gat);
vmovdqa(xmm1, _ga);
modulate16(_ga, _f_ga, 1);
vpshuflw(xmm6, _f_ga, _MM_SHUFFLE(3, 3, 1, 1));
vpshufhw(xmm6, xmm6, _MM_SHUFFLE(3, 3, 1, 1));
vpsrlw(xmm6, 7);
vpaddw(_ga, xmm6);
clamp16(_ga, xmm0);
mix16(_ga, xmm1, xmm0);
// rbt = rbt.modulate16<1>(rb).add16(af).clamp8();
modulate16(_rb, _f_rb, 1);
vpaddw(_rb, xmm6);
clamp16(_rb, xmm0);
break;
case TFX_NONE:
// rbt = iip ? rb.srl16(7) : rb;
if(m_sel.iip)
{
vpsrlw(_rb, _f_rb, 7);
}
break;
}
}
void GSDrawScanlineCodeGenerator::Fog_AVX()
{
if(!m_sel.fwrite || !m_sel.fge)
{
return;
}
// rb = m_local.gd->frb.lerp16<0>(rb, f);
// ga = m_local.gd->fga.lerp16<0>(ga, f).mix16(ga);
vmovdqa(xmm6, _ga);
vmovdqa(xmm0, _rip_global(frb));
vmovdqa(xmm1, _rip_global(fga));
lerp16(_rb, xmm0, _f, 0);
lerp16(_ga, xmm1, _f, 0);
mix16(_ga, xmm6, _f);
}
void GSDrawScanlineCodeGenerator::ReadFrame_AVX()
{
if(!m_sel.fb)
{
return;
}
// int fa = fza_base.x + fza_offset->x;
mov(ebx, dword[t1]);
add(ebx, dword[t0]);
and(ebx, HALF_VM_SIZE - 1);
if(!m_sel.rfb)
{
return;
}
ReadPixel_AVX(_fd, rbx);
}
void GSDrawScanlineCodeGenerator::TestDestAlpha_AVX()
{
if(!m_sel.date || m_sel.fpsm != 0 && m_sel.fpsm != 2)
{
return;
}
// test |= ((fd [<< 16]) ^ m_local.gd->datm).sra32(31);
if(m_sel.datm)
{
if(m_sel.fpsm == 2)
{
vpxor(xmm0, xmm0);
//vpsrld(xmm1, _fd, 15);
vpslld(xmm1, _fd, 16);
vpsrad(xmm1, 31);
vpcmpeqd(xmm1, xmm0);
}
else
{
vpcmpeqd(xmm0, xmm0);
vpxor(xmm1, _fd, xmm0);
vpsrad(xmm1, 31);
}
}
else
{
if(m_sel.fpsm == 2)
{
vpslld(xmm1, _fd, 16);
vpsrad(xmm1, 31);
}
else
{
vpsrad(xmm1, _fd, 31);
}
}
vpor(_test, xmm1);
alltrue(_test);
}
void GSDrawScanlineCodeGenerator::WriteMask_AVX()
{
if(m_sel.notest)
{
return;
}
// fm |= test;
// zm |= test;
if(m_sel.fwrite)
{
vpor(_fm, _test);
}
if(m_sel.zwrite)
{
vpor(_zm, _test);
}
// int fzm = ~(fm == GSVector4i::xffffffff()).ps32(zm == GSVector4i::xffffffff()).mask();
vpcmpeqd(xmm1, xmm1);
if(m_sel.fwrite && m_sel.zwrite)
{
vpcmpeqd(xmm0, xmm1, _zm);
vpcmpeqd(xmm1, _fm);
vpackssdw(xmm1, xmm0);
}
else if(m_sel.fwrite)
{
vpcmpeqd(xmm1, _fm);
vpackssdw(xmm1, xmm1);
}
else if(m_sel.zwrite)
{
vpcmpeqd(xmm1, _zm);
vpackssdw(xmm1, xmm1);
}
vpmovmskb(edx, xmm1);
not(edx);
}
void GSDrawScanlineCodeGenerator::WriteZBuf_AVX()
{
if(!m_sel.zwrite)
{
return;
}
if (m_sel.prim != GS_SPRITE_CLASS)
#ifdef _WIN64
vmovdqa(xmm1, _rip_local(temp.zs));
#else
vmovdqa(xmm1, ptr[rsp + _rz_zs]);
#endif
else
vmovdqa(xmm1, _rip_local(p.z));
if(m_sel.ztest && m_sel.zpsm < 2)
{
// zs = zs.blend8(zd, zm);
#ifdef _WIN64
vpblendvb(xmm1, _rip_local(temp.zd), _zm);
#else
vpblendvb(xmm1, ptr[rsp + _rz_zd], _zm);
#endif
}
bool fast = m_sel.ztest ? m_sel.zpsm < 2 : m_sel.zpsm == 0 && m_sel.notest;
WritePixel_AVX(xmm1, rbp, dh, fast, m_sel.zpsm, 1);
}
void GSDrawScanlineCodeGenerator::AlphaBlend_AVX()
{
if(!m_sel.fwrite)
{
return;
}
if(m_sel.abe == 0 && m_sel.aa1 == 0)
{
return;
}
const Xmm& _dst_rb = xmm0;
const Xmm& _dst_ga = xmm1;
if((m_sel.aba != m_sel.abb) && (m_sel.aba == 1 || m_sel.abb == 1 || m_sel.abc == 1) || m_sel.abd == 1)
{
switch(m_sel.fpsm)
{
case 0:
case 1:
// c[2] = fd & mask;
// c[3] = (fd >> 8) & mask;
split16_2x8(_dst_rb, _dst_ga, _fd);
break;
case 2:
// c[2] = ((fd & 0x7c00) << 9) | ((fd & 0x001f) << 3);
// c[3] = ((fd & 0x8000) << 8) | ((fd & 0x03e0) >> 2);
vpcmpeqd(xmm15, xmm15);
vpsrld(xmm15, 27); // 0x0000001f
vpand(_dst_rb, _fd, xmm15);
vpslld(_dst_rb, 3);
vpslld(xmm15, 10); // 0x00007c00
vpand(xmm5, _fd, xmm15);
vpslld(xmm5, 9);
vpor(_dst_rb, xmm5);
vpsrld(xmm15, 5); // 0x000003e0
vpand(_dst_ga, _fd, xmm15);
vpsrld(_dst_ga, 2);
vpsllw(xmm15, 10); // 0x00008000
vpand(xmm5, _fd, xmm15);
vpslld(xmm5, 8);
vpor(_dst_ga, xmm5);
break;
}
}
// xmm2, xmm3 = src rb, ga
// xmm0, xmm1 = dst rb, ga
// xmm5, xmm15 = free
if(m_sel.pabe || (m_sel.aba != m_sel.abb) && (m_sel.abb == 0 || m_sel.abd == 0))
{
vmovdqa(xmm5, _rb);
}
if(m_sel.aba != m_sel.abb)
{
// rb = c[aba * 2 + 0];
switch(m_sel.aba)
{
case 0: break;
case 1: vmovdqa(_rb, _dst_rb); break;
case 2: vpxor(_rb, _rb); break;
}
// rb = rb.sub16(c[abb * 2 + 0]);
switch(m_sel.abb)
{
case 0: vpsubw(_rb, xmm5); break;
case 1: vpsubw(_rb, _dst_rb); break;
case 2: break;
}
if(!(m_sel.fpsm == 1 && m_sel.abc == 1))
{
// GSVector4i a = abc < 2 ? c[abc * 2 + 1].yywwlh().sll16(7) : m_local.gd->afix;
switch(m_sel.abc)
{
case 0:
case 1:
vpshuflw(xmm15, m_sel.abc ? _dst_ga : _ga, _MM_SHUFFLE(3, 3, 1, 1));
vpshufhw(xmm15, xmm15, _MM_SHUFFLE(3, 3, 1, 1));
vpsllw(xmm15, 7);
break;
case 2:
vmovdqa(xmm15, _rip_global(afix));
break;
}
// rb = rb.modulate16<1>(a);
modulate16(_rb, xmm15, 1);
}
// rb = rb.add16(c[abd * 2 + 0]);
switch(m_sel.abd)
{
case 0: vpaddw(_rb, xmm5); break;
case 1: vpaddw(_rb, _dst_rb); break;
case 2: break;
}
}
else
{
// rb = c[abd * 2 + 0];
switch(m_sel.abd)
{
case 0: break;
case 1: vmovdqa(_rb, _dst_rb); break;
case 2: vpxor(_rb, _rb); break;
}
}
if(m_sel.pabe)
{
// mask = (c[1] << 8).sra32(31);
vpslld(xmm0, _ga, 8);
vpsrad(xmm0, 31);
// rb = c[0].blend8(rb, mask);
vpblendvb(_rb, xmm5, _rb, xmm0);
}
// xmm0 = pabe mask
// xmm3 = src ga
// xmm1 = dst ga
// xmm2 = rb
// xmm15 = a
// xmm5 = free
vmovdqa(xmm5, _ga);
if(m_sel.aba != m_sel.abb)
{
// ga = c[aba * 2 + 1];
switch(m_sel.aba)
{
case 0: break;
case 1: vmovdqa(_ga, _dst_ga); break;
case 2: vpxor(_ga, _ga); break;
}
// ga = ga.sub16(c[abeb * 2 + 1]);
switch(m_sel.abb)
{
case 0: vpsubw(_ga, xmm5); break;
case 1: vpsubw(_ga, _dst_ga); break;
case 2: break;
}
if(!(m_sel.fpsm == 1 && m_sel.abc == 1))
{
// ga = ga.modulate16<1>(a);
modulate16(_ga, xmm15, 1);
}
// ga = ga.add16(c[abd * 2 + 1]);
switch(m_sel.abd)
{
case 0: vpaddw(_ga, xmm5); break;
case 1: vpaddw(_ga, _dst_ga); break;
case 2: break;
}
}
else
{
// ga = c[abd * 2 + 1];
switch(m_sel.abd)
{
case 0: break;
case 1: vmovdqa(_ga, _dst_ga); break;
case 2: vpxor(_ga, _ga); break;
}
}
// xmm0 = pabe mask
// xmm5 = src ga
// xmm2 = rb
// xmm3 = ga
// xmm1, xmm15 = free
if(m_sel.pabe)
{
vpsrld(xmm0, 16); // zero out high words to select the source alpha in blend (so it also does mix16)
// ga = c[1].blend8(ga, mask).mix16(c[1]);
vpblendvb(_ga, xmm5, _ga, xmm0);
}
else
{
if(m_sel.fpsm != 1) // TODO: fm == 0xffxxxxxx
{
mix16(_ga, xmm5, xmm15);
}
}
}
void GSDrawScanlineCodeGenerator::WriteFrame_AVX()
{
if(!m_sel.fwrite)
{
return;
}
if(m_sel.fpsm == 2 && m_sel.dthe)
{
// y = (top & 3) << 5
#ifdef _WIN64
ASSERT(0);
#else
mov(eax, ptr[rsp + _rz_top]);
#endif
and(eax, 3);
shl(eax, 5);
// rb = rb.add16(m_global.dimx[0 + y]);
// ga = ga.add16(m_global.dimx[1 + y]);
add(rax, _rip_global(dimx));
vpaddw(xmm2, ptr[rax + sizeof(GSVector4i) * 0]);
vpaddw(xmm3, ptr[rax + sizeof(GSVector4i) * 1]);
}
if(m_sel.colclamp == 0)
{
// c[0] &= 0x00ff00ff;
// c[1] &= 0x00ff00ff;
vpcmpeqd(xmm15, xmm15);
vpsrlw(xmm15, 8);
vpand(xmm2, xmm15);
vpand(xmm3, xmm15);
}
// GSVector4i fs = c[0].upl16(c[1]).pu16(c[0].uph16(c[1]));
vpunpckhwd(xmm15, xmm2, xmm3);
vpunpcklwd(xmm2, xmm3);
vpackuswb(xmm2, xmm15);
if(m_sel.fba && m_sel.fpsm != 1)
{
// fs |= 0x80000000;
vpcmpeqd(xmm15, xmm15);
vpslld(xmm15, 31);
vpor(xmm2, xmm15);
}
// xmm2 = fs
// xmm4 = fm
// xmm6 = fd
if(m_sel.fpsm == 2)
{
// GSVector4i rb = fs & 0x00f800f8;
// GSVector4i ga = fs & 0x8000f800;
mov(eax, 0x00f800f8);
vmovd(xmm0, eax);
vpshufd(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0));
mov(eax, 0x8000f800);
vmovd(xmm1, eax);
vpshufd(xmm1, xmm1, _MM_SHUFFLE(0, 0, 0, 0));
vpand(xmm0, xmm2);
vpand(xmm1, xmm2);
// fs = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3);
vpsrld(xmm2, xmm0, 9);
vpsrld(xmm0, 3);
vpsrld(xmm3, xmm1, 16);
vpsrld(xmm1, 6);
vpor(xmm0, xmm1);
vpor(xmm2, xmm3);
vpor(xmm2, xmm0);
}
if(m_sel.rfb)
{
// fs = fs.blend(fd, fm);
blend(xmm2, _fd, _fm); // TODO: could be skipped in certain cases, depending on fpsm and fm
}
bool fast = m_sel.rfb ? m_sel.fpsm < 2 : m_sel.fpsm == 0 && m_sel.notest;
WritePixel_AVX(xmm2, rbx, dl, fast, m_sel.fpsm, 0);
}
void GSDrawScanlineCodeGenerator::ReadPixel_AVX(const Xmm& dst, const Reg64& addr)
{
vmovq(dst, qword[_m_local__gd__vm + addr * 2]);
vmovhps(dst, qword[_m_local__gd__vm + addr * 2 + 8 * 2]);
}
void GSDrawScanlineCodeGenerator::WritePixel_AVX(const Xmm& src, const Reg64& addr, const Reg8& mask, bool fast, int psm, int fz)
{
if(m_sel.notest)
{
if(fast)
{
vmovq(qword[_m_local__gd__vm + addr * 2], src);
vmovhps(qword[_m_local__gd__vm + addr * 2 + 8 * 2], src);
}
else
{
WritePixel_AVX(src, addr, 0, psm);
WritePixel_AVX(src, addr, 1, psm);
WritePixel_AVX(src, addr, 2, psm);
WritePixel_AVX(src, addr, 3, psm);
}
}
else
{
if(fast)
{
// if(fzm & 0x0f) GSVector4i::storel(&vm16[addr + 0], fs);
// if(fzm & 0xf0) GSVector4i::storeh(&vm16[addr + 8], fs);
test(mask, 0x0f);
je("@f");
vmovq(qword[_m_local__gd__vm + addr * 2], src);
L("@@");
test(mask, 0xf0);
je("@f");
vmovhps(qword[_m_local__gd__vm + addr * 2 + 8 * 2], src);
L("@@");
// vmaskmovps?
}
else
{
// if(fzm & 0x03) WritePixel(fpsm, &vm16[addr + 0], fs.extract32<0>());
// if(fzm & 0x0c) WritePixel(fpsm, &vm16[addr + 2], fs.extract32<1>());
// if(fzm & 0x30) WritePixel(fpsm, &vm16[addr + 8], fs.extract32<2>());
// if(fzm & 0xc0) WritePixel(fpsm, &vm16[addr + 10], fs.extract32<3>());
test(mask, 0x03);
je("@f");
WritePixel_AVX(src, addr, 0, psm);
L("@@");
test(mask, 0x0c);
je("@f");
WritePixel_AVX(src, addr, 1, psm);
L("@@");
test(mask, 0x30);
je("@f");
WritePixel_AVX(src, addr, 2, psm);
L("@@");
test(mask, 0xc0);
je("@f");
WritePixel_AVX(src, addr, 3, psm);
L("@@");
}
}
}
static const int s_offsets[4] = {0, 2, 8, 10};
void GSDrawScanlineCodeGenerator::WritePixel_AVX(const Xmm& src, const Reg64& addr, uint8 i, int psm)
{
Address dst = ptr[_m_local__gd__vm + addr * 2 + s_offsets[i] * 2];
switch(psm)
{
case 0:
if(i == 0) vmovd(dst, src);
else vpextrd(dst, src, i);
break;
case 1:
if(i == 0) vmovd(eax, src);
else vpextrd(eax, src, i);
xor(eax, dst);
and(eax, 0xffffff);
xor(dst, eax);
break;
case 2:
vpextrw(eax, src, i * 2);
mov(dst, ax);
break;
}
}
void GSDrawScanlineCodeGenerator::ReadTexel_AVX(int pixels, int mip_offset)
{
const int in[] = {0, 1, 2, 3};
const int out[] = {4, 5, 0, 1};
for(int i = 0; i < pixels; i++)
{
for(uint8 j = 0; j < 4; j++)
{
ReadTexel_AVX(Xmm(out[i]), Xmm(in[i]), j);
}
}
}
void GSDrawScanlineCodeGenerator::ReadTexel_AVX(const Xmm& dst, const Xmm& addr, uint8 i)
{
const Address& src = m_sel.tlu ? ptr[_m_local__gd__clut + rax * 4] : ptr[_m_local__gd__tex + rax * 4];
// Extract address offset
if(i == 0) vmovd(eax, addr);
else vpextrd(eax, addr, i);
// If clut, load the value as a byte index
if(m_sel.tlu) movzx(eax, byte[_m_local__gd__tex + rax]);
if(i == 0) vmovd(dst, src);
else vpinsrd(dst, src, i);
}
// Gather example (AVX2). Not faster on Haswell but potentially better on recent CPU
// Worst case reduce Icache.
//
// Current limitation requires 1 extra free register for the mask.
// And palette need zero masking.
// It is not possible to use same source/destination so linear interpolation must be updated
#if 0
void GSDrawScanlineCodeGenerator::ReadTexel_AVX(int pixels, int mip_offset)
{
const int in[] = {0, 1, 2, 3};
const int out[] = {4, 5, 0, 1};
const int mask[] = {5, 0, 1, 2};
if (m_sel.tlu) {
for(int i = 0; i < pixels; i++) {
// FIXME can't use same dst and add register
Gather4Texel(Xmm(in[i]), _m_local__gd__tex, Xmm(in[i]), Xmm(mask[i]));
// FIXME need a memory and could be faster
vpslld(Xmm(in[i]), 24);
vpsrld(Xmm(in[i]), 24);
Gather4Texel(Xmm(out[i]), _m_local__gd__clut, Xmm(in[i]), Xmm(mask[i]));
}
} else {
for(int i = 0; i < pixels; i++) {
Gather4Texel(Xmm(out[i]), _m_local__gd__tex, Xmm(in[i]), Xmm(mask[i]));
}
}
}
static void Gather4Texel(const Xmm& dst, const Reg64& base, const Xmm& addr, const Xmm& Mask)
{
//void vpgatherdd(const Xmm& x1, const Address& addr, const Xmm& x2)
vpcmpeqd(Mask, Mask);
vpgatherdd(dst, ptr[base + addr * 4], Mask);
}
#endif
#endif