mirror of
https://github.com/libretro/pcsx2.git
synced 2024-11-30 21:00:42 +00:00
ab9bdb009b
Update it to the version found at https://github.com/Microsoft/Windows-classic-samples , which is in an MIT licensed repo, and add the LICENSE file (edited to remove the SIL Open Font LICENSE part since that doesn't apply). Some modifications have been made to reduce the diff/stop git complaining (not including any file that wasn't in the previous version and removing the related header includes in streams.h, and fixing some but not all of the whitespace issues).
975 lines
33 KiB
C++
975 lines
33 KiB
C++
//------------------------------------------------------------------------------
|
|
// File: TransIP.cpp
|
|
//
|
|
// Desc: DirectShow base classes - implements class for simple Transform-
|
|
// In-Place filters such as audio.
|
|
//
|
|
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
// How allocators are decided.
|
|
//
|
|
// An in-place transform tries to do its work in someone else's buffers.
|
|
// It tries to persuade the filters on either side to use the same allocator
|
|
// (and for that matter the same media type). In desperation, if the downstream
|
|
// filter refuses to supply an allocator and the upstream filter offers only
|
|
// a read-only one then it will provide an allocator.
|
|
// if the upstream filter insists on a read-only allocator then the transform
|
|
// filter will (reluctantly) copy the data before transforming it.
|
|
//
|
|
// In order to pass an allocator through it needs to remember the one it got
|
|
// from the first connection to pass it on to the second one.
|
|
//
|
|
// It is good if we can avoid insisting on a particular order of connection
|
|
// (There is a precedent for insisting on the input
|
|
// being connected first. Insisting on the output being connected first is
|
|
// not allowed. That would break RenderFile.)
|
|
//
|
|
// The base pin classes (CBaseOutputPin and CBaseInputPin) both have a
|
|
// m_pAllocator member which is used in places like
|
|
// CBaseOutputPin::GetDeliveryBuffer and CBaseInputPin::Inactive.
|
|
// To avoid lots of extra overriding, we should keep these happy
|
|
// by using these pointers.
|
|
//
|
|
// When each pin is connected, it will set the corresponding m_pAllocator
|
|
// and will have a single ref-count on that allocator.
|
|
//
|
|
// Refcounts are acquired by GetAllocator calls which return AddReffed
|
|
// allocators and are released in one of:
|
|
// CBaseInputPin::Disconnect
|
|
// CBaseOutputPin::BreakConect
|
|
// In each case m_pAllocator is set to NULL after the release, so this
|
|
// is the last chance to ever release it. If there should ever be
|
|
// multiple refcounts associated with the same pointer, this had better
|
|
// be cleared up before that happens. To avoid such problems, we'll
|
|
// stick with one per pointer.
|
|
|
|
|
|
|
|
// RECONNECTING and STATE CHANGES
|
|
//
|
|
// Each pin could be disconnected, connected with a read-only allocator,
|
|
// connected with an upstream read/write allocator, connected with an
|
|
// allocator from downstream or connected with its own allocator.
|
|
// Five states for each pin gives a data space of 25 states.
|
|
//
|
|
// Notation:
|
|
//
|
|
// R/W == read/write
|
|
// R-O == read-only
|
|
//
|
|
// <input pin state> <output pin state> <comments>
|
|
//
|
|
// 00 means an unconnected pin.
|
|
// <- means using a R/W allocator from the upstream filter
|
|
// <= means using a R-O allocator from an upstream filter
|
|
// || means using our own (R/W) allocator.
|
|
// -> means using a R/W allocator from a downstream filter
|
|
// (a R-O allocator from downstream is nonsense, it can't ever work).
|
|
//
|
|
//
|
|
// That makes 25 possible states. Some states are nonsense (two different
|
|
// allocators from the same place). These are just an artifact of the notation.
|
|
// <= <- Nonsense.
|
|
// <- <= Nonsense
|
|
// Some states are illegal (the output pin never accepts a R-O allocator):
|
|
// 00 <= !! Error !!
|
|
// <= <= !! Error !!
|
|
// || <= !! Error !!
|
|
// -> <= !! Error !!
|
|
// Three states appears to be inaccessible:
|
|
// -> || Inaccessible
|
|
// || -> Inaccessible
|
|
// || <- Inaccessible
|
|
// Some states only ever occur as intermediates with a pending reconnect which
|
|
// is guaranteed to finish in another state.
|
|
// -> 00 ?? unstable goes to || 00
|
|
// 00 <- ?? unstable goes to 00 ||
|
|
// -> <- ?? unstable goes to -> ->
|
|
// <- || ?? unstable goes to <- <-
|
|
// <- -> ?? unstable goes to <- <-
|
|
// And that leaves 11 possible resting states:
|
|
// 1 00 00 Nothing connected.
|
|
// 2 <- 00 Input pin connected.
|
|
// 3 <= 00 Input pin connected using R-O allocator.
|
|
// 4 || 00 Needs several state changes to get here.
|
|
// 5 00 || Output pin connected using our allocator
|
|
// 6 00 -> Downstream only connected
|
|
// 7 || || Undesirable but can be forced upon us.
|
|
// 8 <= || Copy forced. <= -> is preferable
|
|
// 9 <= -> OK - forced to copy.
|
|
// 10 <- <- Transform in place (ideal)
|
|
// 11 -> -> Transform in place (ideal)
|
|
//
|
|
// The object of the exercise is to ensure that we finish up in states
|
|
// 10 or 11 whenever possible. State 10 is only possible if the upstream
|
|
// filter has a R/W allocator (the AVI splitter notoriously
|
|
// doesn't) and state 11 is only possible if the downstream filter does
|
|
// offer an allocator.
|
|
//
|
|
// The transition table (entries marked * go via a reconnect)
|
|
//
|
|
// There are 8 possible transitions:
|
|
// A: Connect upstream to filter with R-O allocator that insists on using it.
|
|
// B: Connect upstream to filter with R-O allocator but chooses not to use it.
|
|
// C: Connect upstream to filter with R/W allocator and insists on using it.
|
|
// D: Connect upstream to filter with R/W allocator but chooses not to use it.
|
|
// E: Connect downstream to a filter that offers an allocator
|
|
// F: Connect downstream to a filter that does not offer an allocator
|
|
// G: disconnect upstream
|
|
// H: Disconnect downstream
|
|
//
|
|
// A B C D E F G H
|
|
// ---------------------------------------------------------
|
|
// 00 00 1 | 3 3 2 2 6 5 . . |1 00 00
|
|
// <- 00 2 | . . . . *10/11 10 1 . |2 <- 00
|
|
// <= 00 3 | . . . . *9/11 *7/8 1 . |3 <= 00
|
|
// || 00 4 | . . . . *8 *7 1 . |4 || 00
|
|
// 00 || 5 | 8 7 *10 7 . . . 1 |5 00 ||
|
|
// 00 -> 6 | 9 11 *10 11 . . . 1 |6 00 ->
|
|
// || || 7 | . . . . . . 5 4 |7 || ||
|
|
// <= || 8 | . . . . . . 5 3 |8 <= ||
|
|
// <= -> 9 | . . . . . . 6 3 |9 <= ->
|
|
// <- <- 10| . . . . . . *5/6 2 |10 <- <-
|
|
// -> -> 11| . . . . . . 6 *2/3 |11 -> ->
|
|
// ---------------------------------------------------------
|
|
// A B C D E F G H
|
|
//
|
|
// All these states are accessible without requiring any filter to
|
|
// change its behaviour but not all transitions are accessible, for
|
|
// instance a transition from state 4 to anywhere other than
|
|
// state 8 requires that the upstream filter first offer a R-O allocator
|
|
// and then changes its mind and offer R/W. This is NOT allowable - it
|
|
// leads to things like the output pin getting a R/W allocator from
|
|
// upstream and then the input pin being told it can only have a R-O one.
|
|
// Note that you CAN change (say) the upstream filter for a different one, but
|
|
// only as a disconnect / connect, not as a Reconnect. (Exercise for
|
|
// the reader is to see how you get into state 4).
|
|
//
|
|
// The reconnection stuff goes as follows (some of the cases shown here as
|
|
// "no reconnect" may get one to finalise media type - an old story).
|
|
// If there is a reconnect where it says "no reconnect" here then the
|
|
// reconnection must not change the allocator choice.
|
|
//
|
|
// state 2: <- 00 transition E <- <- case C <- <- (no change)
|
|
// case D -> <- and then to -> ->
|
|
//
|
|
// state 2: <- 00 transition F <- <- (no reconnect)
|
|
//
|
|
// state 3: <= 00 transition E <= -> case A <= -> (no change)
|
|
// case B -> ->
|
|
// transition F <= || case A <= || (no change)
|
|
// case B || ||
|
|
//
|
|
// state 4: || 00 transition E || || case B -> || and then all cases to -> ->
|
|
// F || || case B || || (no change)
|
|
//
|
|
// state 5: 00 || transition A <= || (no reconnect)
|
|
// B || || (no reconnect)
|
|
// C <- || all cases <- <-
|
|
// D || || (unfortunate, but upstream's choice)
|
|
//
|
|
// state 6: 00 -> transition A <= -> (no reconnect)
|
|
// B -> -> (no reconnect)
|
|
// C <- -> all cases <- <-
|
|
// D -> -> (no reconnect)
|
|
//
|
|
// state 10:<- <- transition G 00 <- case E 00 ->
|
|
// case F 00 ||
|
|
//
|
|
// state 11:-> -> transition H -> 00 case A <= 00 (schizo)
|
|
// case B <= 00
|
|
// case C <- 00 (schizo)
|
|
// case D <- 00
|
|
//
|
|
// The Rules:
|
|
// To sort out media types:
|
|
// The input is reconnected
|
|
// if the input pin is connected and the output pin connects
|
|
// The output is reconnected
|
|
// If the output pin is connected
|
|
// and the input pin connects to a different media type
|
|
//
|
|
// To sort out allocators:
|
|
// The input is reconnected
|
|
// if the output disconnects and the input was using a downstream allocator
|
|
// The output pin calls SetAllocator to pass on a new allocator
|
|
// if the output is connected and
|
|
// if the input disconnects and the output was using an upstream allocator
|
|
// if the input acquires an allocator different from the output one
|
|
// and that new allocator is not R-O
|
|
//
|
|
// Data is copied (i.e. call getbuffer and copy the data before transforming it)
|
|
// if the two allocators are different.
|
|
|
|
|
|
|
|
// CHAINS of filters:
|
|
//
|
|
// We sit between two filters (call them A and Z). We should finish up
|
|
// with the same allocator on both of our pins and that should be the
|
|
// same one that A and Z would have agreed on if we hadn't been in the
|
|
// way. Furthermore, it should not matter how many in-place transforms
|
|
// are in the way. Let B, C, D... be in-place transforms ("us").
|
|
// Here's how it goes:
|
|
//
|
|
// 1.
|
|
// A connects to B. They agree on A's allocator.
|
|
// A-a->B
|
|
//
|
|
// 2.
|
|
// B connects to C. Same story. There is no point in a reconnect, but
|
|
// B will request an input reconnect anyway.
|
|
// A-a->B-a->C
|
|
//
|
|
// 3.
|
|
// C connects to Z.
|
|
// C insists on using A's allocator, but compromises by requesting a reconnect.
|
|
// of C's input.
|
|
// A-a->B-?->C-a->Z
|
|
//
|
|
// We now have pending reconnects on both A--->B and B--->C
|
|
//
|
|
// 4.
|
|
// The A--->B link is reconnected.
|
|
// A asks B for an allocator. B sees that it has a downstream connection so
|
|
// asks its downstream input pin i.e. C's input pin for an allocator. C sees
|
|
// that it too has a downstream connection so asks Z for an allocator.
|
|
//
|
|
// Even though Z's input pin is connected, it is being asked for an allocator.
|
|
// It could refuse, in which case the chain is done and will use A's allocator
|
|
// Alternatively, Z may supply one. A chooses either Z's or A's own one.
|
|
// B's input pin gets NotifyAllocator called to tell it the decision and it
|
|
// propagates this downstream by calling ReceiveAllocator on its output pin
|
|
// which calls NotifyAllocator on the next input pin downstream etc.
|
|
// If the choice is Z then it goes:
|
|
// A-z->B-a->C-a->Z
|
|
// A-z->B-z->C-a->Z
|
|
// A-z->B-z->C-z->Z
|
|
//
|
|
// And that's IT!! Any further (essentially spurious) reconnects peter out
|
|
// with no change in the chain.
|
|
|
|
#include <streams.h>
|
|
#include <measure.h>
|
|
#include <transip.h>
|
|
|
|
|
|
// =================================================================
|
|
// Implements the CTransInPlaceFilter class
|
|
// =================================================================
|
|
|
|
CTransInPlaceFilter::CTransInPlaceFilter
|
|
( __in_opt LPCTSTR pName,
|
|
__inout_opt LPUNKNOWN pUnk,
|
|
REFCLSID clsid,
|
|
__inout HRESULT *phr,
|
|
bool bModifiesData
|
|
)
|
|
: CTransformFilter(pName, pUnk, clsid),
|
|
m_bModifiesData(bModifiesData)
|
|
{
|
|
#ifdef PERF
|
|
RegisterPerfId();
|
|
#endif // PERF
|
|
|
|
} // constructor
|
|
|
|
#ifdef UNICODE
|
|
CTransInPlaceFilter::CTransInPlaceFilter
|
|
( __in_opt LPCSTR pName,
|
|
__inout_opt LPUNKNOWN pUnk,
|
|
REFCLSID clsid,
|
|
__inout HRESULT *phr,
|
|
bool bModifiesData
|
|
)
|
|
: CTransformFilter(pName, pUnk, clsid),
|
|
m_bModifiesData(bModifiesData)
|
|
{
|
|
#ifdef PERF
|
|
RegisterPerfId();
|
|
#endif // PERF
|
|
|
|
} // constructor
|
|
#endif
|
|
|
|
// return a non-addrefed CBasePin * for the user to addref if he holds onto it
|
|
// for longer than his pointer to us. We create the pins dynamically when they
|
|
// are asked for rather than in the constructor. This is because we want to
|
|
// give the derived class an oppportunity to return different pin objects
|
|
|
|
// As soon as any pin is needed we create both (this is different from the
|
|
// usual transform filter) because enumerators, allocators etc are passed
|
|
// through from one pin to another and it becomes very painful if the other
|
|
// pin isn't there. If we fail to create either pin we ensure we fail both.
|
|
|
|
CBasePin *
|
|
CTransInPlaceFilter::GetPin(int n)
|
|
{
|
|
HRESULT hr = S_OK;
|
|
|
|
// Create an input pin if not already done
|
|
|
|
if (m_pInput == NULL) {
|
|
|
|
m_pInput = new CTransInPlaceInputPin( NAME("TransInPlace input pin")
|
|
, this // Owner filter
|
|
, &hr // Result code
|
|
, L"Input" // Pin name
|
|
);
|
|
|
|
// Constructor for CTransInPlaceInputPin can't fail
|
|
ASSERT(SUCCEEDED(hr));
|
|
}
|
|
|
|
// Create an output pin if not already done
|
|
|
|
if (m_pInput!=NULL && m_pOutput == NULL) {
|
|
|
|
m_pOutput = new CTransInPlaceOutputPin( NAME("TransInPlace output pin")
|
|
, this // Owner filter
|
|
, &hr // Result code
|
|
, L"Output" // Pin name
|
|
);
|
|
|
|
// a failed return code should delete the object
|
|
|
|
ASSERT(SUCCEEDED(hr));
|
|
if (m_pOutput == NULL) {
|
|
delete m_pInput;
|
|
m_pInput = NULL;
|
|
}
|
|
}
|
|
|
|
// Return the appropriate pin
|
|
|
|
ASSERT (n>=0 && n<=1);
|
|
if (n == 0) {
|
|
return m_pInput;
|
|
} else if (n==1) {
|
|
return m_pOutput;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
} // GetPin
|
|
|
|
|
|
|
|
// dir is the direction of our pin.
|
|
// pReceivePin is the pin we are connecting to.
|
|
HRESULT CTransInPlaceFilter::CompleteConnect(PIN_DIRECTION dir, IPin *pReceivePin)
|
|
{
|
|
UNREFERENCED_PARAMETER(pReceivePin);
|
|
ASSERT(m_pInput);
|
|
ASSERT(m_pOutput);
|
|
|
|
// if we are not part of a graph, then don't indirect the pointer
|
|
// this probably prevents use of the filter without a filtergraph
|
|
if (!m_pGraph) {
|
|
return VFW_E_NOT_IN_GRAPH;
|
|
}
|
|
|
|
// Always reconnect the input to account for buffering changes
|
|
//
|
|
// Because we don't get to suggest a type on ReceiveConnection
|
|
// we need another way of making sure the right type gets used.
|
|
//
|
|
// One way would be to have our EnumMediaTypes return our output
|
|
// connection type first but more deterministic and simple is to
|
|
// call ReconnectEx passing the type we want to reconnect with
|
|
// via the base class ReconeectPin method.
|
|
|
|
if (dir == PINDIR_OUTPUT) {
|
|
if( m_pInput->IsConnected() ) {
|
|
return ReconnectPin( m_pInput, &m_pOutput->CurrentMediaType() );
|
|
}
|
|
return NOERROR;
|
|
}
|
|
|
|
ASSERT(dir == PINDIR_INPUT);
|
|
|
|
// Reconnect output if necessary
|
|
|
|
if( m_pOutput->IsConnected() ) {
|
|
|
|
if ( m_pInput->CurrentMediaType()
|
|
!= m_pOutput->CurrentMediaType()
|
|
) {
|
|
return ReconnectPin( m_pOutput, &m_pInput->CurrentMediaType() );
|
|
}
|
|
}
|
|
return NOERROR;
|
|
|
|
} // ComnpleteConnect
|
|
|
|
|
|
//
|
|
// DecideBufferSize
|
|
//
|
|
// Tell the output pin's allocator what size buffers we require.
|
|
// *pAlloc will be the allocator our output pin is using.
|
|
//
|
|
|
|
HRESULT CTransInPlaceFilter::DecideBufferSize
|
|
( IMemAllocator *pAlloc
|
|
, __inout ALLOCATOR_PROPERTIES *pProperties
|
|
)
|
|
{
|
|
ALLOCATOR_PROPERTIES Request, Actual;
|
|
HRESULT hr;
|
|
|
|
// If we are connected upstream, get his views
|
|
if (m_pInput->IsConnected()) {
|
|
// Get the input pin allocator, and get its size and count.
|
|
// we don't care about his alignment and prefix.
|
|
|
|
hr = InputPin()->PeekAllocator()->GetProperties(&Request);
|
|
if (FAILED(hr)) {
|
|
// Input connected but with a secretive allocator - enough!
|
|
return hr;
|
|
}
|
|
} else {
|
|
// Propose one byte
|
|
// If this isn't enough then when the other pin does get connected
|
|
// we can revise it.
|
|
ZeroMemory(&Request, sizeof(Request));
|
|
Request.cBuffers = 1;
|
|
Request.cbBuffer = 1;
|
|
}
|
|
|
|
|
|
DbgLog((LOG_MEMORY,1,TEXT("Setting Allocator Requirements")));
|
|
DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d"),
|
|
Request.cBuffers, Request.cbBuffer));
|
|
|
|
// Pass the allocator requirements to our output side
|
|
// but do a little sanity checking first or we'll just hit
|
|
// asserts in the allocator.
|
|
|
|
pProperties->cBuffers = Request.cBuffers;
|
|
pProperties->cbBuffer = Request.cbBuffer;
|
|
pProperties->cbAlign = Request.cbAlign;
|
|
if (pProperties->cBuffers<=0) {pProperties->cBuffers = 1; }
|
|
if (pProperties->cbBuffer<=0) {pProperties->cbBuffer = 1; }
|
|
hr = pAlloc->SetProperties(pProperties, &Actual);
|
|
|
|
if (FAILED(hr)) {
|
|
return hr;
|
|
}
|
|
|
|
DbgLog((LOG_MEMORY,1,TEXT("Obtained Allocator Requirements")));
|
|
DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d, Alignment %d"),
|
|
Actual.cBuffers, Actual.cbBuffer, Actual.cbAlign));
|
|
|
|
// Make sure we got the right alignment and at least the minimum required
|
|
|
|
if ( (Request.cBuffers > Actual.cBuffers)
|
|
|| (Request.cbBuffer > Actual.cbBuffer)
|
|
|| (Request.cbAlign > Actual.cbAlign)
|
|
) {
|
|
return E_FAIL;
|
|
}
|
|
return NOERROR;
|
|
|
|
} // DecideBufferSize
|
|
|
|
//
|
|
// Copy
|
|
//
|
|
// return a pointer to an identical copy of pSample
|
|
__out_opt IMediaSample * CTransInPlaceFilter::Copy(IMediaSample *pSource)
|
|
{
|
|
IMediaSample * pDest;
|
|
|
|
HRESULT hr;
|
|
REFERENCE_TIME tStart, tStop;
|
|
const BOOL bTime = S_OK == pSource->GetTime( &tStart, &tStop);
|
|
|
|
// this may block for an indeterminate amount of time
|
|
hr = OutputPin()->PeekAllocator()->GetBuffer(
|
|
&pDest
|
|
, bTime ? &tStart : NULL
|
|
, bTime ? &tStop : NULL
|
|
, m_bSampleSkipped ? AM_GBF_PREVFRAMESKIPPED : 0
|
|
);
|
|
|
|
if (FAILED(hr)) {
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT(pDest);
|
|
IMediaSample2 *pSample2;
|
|
if (SUCCEEDED(pDest->QueryInterface(IID_IMediaSample2, (void **)&pSample2))) {
|
|
HRESULT hrProps = pSample2->SetProperties(
|
|
FIELD_OFFSET(AM_SAMPLE2_PROPERTIES, pbBuffer),
|
|
(PBYTE)m_pInput->SampleProps());
|
|
pSample2->Release();
|
|
if (FAILED(hrProps)) {
|
|
pDest->Release();
|
|
return NULL;
|
|
}
|
|
} else {
|
|
if (bTime) {
|
|
pDest->SetTime(&tStart, &tStop);
|
|
}
|
|
|
|
if (S_OK == pSource->IsSyncPoint()) {
|
|
pDest->SetSyncPoint(TRUE);
|
|
}
|
|
if (S_OK == pSource->IsDiscontinuity() || m_bSampleSkipped) {
|
|
pDest->SetDiscontinuity(TRUE);
|
|
}
|
|
if (S_OK == pSource->IsPreroll()) {
|
|
pDest->SetPreroll(TRUE);
|
|
}
|
|
|
|
// Copy the media type
|
|
AM_MEDIA_TYPE *pMediaType;
|
|
if (S_OK == pSource->GetMediaType(&pMediaType)) {
|
|
pDest->SetMediaType(pMediaType);
|
|
DeleteMediaType( pMediaType );
|
|
}
|
|
|
|
}
|
|
|
|
m_bSampleSkipped = FALSE;
|
|
|
|
// Copy the sample media times
|
|
REFERENCE_TIME TimeStart, TimeEnd;
|
|
if (pSource->GetMediaTime(&TimeStart,&TimeEnd) == NOERROR) {
|
|
pDest->SetMediaTime(&TimeStart,&TimeEnd);
|
|
}
|
|
|
|
// Copy the actual data length and the actual data.
|
|
{
|
|
const long lDataLength = pSource->GetActualDataLength();
|
|
if (FAILED(pDest->SetActualDataLength(lDataLength))) {
|
|
pDest->Release();
|
|
return NULL;
|
|
}
|
|
|
|
// Copy the sample data
|
|
{
|
|
BYTE *pSourceBuffer, *pDestBuffer;
|
|
long lSourceSize = pSource->GetSize();
|
|
long lDestSize = pDest->GetSize();
|
|
|
|
ASSERT(lDestSize >= lSourceSize && lDestSize >= lDataLength);
|
|
|
|
if (FAILED(pSource->GetPointer(&pSourceBuffer)) ||
|
|
FAILED(pDest->GetPointer(&pDestBuffer)) ||
|
|
lDestSize < lDataLength ||
|
|
lDataLength < 0) {
|
|
pDest->Release();
|
|
return NULL;
|
|
}
|
|
ASSERT(lDestSize == 0 || pSourceBuffer != NULL && pDestBuffer != NULL);
|
|
|
|
CopyMemory( (PVOID) pDestBuffer, (PVOID) pSourceBuffer, lDataLength );
|
|
}
|
|
}
|
|
|
|
return pDest;
|
|
|
|
} // Copy
|
|
|
|
|
|
// override this to customize the transform process
|
|
|
|
HRESULT
|
|
CTransInPlaceFilter::Receive(IMediaSample *pSample)
|
|
{
|
|
/* Check for other streams and pass them on */
|
|
AM_SAMPLE2_PROPERTIES * const pProps = m_pInput->SampleProps();
|
|
if (pProps->dwStreamId != AM_STREAM_MEDIA) {
|
|
return m_pOutput->Deliver(pSample);
|
|
}
|
|
HRESULT hr;
|
|
|
|
// Start timing the TransInPlace (if PERF is defined)
|
|
MSR_START(m_idTransInPlace);
|
|
|
|
if (UsingDifferentAllocators()) {
|
|
|
|
// We have to copy the data.
|
|
|
|
pSample = Copy(pSample);
|
|
|
|
if (pSample==NULL) {
|
|
MSR_STOP(m_idTransInPlace);
|
|
return E_UNEXPECTED;
|
|
}
|
|
}
|
|
|
|
// have the derived class transform the data
|
|
hr = Transform(pSample);
|
|
|
|
// Stop the clock and log it (if PERF is defined)
|
|
MSR_STOP(m_idTransInPlace);
|
|
|
|
if (FAILED(hr)) {
|
|
DbgLog((LOG_TRACE, 1, TEXT("Error from TransInPlace")));
|
|
if (UsingDifferentAllocators()) {
|
|
pSample->Release();
|
|
}
|
|
return hr;
|
|
}
|
|
|
|
// the Transform() function can return S_FALSE to indicate that the
|
|
// sample should not be delivered; we only deliver the sample if it's
|
|
// really S_OK (same as NOERROR, of course.)
|
|
if (hr == NOERROR) {
|
|
hr = m_pOutput->Deliver(pSample);
|
|
} else {
|
|
// But it would be an error to return this private workaround
|
|
// to the caller ...
|
|
if (S_FALSE == hr) {
|
|
// S_FALSE returned from Transform is a PRIVATE agreement
|
|
// We should return NOERROR from Receive() in this cause because
|
|
// returning S_FALSE from Receive() means that this is the end
|
|
// of the stream and no more data should be sent.
|
|
m_bSampleSkipped = TRUE;
|
|
if (!m_bQualityChanged) {
|
|
NotifyEvent(EC_QUALITY_CHANGE,0,0);
|
|
m_bQualityChanged = TRUE;
|
|
}
|
|
hr = NOERROR;
|
|
}
|
|
}
|
|
|
|
// release the output buffer. If the connected pin still needs it,
|
|
// it will have addrefed it itself.
|
|
if (UsingDifferentAllocators()) {
|
|
pSample->Release();
|
|
}
|
|
|
|
return hr;
|
|
|
|
} // Receive
|
|
|
|
|
|
|
|
// =================================================================
|
|
// Implements the CTransInPlaceInputPin class
|
|
// =================================================================
|
|
|
|
|
|
// constructor
|
|
|
|
CTransInPlaceInputPin::CTransInPlaceInputPin
|
|
( __in_opt LPCTSTR pObjectName
|
|
, __inout CTransInPlaceFilter *pFilter
|
|
, __inout HRESULT *phr
|
|
, __in_opt LPCWSTR pName
|
|
)
|
|
: CTransformInputPin(pObjectName,
|
|
pFilter,
|
|
phr,
|
|
pName)
|
|
, m_bReadOnly(FALSE)
|
|
, m_pTIPFilter(pFilter)
|
|
{
|
|
DbgLog((LOG_TRACE, 2
|
|
, TEXT("CTransInPlaceInputPin::CTransInPlaceInputPin")));
|
|
|
|
} // constructor
|
|
|
|
|
|
// =================================================================
|
|
// Implements IMemInputPin interface
|
|
// =================================================================
|
|
|
|
|
|
// If the downstream filter has one then offer that (even if our own output
|
|
// pin is not using it yet. If the upstream filter chooses it then we will
|
|
// tell our output pin to ReceiveAllocator).
|
|
// Else if our output pin is using an allocator then offer that.
|
|
// ( This could mean offering the upstream filter his own allocator,
|
|
// it could mean offerring our own
|
|
// ) or it could mean offering the one from downstream
|
|
// Else fail to offer any allocator at all.
|
|
|
|
STDMETHODIMP CTransInPlaceInputPin::GetAllocator(__deref_out IMemAllocator ** ppAllocator)
|
|
{
|
|
CheckPointer(ppAllocator,E_POINTER);
|
|
ValidateReadWritePtr(ppAllocator,sizeof(IMemAllocator *));
|
|
CAutoLock cObjectLock(m_pLock);
|
|
|
|
HRESULT hr;
|
|
|
|
if ( m_pTIPFilter->m_pOutput->IsConnected() ) {
|
|
// Store the allocator we got
|
|
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
|
|
->GetAllocator( ppAllocator );
|
|
if (SUCCEEDED(hr)) {
|
|
m_pTIPFilter->OutputPin()->SetAllocator( *ppAllocator );
|
|
}
|
|
}
|
|
else {
|
|
// Help upstream filter (eg TIP filter which is having to do a copy)
|
|
// by providing a temp allocator here - we'll never use
|
|
// this allocator because when our output is connected we'll
|
|
// reconnect this pin
|
|
hr = CTransformInputPin::GetAllocator( ppAllocator );
|
|
}
|
|
return hr;
|
|
|
|
} // GetAllocator
|
|
|
|
|
|
|
|
/* Get told which allocator the upstream output pin is actually going to use */
|
|
|
|
|
|
STDMETHODIMP
|
|
CTransInPlaceInputPin::NotifyAllocator(
|
|
IMemAllocator * pAllocator,
|
|
BOOL bReadOnly)
|
|
{
|
|
HRESULT hr = S_OK;
|
|
CheckPointer(pAllocator,E_POINTER);
|
|
ValidateReadPtr(pAllocator,sizeof(IMemAllocator));
|
|
|
|
CAutoLock cObjectLock(m_pLock);
|
|
|
|
m_bReadOnly = bReadOnly;
|
|
// If we modify data then don't accept the allocator if it's
|
|
// the same as the output pin's allocator
|
|
|
|
// If our output is not connected just accept the allocator
|
|
// We're never going to use this allocator because when our
|
|
// output pin is connected we'll reconnect this pin
|
|
if (!m_pTIPFilter->OutputPin()->IsConnected()) {
|
|
return CTransformInputPin::NotifyAllocator(pAllocator, bReadOnly);
|
|
}
|
|
|
|
// If the allocator is read-only and we're modifying data
|
|
// and the allocator is the same as the output pin's
|
|
// then reject
|
|
if (bReadOnly && m_pTIPFilter->m_bModifiesData) {
|
|
IMemAllocator *pOutputAllocator =
|
|
m_pTIPFilter->OutputPin()->PeekAllocator();
|
|
|
|
// Make sure we have an output allocator
|
|
if (pOutputAllocator == NULL) {
|
|
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()->
|
|
GetAllocator(&pOutputAllocator);
|
|
if(FAILED(hr)) {
|
|
hr = CreateMemoryAllocator(&pOutputAllocator);
|
|
}
|
|
if (SUCCEEDED(hr)) {
|
|
m_pTIPFilter->OutputPin()->SetAllocator(pOutputAllocator);
|
|
pOutputAllocator->Release();
|
|
}
|
|
}
|
|
if (pAllocator == pOutputAllocator) {
|
|
hr = E_FAIL;
|
|
} else if(SUCCEEDED(hr)) {
|
|
// Must copy so set the allocator properties on the output
|
|
ALLOCATOR_PROPERTIES Props, Actual;
|
|
hr = pAllocator->GetProperties(&Props);
|
|
if (SUCCEEDED(hr)) {
|
|
hr = pOutputAllocator->SetProperties(&Props, &Actual);
|
|
}
|
|
if (SUCCEEDED(hr)) {
|
|
if ( (Props.cBuffers > Actual.cBuffers)
|
|
|| (Props.cbBuffer > Actual.cbBuffer)
|
|
|| (Props.cbAlign > Actual.cbAlign)
|
|
) {
|
|
hr = E_FAIL;
|
|
}
|
|
}
|
|
|
|
// Set the allocator on the output pin
|
|
if (SUCCEEDED(hr)) {
|
|
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
|
|
->NotifyAllocator( pOutputAllocator, FALSE );
|
|
}
|
|
}
|
|
} else {
|
|
hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
|
|
->NotifyAllocator( pAllocator, bReadOnly );
|
|
if (SUCCEEDED(hr)) {
|
|
m_pTIPFilter->OutputPin()->SetAllocator( pAllocator );
|
|
}
|
|
}
|
|
|
|
if (SUCCEEDED(hr)) {
|
|
|
|
// It's possible that the old and the new are the same thing.
|
|
// AddRef before release ensures that we don't unload it.
|
|
pAllocator->AddRef();
|
|
|
|
if( m_pAllocator != NULL )
|
|
m_pAllocator->Release();
|
|
|
|
m_pAllocator = pAllocator; // We have an allocator for the input pin
|
|
}
|
|
|
|
return hr;
|
|
|
|
} // NotifyAllocator
|
|
|
|
|
|
// EnumMediaTypes
|
|
// - pass through to our downstream filter
|
|
STDMETHODIMP CTransInPlaceInputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
|
|
{
|
|
// Can only pass through if connected
|
|
if( !m_pTIPFilter->m_pOutput->IsConnected() )
|
|
return VFW_E_NOT_CONNECTED;
|
|
|
|
return m_pTIPFilter->m_pOutput->GetConnected()->EnumMediaTypes( ppEnum );
|
|
|
|
} // EnumMediaTypes
|
|
|
|
|
|
// CheckMediaType
|
|
// - agree to anything if not connected,
|
|
// otherwise pass through to the downstream filter.
|
|
// This assumes that the filter does not change the media type.
|
|
|
|
HRESULT CTransInPlaceInputPin::CheckMediaType(const CMediaType *pmt )
|
|
{
|
|
HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
|
|
if (hr!=S_OK) return hr;
|
|
|
|
if( m_pTIPFilter->m_pOutput->IsConnected() )
|
|
return m_pTIPFilter->m_pOutput->GetConnected()->QueryAccept( pmt );
|
|
else
|
|
return S_OK;
|
|
|
|
} // CheckMediaType
|
|
|
|
|
|
// If upstream asks us what our requirements are, we will try to ask downstream
|
|
// if that doesn't work, we'll just take the defaults.
|
|
STDMETHODIMP
|
|
CTransInPlaceInputPin::GetAllocatorRequirements(__out ALLOCATOR_PROPERTIES *pProps)
|
|
{
|
|
|
|
if( m_pTIPFilter->m_pOutput->IsConnected() )
|
|
return m_pTIPFilter->OutputPin()
|
|
->ConnectedIMemInputPin()->GetAllocatorRequirements( pProps );
|
|
else
|
|
return E_NOTIMPL;
|
|
|
|
} // GetAllocatorRequirements
|
|
|
|
|
|
// CTransInPlaceInputPin::CompleteConnect() calls CBaseInputPin::CompleteConnect()
|
|
// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
|
|
// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not
|
|
// want to reconnect a pin if CBaseInputPin::CompleteConnect() fails.
|
|
HRESULT
|
|
CTransInPlaceInputPin::CompleteConnect(IPin *pReceivePin)
|
|
{
|
|
HRESULT hr = CBaseInputPin::CompleteConnect(pReceivePin);
|
|
if (FAILED(hr)) {
|
|
return hr;
|
|
}
|
|
|
|
return m_pTransformFilter->CompleteConnect(PINDIR_INPUT,pReceivePin);
|
|
} // CompleteConnect
|
|
|
|
|
|
// =================================================================
|
|
// Implements the CTransInPlaceOutputPin class
|
|
// =================================================================
|
|
|
|
|
|
// constructor
|
|
|
|
CTransInPlaceOutputPin::CTransInPlaceOutputPin(
|
|
__in_opt LPCTSTR pObjectName,
|
|
__inout CTransInPlaceFilter *pFilter,
|
|
__inout HRESULT * phr,
|
|
__in_opt LPCWSTR pPinName)
|
|
: CTransformOutputPin( pObjectName
|
|
, pFilter
|
|
, phr
|
|
, pPinName),
|
|
m_pTIPFilter(pFilter)
|
|
{
|
|
DbgLog(( LOG_TRACE, 2
|
|
, TEXT("CTransInPlaceOutputPin::CTransInPlaceOutputPin")));
|
|
|
|
} // constructor
|
|
|
|
|
|
// EnumMediaTypes
|
|
// - pass through to our upstream filter
|
|
STDMETHODIMP CTransInPlaceOutputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
|
|
{
|
|
// Can only pass through if connected.
|
|
if( ! m_pTIPFilter->m_pInput->IsConnected() )
|
|
return VFW_E_NOT_CONNECTED;
|
|
|
|
return m_pTIPFilter->m_pInput->GetConnected()->EnumMediaTypes( ppEnum );
|
|
|
|
} // EnumMediaTypes
|
|
|
|
|
|
|
|
// CheckMediaType
|
|
// - agree to anything if not connected,
|
|
// otherwise pass through to the upstream filter.
|
|
|
|
HRESULT CTransInPlaceOutputPin::CheckMediaType(const CMediaType *pmt )
|
|
{
|
|
// Don't accept any output pin type changes if we're copying
|
|
// between allocators - it's too late to change the input
|
|
// allocator size.
|
|
if (m_pTIPFilter->UsingDifferentAllocators() && !m_pFilter->IsStopped()) {
|
|
if (*pmt == m_mt) {
|
|
return S_OK;
|
|
} else {
|
|
return VFW_E_TYPE_NOT_ACCEPTED;
|
|
}
|
|
}
|
|
|
|
// Assumes the type does not change. That's why we're calling
|
|
// CheckINPUTType here on the OUTPUT pin.
|
|
HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
|
|
if (hr!=S_OK) return hr;
|
|
|
|
if( m_pTIPFilter->m_pInput->IsConnected() )
|
|
return m_pTIPFilter->m_pInput->GetConnected()->QueryAccept( pmt );
|
|
else
|
|
return S_OK;
|
|
|
|
} // CheckMediaType
|
|
|
|
|
|
/* Save the allocator pointer in the output pin
|
|
*/
|
|
void
|
|
CTransInPlaceOutputPin::SetAllocator(IMemAllocator * pAllocator)
|
|
{
|
|
pAllocator->AddRef();
|
|
if (m_pAllocator) {
|
|
m_pAllocator->Release();
|
|
}
|
|
m_pAllocator = pAllocator;
|
|
} // SetAllocator
|
|
|
|
|
|
// CTransInPlaceOutputPin::CompleteConnect() calls CBaseOutputPin::CompleteConnect()
|
|
// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
|
|
// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not want to
|
|
// reconnect a pin if CBaseOutputPin::CompleteConnect() fails.
|
|
// CBaseOutputPin::CompleteConnect() often fails when our output pin is being connected
|
|
// to the Video Mixing Renderer.
|
|
HRESULT
|
|
CTransInPlaceOutputPin::CompleteConnect(IPin *pReceivePin)
|
|
{
|
|
HRESULT hr = CBaseOutputPin::CompleteConnect(pReceivePin);
|
|
if (FAILED(hr)) {
|
|
return hr;
|
|
}
|
|
|
|
return m_pTransformFilter->CompleteConnect(PINDIR_OUTPUT,pReceivePin);
|
|
} // CompleteConnect
|