pcsx2/plugins/zzogl-pg/opengl/GS.h
gregory.hainaut 85bfc2ed66 zzogl:
* Fix context code for the common shader and set the indices for the uniform... (will fix most of GLSL-related  black screen issue)
* some memory improvements were not merged from zzogl-dev branch


git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5252 96395faa-99c1-11dd-bbfe-3dabce05a288
2012-06-01 08:21:31 +00:00

1137 lines
26 KiB
C++

/* ZZ Open GL graphics plugin
* Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com
* Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __GS_H__
#define __GS_H__
#define ZZNORMAL_MEMORY
#include "Util.h"
#include "GifTransfer.h"
#include "HostMemory.h"
#include "ZZoglShoots.h"
using namespace std;
extern float fFPS;
#ifdef _MSC_VER
#define EXPORT_C_(type) extern "C" type CALLBACK
#else
#define EXPORT_C_(type) extern "C" __attribute__((externally_visible,visibility("default"))) type
#endif
extern int g_LastCRC;
#define VB_NUMBUFFERS 128 // number of vbo buffer allocated
struct Vector_16F
{
u16 x, y, z, w;
};
// PS2 vertex
// Almost same as VertexGPU, controlled by prim.fst flags
struct Vertex
{
u16 x, y, f, resv0; // note: xy is 12d3
u32 rgba;
u32 z;
float s, t, q;
// Texel coordinate of vertex. Used if prim.fst == 1
// Bits 0-14 and 16-30 of UV
u16 u, v;
};
struct VertexGPU
{
// gained from XYZ2, XYZ3, XYZF2, XYZF3,
// X -- bits 0-15, Y-16-31. Z - 32-63 if no F used, 32-55 otherwise, F (fog) - 56-63
// X, Y stored in 12d3 format,
s16 x, y;
s16 f, resv0;
// Vertex color settings. RGB -- luminance of red/green/blue, A -- alpha. 1.0 == 0x80.
// Goes grom RGBAQ register, bits 0-7, 8-15, 16-23 and 24-31 accordingly
u32 rgba;
u32 z;
// Texture coordinates. S & T going from ST register (bits 0-31, and 32-63).
// Q goes from RGBAQ register, bits 32-63
float s, t, q;
void move_x(Vertex v, int offset)
{
x = ((((int)v.x - offset) >> 1) & 0xffff);
}
void move_y(Vertex v, int offset)
{
y = ((((int)v.y - offset) >> 1) & 0xffff);
}
void move_z(Vertex v, int mask)
{
z = (mask == 0xffff) ? min((u32)0xffff, v.z) : v.z;
}
void move_fog(Vertex v)
{
f = ((s16)(v).f << 7) | 0x7f;
}
void set_xy(s16 x1, s16 y1)
{
x = x1;
y = y1;
}
void set_xyz(s16 x1, s16 y1, u32 z1)
{
x = x1;
y = y1;
z = z1;
}
void set_st(float s1, float t1)
{
s = s1;
t = t1;
}
void set_stq(float s1, float t1, float q1)
{
s = s1;
t = t1;
q = q1;
}
void set_xyzst(s16 x1, s16 y1, u32 z1, float s1, float t1)
{
set_xyz(x1, y1, z1);
set_st(s1, t1);
}
};
extern GSconf conf;
// PSM values
// PSM types == Texture Storage Format
enum PSM_value{
PSMCT32 = 0, // 000000
PSMCT24 = 1, // 000001
PSMCT16 = 2, // 000010
PSMCT16S = 10, // 001010
PSMT8 = 19, // 010011
PSMT4 = 20, // 010100
PSMT8H = 27, // 011011
PSMT4HL = 36, // 100100
PSMT4HH = 44, // 101100
PSMT32Z = 48, // 110000
PSMT24Z = 49, // 110001
PSMT16Z = 50, // 110010
PSMT16SZ = 58, // 111010
PSMT_BAD_PSM = 63 // for every unknown psm.
};
// Check target bit mode. PSMCT32 and 32Z return 0, 24 and 24Z - 1
// 16, 16S, 16Z, 16SZ -- 2, PSMT8 and 8H - 3, PSMT4, 4HL, 4HH -- 4.
// This code returns the same value on Z-textures, so texel storage mode is (BITMODE and !ISZTEX).
inline int PSMT_BITMODE(int psm) {return (psm & 0x7);}
template <int psm>
inline int PSM_BITMODE() {return (psm & 0x7);}
inline int PSMT_BITS_NUM(int psm)
{
// Treat these as 32 bit.
if ((psm == PSMT8H) || (psm == PSMT4HL) || (psm == PSMT4HH))
{
return 4;
}
switch (PSMT_BITMODE(psm))
{
case 4:
return 0;
case 3:
return 1;
case 2:
return 2;
default:
return 4;
}
}
// CLUT = Color look up table. Set proper color to table according CLUT table.
// Used for PSMT8, PSMT8H, PSMT4, PSMT4HH, PSMT4HL textures
inline bool PSMT_ISCLUT(int psm) { return (PSMT_BITMODE(psm) > 2);}
// Check to see if it is 32 bits. According to code comments, anyways.
// I'll have to look closer at it, because it'd seem like it'd return true for 24 bits.
// Note: the function only works for clut format. Clut PSM is 4 bits only. The possible value are PSMCT32, PSMCT16, PSMCT16S
inline bool PSMT_IS32BIT(int psm) {return !!(psm <= 1);}
// PSMCT16, PSMCT16S, PSMT16Z, PSMT16SZ is 16-bit targets and usually there is
// two of them in each 32-bit word.
inline bool PSMT_IS16BIT(int psm) { return (PSMT_BITMODE(psm) == 2);}
template <int psm>
inline bool PSM_IS16BIT() { return ((psm & 0x7) == 2);}
// PSM16Z and PSMT16SZ use -1 offset to z-buff. Need to check this thesis.
inline bool PSMT_IS16Z(int psm) {return ((psm & 0x32) == 0x32);}
// PSMT32Z, PSMT24Z, PSMT16Z, PSMT16SZ is Z-buffer textures
inline bool PSMT_ISZTEX(int psm) {return ((psm & 0x30) == 0x30);}
// PSMCT16, PSMCT16S, PSMT8, PSMT8H, PSMT16Z and PSMT16SZ use only half 16 bit per pixel.
inline bool PSMT_ISHALF(int psm) {return ((psm & 2) == 2);}
template <int psm>
inline bool PSM_ISHALF() {return (psm & 2);}
// PSMT8 and PSMT8H use IDTEX8 CLUT, PSMT4H, PSMT4HL, PSMT4HH -- IDTEX4.
// Don't use it on non clut entries, please!
inline bool PSMT_IS8CLUT(int psm) {return ((psm & 3) == 3);}
// When color format is RGB24 (PSMCT24) or RGBA16 (PSMCT16 & 16S) alpha value expanded, based on
// TEXA register and AEM status.
inline int PSMT_ALPHAEXP(int psm) {return (psm == PSMCT24 || psm == PSMCT16 || psm == PSMCT16S);}
// Check, how many pixels would be stored in side. So 32 and 24 is 32-bit's (1 pixel),
// 16, 16S -- 16 bit's (2 pixels), 8 and 8H -- 4 pixels, and 4 -- 8 pixels.
inline int PSMT_BITCOUNT(int psm) {return (PSMT_BITMODE(psm) == 0) ? 1 : 1 << (PSMT_BITMODE(psm) - 1); }
template <int psm>
inline int PSM_BITCOUNT() {return (PSM_BITMODE<psm>() == 0) ? 1 : 1 << (PSM_BITMODE<psm>() - 1); }
// This function updates the 6th and 5th bit of psm
// 00 or 11 -> 00 ; 01 -> 10 ; 10 -> 01
inline int Switch_Top_Bytes (int X)
{
if ( ( X & 0x30 ) == 0 )
return X;
else
return (X ^ 0x30);
}
// How many pixel stored in 1 word.
// PSMT8 has 4 pixels per 32bit, PSMT4 has 8. All 16-bit textures are 2 pixel per bit. And all others are 1 pixel in texture.
inline int PIXELS_PER_WORD(int psm)
{
if (psm == PSMT8)
return 4;
if (psm == PSMT4)
return 8;
if (PSMT_IS16BIT(psm))
return 2;
return 1;
}
template <int psm>
inline int PSM_PIXELS_PER_WORD()
{
if (psm == PSMT8)
return 4;
if (psm == PSMT4)
return 8;
if (PSM_IS16BIT<psm>())
return 2;
return 1;
}
// Some psm does not have all pixels in memory.
template <int psm>
inline bool PSM_NON_FULL_WORD()
{
return ((psm == PSMCT24) || (psm == PSMT24Z) || (psm == PSMT8H) || (psm == PSMT4HL) || (psm == PSMT4HH));
}
inline bool PSM_NON_FULL_WORD(int psm)
{
return ((psm == PSMCT24) || (psm == PSMT24Z) || (psm == PSMT8H) || (psm == PSMT4HL) || (psm == PSMT4HH));
}
template <int psm>
inline int PSM_PIXEL_SHIFT()
{
if (!PSM_NON_FULL_WORD<psm>())
return 0;
switch (psm) {
case PSMCT24:
case PSMT24Z:
return 0;
case PSMT8H:
case PSMT4HL:
return 24;
case PSMT4HH:
return 28;
default: return 0;
}
}
template <int psm>
inline int PSM_BITS_PER_PIXEL()
{
switch (psm & 0x7) {
case 0: return 32;
case 1: return 24;
case 2: return 16;
case 3: return 8;
case 4: return 4;
default: return 0;
}
}
// Some storage formats could share the same memory block (2 textures in 1 format). This include following combinations:
// PSMT24(24Z) with either 8H, 4HL, 4HH and PSMT4HL with PSMT4HH.
// We use slightly different versions of this function on comparison with GSDX, Storage format XOR 0x30 made Z-textures
// similar to normal ones and change higher bits on short (8 and 4 bits) textures.
inline bool PSMT_HAS_SHARED_BITS (int fpsm, int tpsm) {
int SUM = Switch_Top_Bytes(fpsm) + Switch_Top_Bytes(tpsm) ;
return (SUM == 0x15 || SUM == 0x1D || SUM == 0x2C || SUM == 0x30);
}
// If a clut is in 32-bit color, its size is 4 bytes, and 16-bit clut has a 2 byte size.
inline int CLUT_PIXEL_SIZE(int cpsm) {return ((cpsm <= 1) ? 4 : 2); }
inline void PSMT_SET_BLOCK_SIZE (int psm, int& W, int&H, int& ppw) {
switch (PIXELS_PER_WORD(psm)) {
case 8:
W = 128; H = 128; ppw = 8;
case 4:
W = 128; H = 64; ppw = 4;
case 2:
W = 64; H = 64; ppw = 2;
default:
W = 32; H = 64; ppw = 1;
}
}
template <int psm>
inline int PSM_PIXELS_STORED_PER_WORD()
{
return 32 / PSM_BITS_PER_PIXEL<psm>();
}
template <int psm>
inline int PSM_BYTS_LOAD_PER_WRITE()
{
if (psm == PSMCT24 || psm == PSMT24Z) return 3;
return 4;
}
//----------------------- Data from registers -----------------------
typedef union
{
s64 SD;
u64 UD;
s32 SL[2];
u32 UL[2];
s16 SS[4];
u16 US[4];
s8 SC[8];
u8 UC[8];
} reg64;
/* general purpose regs structs */
typedef struct
{
int fbp;
int fbw;
int fbh;
int psm;
u32 fbm;
} frameInfo;
// Create frame structure from known data
inline frameInfo CreateFrame(int fbp, int fbw, int fbh, int psm, u32 fbm)
{
frameInfo frame;
frame.fbp = fbp;
frame.fbw = fbw;
frame.fbh = fbh;
frame.psm = psm;
frame.fbm = fbm;
return frame;
}
typedef struct
{
u16 prim;
union
{
struct
{
u16 iip : 1;
u16 tme : 1;
u16 fge : 1;
u16 abe : 1;
u16 aa1 : 1;
u16 fst : 1;
u16 ctxt : 1;
u16 fix : 1;
u16 resv : 8;
};
u16 _val;
};
} primInfo;
extern primInfo *prim;
typedef union
{
struct
{
u32 ate : 1;
u32 atst : 3;
u32 aref : 8;
u32 afail : 2;
u32 date : 1;
u32 datm : 1;
u32 zte : 1;
u32 ztst : 2;
u32 resv : 13;
};
u32 _val;
} pixTest;
typedef struct
{
int bp;
int bw;
int psm;
} bufInfo;
typedef struct
{
int tbp0;
int tbw;
int cbp;
u16 tw, th;
u8 psm;
u8 tcc;
u8 tfx;
u8 cpsm;
u8 csm;
u8 csa;
u8 cld;
} tex0Info;
union tex_0_info
{
struct
{
u64 tbp0 : 14;
u64 tbw : 6;
u64 psm : 6;
u64 tw : 4;
u64 th : 4;
u64 tcc : 1;
u64 tfx : 2;
u64 cbp : 14;
u64 cpsm : 4;
u64 csm : 1;
u64 csa : 5;
u64 cld : 3;
};
u64 _u64;
u32 _u32[2];
u16 _u16[4];
u8 _u8[8];
tex_0_info(u64 data) { _u64 = data; }
tex_0_info(u32 data) { _u32[0] = data; _u32[1] = 0; }
tex_0_info(u32 data0, u32 data1) { _u32[0] = data0; _u32[1] = data1; }
u32 tbw_mult()
{
if (tbw == 0)
return 64;
else
return ((u32)tbw << 6);
}
u32 psm_fix()
{
// ZZLog::Debug_Log("psm %d\n", psm);
if (psm == 9) return 1;
return psm;
}
u32 tw_exp()
{
if (tw > 10) return (1 << 10);
return (1 << tw);
}
u32 th_exp()
{
if (th > 10) return (1 << 10);
return (1 << th);
}
u32 cpsm_fix()
{
return cpsm & 0xe;
}
u32 csa_fix()
{
if (cpsm < 2)
return (csa & 0xf);
else
return (csa & 0x1f);
}
};
#define TEX_MODULATE 0
#define TEX_DECAL 1
#define TEX_HIGHLIGHT 2
#define TEX_HIGHLIGHT2 3
//bool SaveTexture(const char* filename, u32 textarget, u32 tex, int width, int height, int ext_format = 0);
extern void SaveTex(tex0Info* ptex, int usevid);
extern char* NamedSaveTex(tex0Info* ptex, int usevid);
typedef struct
{
int lcm;
int mxl;
int mmag;
int mmin;
int mtba;
int l;
int k;
} tex1Info;
typedef struct
{
int wms;
int wmt;
int minu;
int maxu;
int minv;
int maxv;
} clampInfo;
typedef struct
{
int cbw;
int cou;
int cov;
} clutInfo;
typedef struct
{
int tbp[3];
int tbw[3];
} miptbpInfo;
typedef struct
{
u16 aem;
u8 ta[2];
} texaInfo;
typedef struct
{
int sx;
int sy;
int dx;
int dy;
int diry;
int dirx;
} trxposInfo;
typedef struct
{
union
{
struct
{
u8 a : 2;
u8 b : 2;
u8 c : 2;
u8 d : 2;
};
u8 abcd;
};
u8 fix : 8;
} alphaInfo;
typedef struct
{
u16 zbp; // u16 address / 64
u8 psm;
u8 zmsk;
} zbufInfo;
typedef struct
{
int fba;
} fbaInfo;
enum transfer_types
{
XFER_HOST_TO_LOCAL = 0,
XFER_LOCAL_TO_HOST = 1,
XFER_LOCAL_TO_LOCAL = 2,
XFER_DEACTIVATED = 3
};
typedef struct
{
Vertex gsvertex[4]; // circular buffer that contains the vertex
Vertex gsTriFanVertex; // Base of triangle fan primitive vertex
u32 rgba; // global color for flat shading texture
float q;
Vertex vertexregs; // accumulation buffer that collect current vertex data
int primC; // number of verts current storing
int primIndex; // current prim index
int nTriFanVert; // remember the index of the base of triangle fan
int new_tri_fan; // 1 if we process a new triangle fan primitive. 0 otherwise
int prac;
int dthe;
int colclamp;
int fogcol;
int smask;
int pabe;
u64 buff[2];
int buffsize;
int cbp[2]; // internal cbp registers
u32 CSRw;
primInfo _prim[2];
bufInfo srcbuf, srcbufnew;
bufInfo dstbuf, dstbufnew;
clutInfo clut;
texaInfo texa;
trxposInfo trxpos, trxposnew;
int imageTransfer;
bool transferring;
Point image, imageEnd;
Size imageNew, imageTemp;
pathInfo path[4];
GIFRegDIMX dimx;
GSMemory mem;
GSClut clut_buffer;
// Subject to change.
int vsync, interlace;
int primNext(int inc = 1)
{
// Note: ArraySize(gsvertex) == 2^n => modulo is replaced by an and instruction
return ((primIndex + inc) % ArraySize(gsvertex));
}
int primPrev(int dec = 1)
{
// Note: assert( dec <= ArraySize(gsvertex) );
// Note: ArraySize(gsvertex) == 2^n => modulo is replaced by an and instruction
return ((primIndex + (ArraySize(gsvertex) - dec)) % ArraySize(gsvertex));
}
void setRGBA(u32 r, u32 g, u32 b, u32 a)
{
rgba = (r & 0xff) |
((g & 0xff) << 8) |
((b & 0xff) << 16) |
((a & 0xff) << 24);
}
inline void add_vertex(u16 x, u16 y, u32 z, u16 f)
{
vertexregs.x = x;
vertexregs.y = y;
vertexregs.z = z;
vertexregs.f = f;
if (likely(!new_tri_fan)) {
gsvertex[primIndex] = vertexregs;
} else {
gsTriFanVertex = vertexregs;
new_tri_fan = false;
}
}
inline void add_vertex(u16 x, u16 y, u32 z)
{
vertexregs.x = x;
vertexregs.y = y;
vertexregs.z = z;
if (likely(!new_tri_fan)) {
gsvertex[primIndex] = vertexregs;
} else {
gsTriFanVertex = vertexregs;
new_tri_fan = false;
}
}
} GSinternal;
extern GSinternal gs;
// Note the function is used in a template parameter so it must be declared extern
// Note2: In this case extern is not compatible with __forceinline so just inline it...
extern inline u16 RGBA32to16(u32 c)
{
return (u16)((((c) & 0x000000f8) >> 3) |
(((c) & 0x0000f800) >> 6) |
(((c) & 0x00f80000) >> 9) |
(((c) & 0x80000000) >> 16));
}
static __forceinline u32 RGBA16to32(u16 c)
{
return (((c) & 0x001f) << 3) |
(((c) & 0x03e0) << 6) |
(((c) & 0x7c00) << 9) |
(((c) & 0x8000) ? 0xff000000 : 0);
}
#ifndef ZZNORMAL_MEMORY
// converts float16 [0,1] to BYTE [0,255] (assumes value is in range, otherwise will take lower 8bits)
// f is a u16
static __forceinline u16 Float16ToBYTE(u16 f)
{
//assert( !(f & 0x8000) );
if (f & 0x8000) return 0;
u16 d = ((((f & 0x3ff) | 0x400) * 255) >> (10 - ((f >> 10) & 0x1f) + 15));
return d > 255 ? 255 : d;
}
static __forceinline u16 Float16ToALPHA(u16 f)
{
//assert( !(f & 0x8000) );
if (f & 0x8000) return 0;
// round up instead of down (crash and burn), too much and charlie breaks
u16 d = (((((f & 0x3ff) | 0x400)) * 255) >> (10 - ((f >> 10) & 0x1f) + 15));
d = (d) >> 1;
return d > 255 ? 255 : d;
}
#ifndef COLOR_ARGB
#define COLOR_ARGB(a,r,g,b) \
((u32)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff)))
#endif
// assumes that positive in [1,2] (then extracts fraction by just looking at the specified bits)
#define Float16ToBYTE_2(f) ((u8)(*(u16*)&f>>2))
#define Float16To5BIT(f) (Float16ToBYTE(f)>>3)
#define Float16Alpha(f) (((*(u16*)&f&0x7c00)>=0x3900)?0x8000:0) // alpha is >= 1
// converts an array of 4 u16s to a u32 color
// f is a pointer to a u16
#define Float16ToARGB(f) COLOR_ARGB(Float16ToALPHA(f.w), Float16ToBYTE(f.x), Float16ToBYTE(f.y), Float16ToBYTE(f.z));
#define Float16ToARGB16(f) (Float16Alpha(f.w)|(Float16To5BIT(f.x)<<10)|(Float16To5BIT(f.y)<<5)|Float16To5BIT(f.z))
// used for Z values
#define Float16ToARGB_Z(f) COLOR_ARGB((u32)Float16ToBYTE_2(f.w), Float16ToBYTE_2(f.x), Float16ToBYTE_2(f.y), Float16ToBYTE_2(f.z))
#define Float16ToARGB16_Z(f) ((Float16ToBYTE_2(f.y)<<8)|Float16ToBYTE_2(f.z))
#endif
inline float Clamp(float fx, float fmin, float fmax)
{
if (fx < fmin) return fmin;
return fx > fmax ? fmax : fx;
}
// Get pixel storage format from tex0. Clutted textures store pixels in cpsm format.
inline int PIXEL_STORAGE_FORMAT(const tex0Info& tex) {
if (PSMT_ISCLUT(tex.psm))
return tex.cpsm;
else
return tex.psm;
}
// If pixel storage format not PSMCT24 ot PSMCT32, then it is 16-bit.
// Z-textures have 0x30 upper bits, so we eliminate them by &&(~0x30)
inline bool PSMT_ISHALF_STORAGE(const tex0Info& tex0) { return ((PIXEL_STORAGE_FORMAT(tex0) & (~0x30)) > 1); }
//--------------------------- Inlines for bitwise ops
//--------------------------- textures
// Tex0Info (TEXD_x registers) bits, lower word
// The register is really 64-bit, but we use 2 32bit ones to represent it
// Obtain tbp0 -- Texture Buffer Base Pointer (Word Address/64) -- from data. Bits 0-13.
static __forceinline int ZZOglGet_tbp0_TexBits(u32 data)
{
//return tex_0_info(data).tbp0;
return (data) & 0x3fff;
}
// Obtain tbw -- Texture Buffer Width (Texels/64) -- from data, do not multiply to 64. Bits 14-19
// ( data & 0xfc000 ) >> 14
static __forceinline int ZZOglGet_tbw_TexBits(u32 data)
{
//return tex_0_info(data).tbw;
return (data >> 14) & 0x3f;
}
// Obtain tbw -- Texture Buffer Width (Texels) -- from data, do multiply to 64, never return 0.
static __forceinline int ZZOglGet_tbw_TexBitsMult(u32 data)
{
//return text_0_info(data).tbw_mult();
int result = ZZOglGet_tbw_TexBits(data);
if (result == 0)
return 64;
else
return (result << 6);
}
// Obtain psm -- Pixel Storage Format -- from data. Bits 20-25.
// (data & 0x3f00000) >> 20
static __forceinline int ZZOglGet_psm_TexBits(u32 data)
{
//return tex_0_info(data).psm;
return ((data >> 20) & 0x3f);
}
// Obtain psm -- Pixel Storage Format -- from data. Bits 20-25. Fix incorrect psm == 9
static __forceinline int ZZOglGet_psm_TexBitsFix(u32 data)
{
//return tex_0_info(data).psm_fix();
int result = ZZOglGet_psm_TexBits(data) ;
// ZZLog::Debug_Log("result %d", result);
if (result == 9) result = 1;
return result;
}
// Obtain tw -- Texture Width (Width = 2^TW) -- from data. Bits 26-29
// (data & 0x3c000000)>>26
static __forceinline u16 ZZOglGet_tw_TexBits(u32 data)
{
//return tex_0_info(data).tw;
return ((data >> 26) & 0xf);
}
// Obtain tw -- Texture Width (Width = TW) -- from data. Width could newer be more than 1024.
static __forceinline u16 ZZOglGet_tw_TexBitsExp(u32 data)
{
//return tex_0_info(data).tw_exp();
u16 result = ZZOglGet_tw_TexBits(data);
if (result > 10) result = 10;
return (1 << result);
}
// TH set at the border of upper and higher words.
// Obtain th -- Texture Height (Height = 2^TH) -- from data. Bits 30-31 lower, 0-1 higher
// (dataLO & 0xc0000000) >> 30 + (dataHI & 0x3) * 0x4
static __forceinline u16 ZZOglGet_th_TexBits(u32 dataLO, u32 dataHI)
{
//return tex_0_info(dataLO, dataHI).th;
return (((dataLO >> 30) & 0x3) | ((dataHI & 0x3) << 2));
}
// Obtain th --Texture Height (Height = 2^TH) -- from data. Height could newer be more than 1024.
static __forceinline u16 ZZOglGet_th_TexBitsExp(u32 dataLO, u32 dataHI)
{
//return tex_0_info(dataLO, dataHI).th_exp();
u16 result = ZZOglGet_th_TexBits(dataLO, dataHI);
if (result > 10) result = 10;
return (1 << result);
}
// Tex0Info bits, higher word.
// Obtain tcc -- Texture Color Component 0=RGB, 1=RGBA + use Alpha from TEXA reg when not in PSM -- from data. Bit 3
// (data & 0x4)>>2
static __forceinline u8 ZZOglGet_tcc_TexBits(u32 data)
{
//return tex_0_info(0, data).tcc;
return ((data >> 2) & 0x1);
}
// Obtain tfx -- Texture Function (0=modulate, 1=decal, 2=hilight, 3=hilight2) -- from data. Bit 4-5
// (data & 0x18)>>3
static __forceinline u8 ZZOglGet_tfx_TexBits(u32 data)
{
//return tex_0_info(0, data).tfx;
return ((data >> 3) & 0x3);
}
// Obtain cbp from data -- Clut Buffer Base Pointer (Address/256) -- Bits 5-18
// (data & 0x7ffe0)>>5
static __forceinline int ZZOglGet_cbp_TexBits(u32 data)
{
//return tex_0_info(0, data).cbp;
return ((data >> 5) & 0x3fff);
}
// Obtain cpsm from data -- Clut pixel Storage Format -- Bits 19-22. 22nd is at no use.
// (data & 0x700000)>>19
// 0000 - psmct32; 0010 - psmct16; 1010 - psmct16s.
static __forceinline u8 ZZOglGet_cpsm_TexBits(u32 data)
{
//return (tex_0_info(0, data).cpsm & 0xe);
return ((data >> 19) & 0xe);
}
// Obtain csm -- I don't know what is it -- from data. Bit 23
// (data & 0x800000)>>23
// csm is the clut storage mode. 0 for CSM1, 1 for CSM2.
static __forceinline u8 ZZOglGet_csm_TexBits(u32 data)
{
//return tex_0_info(0, data).csm;
return ((data >> 23) & 0x1);
}
// Obtain csa -- -- from data. Bits 24-28
// (data & 0x1f000000)>>24
static __forceinline u8 ZZOglGet_csa_TexBits(u32 data)
{
//return tex_0_info(0, data).csa_fix();
if ((data & 0x700000) == 0) // it is cpsm < 2 check
return ((data >> 24) & 0xf);
else
return ((data >> 24) & 0x1f);
}
// Obtain cld -- -- from data. Bits 29-31
// (data & 0xe0000000)>>29
static __forceinline u8 ZZOglGet_cld_TexBits(u32 data)
{
//return tex_0_info(0, data).cld;
return ((data >> 29) & 0x7);
}
//-------------------------- frames
// FrameInfo bits.
// Obtain fbp -- frame Buffer Base Pointer (Word Address/2048) -- from data. Bits 0-15
inline int ZZOglGet_fbp_FrameBits(u32 data)
{
return ((data) & 0x1ff);
}
// So we got address / 64, henceby frame fbp and tex tbp have the same dimension -- "real address" is x64.
inline int ZZOglGet_fbp_FrameBitsMult(u32 data)
{
return (ZZOglGet_fbp_FrameBits(data) << 5);
}
// Obtain fbw -- width (Texels/64) -- from data. Bits 16-23
inline int ZZOglGet_fbw_FrameBits(u32 data)
{
return ((data >> 16) & 0x3f);
}
inline int ZZOglGet_fbw_FrameBitsMult(u32 data)
{
return (ZZOglGet_fbw_FrameBits(data) << 6);
}
// Obtain psm -- Pixel Storage Format -- from data. Bits 24-29.
// (data & 0x3f000000) >> 24
inline int ZZOglGet_psm_FrameBits(u32 data)
{
return ((data >> 24) & 0x3f);
}
// Function for calculating overal height from frame data.
inline int ZZOgl_fbh_Calc(int fbp, int fbw, int psm)
{
int fbh = (1024 * 1024 - 64 * fbp) / fbw;
fbh &= ~0x1f;
if (PSMT_ISHALF(psm)) fbh *= 2;
if (fbh > 1024) fbh = 1024;
//ZZLog::Debug_Log("ZZOgl_fbh_Calc: 0x%x", fbh);
return fbh;
}
inline int ZZOgl_fbh_Calc(frameInfo frame)
{
return ZZOgl_fbh_Calc(frame.fbp, frame.fbw, frame.psm);
}
// Calculate fbh from data, It does not set in register
inline int ZZOglGet_fbh_FrameBitsCalc(u32 data)
{
int fbh = 0;
int fbp = ZZOglGet_fbp_FrameBits(data);
int fbw = ZZOglGet_fbw_FrameBits(data);
int psm = ZZOglGet_psm_FrameBits(data);
if (fbw > 0) fbh = ZZOgl_fbh_Calc(fbp, fbw, psm) ;
return fbh ;
}
// Obtain fbm -- frame mask -- from data. All higher word.
inline u32 ZZOglGet_fbm_FrameBits(u32 data)
{
return (data);
}
// Obtain fbm -- frame mask -- from data. All higher word. Fixed from psm == PCMT24 (without alpha)
inline u32 ZZOglGet_fbm_FrameBitsFix(u32 dataLO, u32 dataHI)
{
if (PSMT_BITMODE(ZZOglGet_psm_FrameBits(dataLO)) == 1)
return (dataHI | 0xff000000);
else
return dataHI;
}
// obtain colormask RED
inline u32 ZZOglGet_fbmRed_FrameBits(u32 data)
{
return (data & 0xff);
}
// obtain colormask Green
inline u32 ZZOglGet_fbmGreen_FrameBits(u32 data)
{
return ((data >> 8) & 0xff);
}
// obtain colormask Blue
inline u32 ZZOglGet_fbmBlue_FrameBits(u32 data)
{
return ((data >> 16) & 0xff);
}
// obtain colormask Alpha
inline u32 ZZOglGet_fbmAlpha_FrameBits(u32 data)
{
return ((data >> 24) & 0xff);
}
// obtain colormask Alpha
inline u32 ZZOglGet_fbmHighByte(u32 data)
{
return (!!(data & 0x80000000));
}
//-------------------------- tex0 comparison
// Check if old and new tex0 registers have only clut difference
inline bool ZZOglAllExceptClutIsSame(const u32* oldtex, const u32* newtex)
{
return ((oldtex[0] == newtex[0]) && ((oldtex[1] & 0x1f) == (newtex[1] & 0x1f)));
}
// Check if the CLUT registers are same, except CLD
inline bool ZZOglClutMinusCLDunchanged(const u32* oldtex, const u32* newtex)
{
return ((oldtex[1] & 0x1fffffe0) == (newtex[1] & 0x1fffffe0));
}
// Check if CLUT storage mode is not changed (CSA, CSM and CSPM)
inline bool ZZOglClutStorageUnchanged(const u32* oldtex, const u32* newtex)
{
return ((oldtex[1] & 0x1ff10000) == (newtex[1] & 0x1ff10000));
}
// call to load CLUT data (depending on CLD)
void texClutWrite(int ctx);
// Perform clutting for flushed texture. Better check if it needs a prior call.
inline void CluttingForFlushedTex(tex0Info* tex0, u32 Data, int ictx)
{
tex0->cbp = ZZOglGet_cbp_TexBits(Data);
tex0->cpsm = ZZOglGet_cpsm_TexBits(Data);
tex0->csm = ZZOglGet_csm_TexBits(Data);
tex0->csa = ZZOglGet_csa_TexBits(Data);
tex0->cld = ZZOglGet_cld_TexBits(Data);
texClutWrite(ictx);
};
// CSA and CPSM bitmask 0001 1111 0111 1000 ...
// 60 56 52
#define CPSM_CSA_BITMASK 0x1f780000
#define CPSM_CSA_NOTMASK 0xe0870000
// I'll find a good place for these later.
extern PSM_value PSM_value_Table[64];
extern bool allowed_psm[256]; // in ZZoglMem.cpp.cpp
inline void FillAlowedPsnTable() {
allowed_psm[PSMCT32] = true;
allowed_psm[PSMCT24] = true;
allowed_psm[PSMCT16] = true;
allowed_psm[PSMCT16S] = true;
allowed_psm[PSMT8] = true;
allowed_psm[PSMT4] = true;
allowed_psm[PSMT8H] = true;
allowed_psm[PSMT4HH] = true;
allowed_psm[PSMT4HL] = true;
allowed_psm[PSMT32Z] = true;
allowed_psm[PSMT24Z] = true;
allowed_psm[PSMT16Z] = true;
allowed_psm[PSMT16SZ] = true;
PSM_value_Table[PSMCT32] = PSMCT32;
PSM_value_Table[PSMCT24] = PSMCT24;
PSM_value_Table[PSMCT16] = PSMCT16;
PSM_value_Table[PSMCT16S] = PSMCT16S;
PSM_value_Table[PSMT8] = PSMT8;
PSM_value_Table[PSMT4] = PSMT4;
PSM_value_Table[PSMT8H] = PSMT8H;
PSM_value_Table[PSMT4HH] = PSMT4HH;
PSM_value_Table[PSMT4HL] = PSMT4HL;
PSM_value_Table[PSMT32Z] = PSMT32Z;
PSM_value_Table[PSMT24Z] = PSMT24Z;
PSM_value_Table[PSMT16Z] = PSMT16Z;
PSM_value_Table[PSMT16SZ] = PSMT16SZ;
};
#endif