pcsx2/plugins/zzogl-pg/opengl/targets.cpp
gregory.hainaut 86ff5185b7 zzogl & VS: thanks Micove for the patch.
* fix failure with VS2008 & 2010


git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5169 96395faa-99c1-11dd-bbfe-3dabce05a288
2012-04-21 16:13:45 +00:00

1292 lines
37 KiB
C++

/* ZZ Open GL graphics plugin
* Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com
* Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdlib.h>
#include <math.h>
#include "GS.h"
#include "Mem.h"
#include "x86.h"
#include "targets.h"
#include "ZZoglShaders.h"
#include "ZZClut.h"
#include "ZZoglVB.h"
#include "Util.h"
#define RHA
//#define RW
extern int g_TransferredToGPU;
#if !defined(ZEROGS_DEVBUILD)
# define INC_RESOLVE()
#else
# define INC_RESOLVE() ++g_nResolve
#endif
extern int s_nResolved;
extern u32 g_nResolve;
extern bool g_bSaveTrans;
CRenderTargetMngr s_RTs, s_DepthRTs;
CBitwiseTextureMngr s_BitwiseTextures;
CMemoryTargetMngr g_MemTargs;
//extern u32 s_ptexCurSet[2];
bool g_bSaveZUpdate = 0;
int VALIDATE_THRESH = 8;
u32 TEXDESTROY_THRESH = 16;
#define FORCE_TEXDESTROY_THRESH (3) // destroy texture after FORCE_TEXDESTROY_THRESH frames
void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm, bool mode);
void SetWriteDepth();
bool IsWriteDepth();
bool IsWriteDestAlphaTest();
//--------------------------------------------------
inline bool CheckWidthIsSame(const frameInfo& frame, CRenderTarget* ptarg)
{
if (PSMT_ISHALF(frame.psm) == PSMT_ISHALF(ptarg->psm))
return (frame.fbw == ptarg->fbw);
if (PSMT_ISHALF(frame.psm))
return (frame.fbw == 2 * ptarg->fbw);
else
return (2 * frame.fbw == ptarg->fbw);
}
//////////////////////////////////////
// Texture Mngr For Bitwise AND Ops //
//////////////////////////////////////
void CBitwiseTextureMngr::Destroy()
{
FUNCLOG
for (map<u32, u32>::iterator it = mapTextures.begin(); it != mapTextures.end(); ++it)
{
glDeleteTextures(1, &it->second);
}
mapTextures.clear();
}
u32 CBitwiseTextureMngr::GetTexInt(u32 bitvalue, u32 ptexDoNotDelete)
{
FUNCLOG
if (mapTextures.size() > 32)
{
// randomly delete 8
for (map<u32, u32>::iterator it = mapTextures.begin(); it != mapTextures.end();)
{
if (!(rand()&3) && it->second != ptexDoNotDelete)
{
glDeleteTextures(1, &it->second);
mapTextures.erase(it++);
}
else
{
++it;
}
}
}
if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error before creation of bitmask texture.");
// create a new tex
u32 ptex;
glGenTextures(1, &ptex);
if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on generation of bitmask texture.");
vector<u16> data(GPU_TEXMASKWIDTH);
for (u32 i = 0; i < GPU_TEXMASKWIDTH; ++i)
{
data[i] = (((i << MASKDIVISOR) & bitvalue) << 6); // add the 1/2 offset so that
}
// data[GPU_TEXMASKWIDTH] = 0; // I remove GPU_TEXMASKWIDTH+1 element of this texture, because it was a reason of FFC crush
// Probably, some sort of PoT incompability in drivers.
glBindTexture(GL_TEXTURE_RECTANGLE, ptex);
if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on binding bitmask texture.");
TextureRect2(GL_LUMINANCE16, GPU_TEXMASKWIDTH, 1, GL_LUMINANCE, GL_UNSIGNED_SHORT, &data[0]);
if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on applying bitmask texture.");
// Removing clamping, as it seems lead to numerous troubles at some drivers
// Need to observe, may be clamping is not really needed.
/* setRectWrap2(GL_REPEAT);
GLint Error = glGetError();
if( Error != GL_NO_ERROR ) {
ERROR_LOG_SPAM_TEST("Failed to create bitmask texture; \t");
if (SPAM_PASS) {
ZZLog::Log("bitmask cache %d; \t", mapTextures.size());
switch (Error) {
case GL_INVALID_ENUM: ZZLog::Error_Log("Invalid enumerator.") ; break;
case GL_INVALID_VALUE: ZZLog::Error_Log("Invalid value."); break;
case GL_INVALID_OPERATION: ZZLog::Error_Log("Invalid operation."); break;
default: ZZLog::Error_Log("Error number: %d.", Error);
}
}
return 0;
}*/
mapTextures[bitvalue] = ptex;
return ptex;
}
void CRangeManager::RangeSanityCheck()
{
#ifdef _DEBUG
// sanity check
for (int i = 0; i < (int)ranges.size() - 1; ++i)
{
assert(ranges[i].end < ranges[i+1].start);
}
#endif
}
void CRangeManager::Insert(int start, int end)
{
FUNCLOG
int imin = 0, imax = (int)ranges.size(), imid;
RangeSanityCheck();
switch (ranges.size())
{
case 0:
ranges.push_back(RANGE(start, end));
return;
case 1:
if (end < ranges.front().start)
{
ranges.insert(ranges.begin(), RANGE(start, end));
}
else if (start > ranges.front().end)
{
ranges.push_back(RANGE(start, end));
}
else
{
if (start < ranges.front().start) ranges.front().start = start;
if (end > ranges.front().end) ranges.front().end = end;
}
return;
}
// find where start is
while (imin < imax)
{
imid = (imin + imax) >> 1;
assert(imid < (int)ranges.size());
if ((ranges[imid].end >= start) && ((imid == 0) || (ranges[imid-1].end < start)))
{
imin = imid;
break;
}
else if (ranges[imid].start > start)
{
imax = imid;
}
else
{
imin = imid + 1;
}
}
int startindex = imin;
if (startindex >= (int)ranges.size())
{
// non intersecting
assert(start > ranges.back().end);
ranges.push_back(RANGE(start, end));
return;
}
if (startindex == 0 && end < ranges.front().start)
{
ranges.insert(ranges.begin(), RANGE(start, end));
RangeSanityCheck();
return;
}
imin = 0;
imax = (int)ranges.size();
// find where end is
while (imin < imax)
{
imid = (imin + imax) >> 1;
assert(imid < (int)ranges.size());
if ((ranges[imid].end <= end) && ((imid == ranges.size() - 1) || (ranges[imid+1].start > end)))
{
imin = imid;
break;
}
else if (ranges[imid].start >= end)
{
imax = imid;
}
else
{
imin = imid + 1;
}
}
int endindex = imin;
if (startindex > endindex)
{
// create a new range
ranges.insert(ranges.begin() + startindex, RANGE(start, end));
RangeSanityCheck();
return;
}
if (endindex >= (int)ranges.size() - 1)
{
// pop until startindex is reached
int lastend = ranges.back().end;
int numpop = (int)ranges.size() - startindex - 1;
while (numpop-- > 0)
{
ranges.pop_back();
}
assert(start <= ranges.back().end);
if (start < ranges.back().start) ranges.back().start = start;
if (lastend > ranges.back().end) ranges.back().end = lastend;
if (end > ranges.back().end) ranges.back().end = end;
RangeSanityCheck();
return;
}
if (endindex == 0)
{
assert(end >= ranges.front().start);
if (start < ranges.front().start) ranges.front().start = start;
if (end > ranges.front().end) ranges.front().end = end;
RangeSanityCheck();
}
// somewhere in the middle
if (ranges[startindex].start < start) start = ranges[startindex].start;
if (startindex < endindex)
{
ranges.erase(ranges.begin() + startindex, ranges.begin() + endindex);
}
if (start < ranges[startindex].start) ranges[startindex].start = start;
if (end > ranges[startindex].end) ranges[startindex].end = end;
RangeSanityCheck();
}
CRangeManager s_RangeMngr; // manages overwritten memory
void ResolveInRange(int start, int end)
{
FUNCLOG
list<CRenderTarget*> listTargs = CreateTargetsList(start, end);
/* s_DepthRTs.GetTargs(start, end, listTargs);
s_RTs.GetTargs(start, end, listTargs);*/
if (listTargs.size() > 0)
{
FlushBoth();
// We need another list, because old one could be brocken by Flush().
listTargs.clear();
listTargs = CreateTargetsList(start, end);
/* s_DepthRTs.GetTargs(start, end, listTargs_1);
s_RTs.GetTargs(start, end, listTargs_1);*/
for (list<CRenderTarget*>::iterator it = listTargs.begin(); it != listTargs.end(); ++it)
{
// only resolve if not completely covered
if ((*it)->created == 123)
(*it)->Resolve();
else
ZZLog::Debug_Log("Resolving non-existing object! Destroy code %d.", (*it)->created);
}
}
}
//////////////////
// Transferring //
//////////////////
void FlushTransferRange(CRenderTarget* ptarg, int start, int end, int texstart, int texend)
{
int range_size = end - start;
if (!(ptarg->start < texend && ptarg->end > texstart))
{
// check if target is currently being used
if (!(conf.settings().no_quick_resolve))
{
if (ptarg->fbp != vb[0].gsfb.fbp)
{
if (ptarg->fbp != vb[1].gsfb.fbp)
{
// this render target currently isn't used and is not in the texture's way, so can safely ignore
// resolving it. Also the range has to be big enough compared to the target to really call it resolved
// (ffx changing screens, shadowhearts)
// start == ptarg->start, used for kh to transfer text
if (ptarg->IsDepth() || range_size > 0x50000 || ((conf.settings().quick_resolve_1) && start == ptarg->start))
ptarg->status |= CRenderTarget::TS_NeedUpdate | CRenderTarget::TS_Resolved;
return;
}
}
}
}
// the first range check was very rough; some games (dragonball z) have the zbuf in the same page as textures (but not overlapping)
// so detect that condition
if (ptarg->fbh % m_Blocks[ptarg->psm].height)
{
// get start of left-most boundry page
int targstart, targend;
GetRectMemAddressZero(targstart, targend, ptarg->psm, ptarg->fbw, ptarg->fbh & ~(m_Blocks[ptarg->psm].height - 1), ptarg->fbp, ptarg->fbw);
if (start >= targend)
{
// don't bother
if ((ptarg->fbh % m_Blocks[ptarg->psm].height) <= 2) return;
// calc how many bytes of the block that the page spans
}
}
if (start < ptarg->end && end > ptarg->start)
{
ptarg->status |= CRenderTarget::TS_Resolved;
if (conf.settings().no_depth_update || conf.settings().gust)
{
if (conf.settings().gust)
{
if (range_size > 0x40000)
{
ptarg->status |= CRenderTarget::TS_NeedUpdate;
return;
}
/*else
{
ZZLog::WriteLn("FlushTransferRange: Gust Hack - No update!");
}*/
}
if (conf.settings().no_depth_update)
{
if (!ptarg->IsDepth() || range_size > 0x1000)
{
ptarg->status |= CRenderTarget::TS_NeedUpdate;
return;
}
}
}
else
{
ptarg->status |= CRenderTarget::TS_NeedUpdate;
}
}
}
void FlushTransferRanges(const tex0Info* ptex)
{
FUNCLOG
assert(s_RangeMngr.ranges.size() > 0);
//bool bHasFlushed = false;
list<CRenderTarget*> listTransmissionUpdateTargs;
int texstart = -1, texend = -1;
if (ptex != NULL) // If ptex is NULL, texstart & texend will be -1.
{
GetRectMemAddressZero(texstart, texend, ptex->psm, ptex->tw, ptex->th, ptex->tbp0, ptex->tbw);
}
for (vector<CRangeManager::RANGE>::iterator itrange = s_RangeMngr.ranges.begin(); itrange != s_RangeMngr.ranges.end(); ++itrange)
{
int start = itrange->start;
int end = itrange->end;
listTransmissionUpdateTargs.clear();
listTransmissionUpdateTargs = CreateTargetsList(start, end);
for (list<CRenderTarget*>::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it)
{
CRenderTarget* ptarg = *it;
if ((ptarg->status & CRenderTarget::TS_Virtual)) continue;
FlushTransferRange(ptarg, start, end, texstart, texend);
}
g_MemTargs.ClearRange(start, end);
}
s_RangeMngr.Clear();
}
#if 0
// I removed some code here that wasn't getting called. The old versions #if'ed out below this.
#define RESOLVE_32_BIT(PSM, T, Tsrc, convfn) \
{ \
u32 mask, imask; \
\
if (PSMT_ISHALF(psm)) /* 16 bit */ \
{\
/* mask is shifted*/ \
imask = RGBA32to16(fbm);\
mask = (~imask)&0xffff;\
}\
else \
{\
mask = ~fbm;\
imask = fbm;\
}\
\
Tsrc* src = (Tsrc*)(psrc); \
T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \
int maxfbh = (MEMORY_END-fbp*256) / (sizeof(T) * fbw); \
if( maxfbh > fbh ) maxfbh = fbh; \
\
for(int i = 0; i < maxfbh; ++i) { \
for(int j = 0; j < fbw; ++j) { \
T dsrc = convfn(src[RW(j)]); \
dst = pPageOffset + getPixelAddress##PSM##_0(j, i, fbw); \
*dst = (dsrc & mask) | (*dst & imask); \
} \
src += RH(Pitch(fbw))/sizeof(Tsrc); \
} \
} \
#endif
#ifdef __LINUX__
//#define LOG_RESOLVE_PROFILE
#endif
template <typename Tdst, bool do_conversion>
inline void Resolve_32_Bit(const void* psrc, int fbp, int fbw, int fbh, const int psm, u32 fbm)
{
u32 mask, imask;
#ifdef LOG_RESOLVE_PROFILE
u32 startime = timeGetPreciseTime();
#endif
if (PSMT_ISHALF(psm)) /* 16 bit */
{
/* mask is shifted*/
imask = RGBA32to16(fbm);
mask = (~imask)&0xffff;
}
else
{
mask = ~fbm;
imask = fbm;
}
Tdst* pPageOffset = (Tdst*)g_pbyGSMemory + fbp*(256/sizeof(Tdst));
Tdst* dst;
Tdst dsrc;
int maxfbh = (MEMORY_END-fbp*256) / (sizeof(Tdst) * fbw);
if( maxfbh > fbh ) maxfbh = fbh;
#ifdef LOG_RESOLVE_PROFILE
ZZLog::Dev_Log("*** Resolve 32 bits: %dx%d in %x", maxfbh, fbw, psm);
#endif
// Start the src array at the end to reduce testing in loop
u32 raw_size = RH(Pitch(fbw))/sizeof(u32);
u32* src = (u32*)(psrc) + (maxfbh-1)*raw_size;
for(int i = maxfbh-1; i >= 0; --i) {
for(int j = fbw-1; j >= 0; --j) {
if (do_conversion) {
dsrc = RGBA32to16(src[RW(j)]);
} else {
dsrc = (Tdst)src[RW(j)];
}
// They are 3 methods to call the functions
// macro (compact, inline) but need a nice psm ; swich (inline) ; function pointer (compact)
// Use a switch to allow inlining of the getPixel function.
// Note: psm is const so the switch is completely optimized
// Function method example:
// dst = pPageOffset + getPixelFun_0[psm](j, i, fbw);
switch (psm)
{
case PSMCT32:
case PSMCT24:
dst = pPageOffset + getPixelAddress32_0(j, i, fbw);
break;
case PSMCT16:
dst = pPageOffset + getPixelAddress16_0(j, i, fbw);
break;
case PSMCT16S:
dst = pPageOffset + getPixelAddress16S_0(j, i, fbw);
break;
case PSMT32Z:
case PSMT24Z:
dst = pPageOffset + getPixelAddress32Z_0(j, i, fbw);
break;
case PSMT16Z:
dst = pPageOffset + getPixelAddress16Z_0(j, i, fbw);
break;
case PSMT16SZ:
dst = pPageOffset + getPixelAddress16SZ_0(j, i, fbw);
break;
}
*dst = (dsrc & mask) | (*dst & imask);
}
src -= raw_size;
}
#ifdef LOG_RESOLVE_PROFILE
ZZLog::Dev_Log("*** 32 bits: execution time %d", timeGetPreciseTime()-startime);
#endif
}
static const __aligned16 unsigned int pixel_5b_mask[4] = {0x0000001F, 0x0000001F, 0x0000001F, 0x0000001F};
#ifdef ZEROGS_SSE2
// The function process 2*2 pixels in 32bits. And 2*4 pixels in 16bits
template <u32 psm, u32 size, u32 pageTable[size][64], bool null_second_line, u32 INDEX>
__forceinline void update_8pixels_sse2(u32* src, u32* basepage, u32 i_msk, u32 j, u32 pix_mask, u32 src_pitch)
{
u32* base_ptr;
__m128i pixels_0;
__m128i pixel_0_low;
__m128i pixel_0_high;
__m128i pixels_1;
__m128i pixel_1_low;
__m128i pixel_1_high;
assert((i_msk&0x1) == 0); // Failure => wrong line selected
// Note: pixels have a special arrangement in column. Here a short description when AA.x = 0
//
// 32 bits format: 8x2 pixels: the idea is to read pixels 0-3
// It is easier to process 4 bits (we can not cross column bondary)
// 0 1 4 5 8 9 12 13
// 2 3 6 7 10 11 14 15
//
// 16 bits format: 16x2 pixels, each pixels have a lower and higher part.
// Here the idea to read 0L-3L & 0H-3H to combine lower and higher part this avoid
// data interleaving and useless read/write
// 0L 1L 4L 5L 8L 9L 12L 13L 0H 1H 4H 5H 8H 9H 12H 13H
// 2L 3L 6L 7L 10L 11L 14L 15L 2H 3H 6H 7H 10H 11H 14H 15H
//
if (AA.x == 2) {
// Note: pixels (32bits) are stored like that:
// p0 p0 p0 p0 p1 p1 p1 p1 p4 p4 p4 p4 p5 p5 p5 p5
// ...
// p2 p2 p2 p2 p3 p3 p3 p3 p6 p6 p6 p6 p7 p7 p7 p7
base_ptr = &src[((j+INDEX)<<2)];
pixel_0_low = _mm_loadl_epi64((__m128i*)(base_ptr + 3));
if (!null_second_line) pixel_0_high = _mm_loadl_epi64((__m128i*)(base_ptr + 3 + src_pitch));
if (PSMT_ISHALF(psm)) {
pixel_1_low = _mm_loadl_epi64((__m128i*)(base_ptr + 3 + 32));
if (!null_second_line) pixel_1_high = _mm_loadl_epi64((__m128i*)(base_ptr + 3 + 32 + src_pitch));
}
} else if(AA.x ==1) {
// Note: pixels (32bits) are stored like that:
// p0 p0 p1 p1 p4 p4 p5 p5
// ...
// p2 p2 p3 p3 p6 p6 p7 p7
base_ptr = &src[((j+INDEX)<<1)];
pixel_0_low = _mm_loadl_epi64((__m128i*)(base_ptr + 1));
if (!null_second_line) pixel_0_high = _mm_loadl_epi64((__m128i*)(base_ptr + 1 + src_pitch));
if (PSMT_ISHALF(psm)) {
pixel_1_low = _mm_loadl_epi64((__m128i*)(base_ptr + 1 + 16));
if (!null_second_line) pixel_1_high = _mm_loadl_epi64((__m128i*)(base_ptr + 1 + 16 + src_pitch));
}
} else {
// Note: pixels (32bits) are stored like that:
// p0 p1 p4 p5
// p2 p3 p6 p7
base_ptr = &src[(j+INDEX)];
pixel_0_low = _mm_loadl_epi64((__m128i*)base_ptr);
if (!null_second_line) pixel_0_high = _mm_loadl_epi64((__m128i*)(base_ptr + src_pitch));
if (PSMT_ISHALF(psm)) {
pixel_1_low = _mm_loadl_epi64((__m128i*)(base_ptr + 8));
if (!null_second_line) pixel_1_high = _mm_loadl_epi64((__m128i*)(base_ptr + 8 + src_pitch));
}
}
// 2nd line does not exist... Just duplicate the pixel value
if(null_second_line) {
pixel_0_high = pixel_0_low;
if (PSMT_ISHALF(psm)) pixel_1_high = pixel_1_low;
}
// Merge the 2 dword
pixels_0 = _mm_unpacklo_epi64(pixel_0_low, pixel_0_high);
if (PSMT_ISHALF(psm)) pixels_1 = _mm_unpacklo_epi64(pixel_1_low, pixel_1_high);
// transform pixel from ARGB:8888 to ARGB:1555
if (psm == PSMCT16 || psm == PSMCT16S) {
// shift pixel instead of the mask. It allow to keep 1 mask into a register
// instead of 4 (not enough room on x86...).
__m128i pixel_mask = _mm_load_si128((__m128i*)pixel_5b_mask);
__m128i pixel_0_B = _mm_srli_epi32(pixels_0, 3);
pixel_0_B = _mm_and_si128(pixel_0_B, pixel_mask);
__m128i pixel_0_G = _mm_srli_epi32(pixels_0, 11);
pixel_0_G = _mm_and_si128(pixel_0_G, pixel_mask);
__m128i pixel_0_R = _mm_srli_epi32(pixels_0, 19);
pixel_0_R = _mm_and_si128(pixel_0_R, pixel_mask);
// Note: because of the logical shift we do not need to mask the value
__m128i pixel_0_A = _mm_srli_epi32(pixels_0, 31);
// Realignment of pixels
pixel_0_A = _mm_slli_epi32(pixel_0_A, 15);
pixel_0_R = _mm_slli_epi32(pixel_0_R, 10);
pixel_0_G = _mm_slli_epi32(pixel_0_G, 5);
// rebuild a complete pixel
pixels_0 = _mm_or_si128(pixel_0_A, pixel_0_B);
pixels_0 = _mm_or_si128(pixels_0, pixel_0_G);
pixels_0 = _mm_or_si128(pixels_0, pixel_0_R);
// do the same for pixel_1
__m128i pixel_1_B = _mm_srli_epi32(pixels_1, 3);
pixel_1_B = _mm_and_si128(pixel_1_B, pixel_mask);
__m128i pixel_1_G = _mm_srli_epi32(pixels_1, 11);
pixel_1_G = _mm_and_si128(pixel_1_G, pixel_mask);
__m128i pixel_1_R = _mm_srli_epi32(pixels_1, 19);
pixel_1_R = _mm_and_si128(pixel_1_R, pixel_mask);
__m128i pixel_1_A = _mm_srli_epi32(pixels_1, 31);
// Realignment of pixels
pixel_1_A = _mm_slli_epi32(pixel_1_A, 15);
pixel_1_R = _mm_slli_epi32(pixel_1_R, 10);
pixel_1_G = _mm_slli_epi32(pixel_1_G, 5);
// rebuild a complete pixel
pixels_1 = _mm_or_si128(pixel_1_A, pixel_1_B);
pixels_1 = _mm_or_si128(pixels_1, pixel_1_G);
pixels_1 = _mm_or_si128(pixels_1, pixel_1_R);
}
// Move the pixels to higher parts and merge it with pixels_0
if (PSMT_ISHALF(psm)) {
pixels_1 = _mm_slli_epi32(pixels_1, 16);
pixels_0 = _mm_or_si128(pixels_0, pixels_1);
}
// Status 16 bits
// pixels_0 = p3H p3L p2H p2L p1H p1L p0H p0L
// Status 32 bits
// pixels_0 = p3 p2 p1 p0
// load the destination add
u32* dst_add;
if (PSMT_ISHALF(psm))
dst_add = basepage + (pageTable[i_msk][(INDEX)] >> 1);
else
dst_add = basepage + pageTable[i_msk][(INDEX)];
// Save some memory access when pix_mask is 0.
if (pix_mask) {
// Build fbm mask (tranform a u32 to a 4 packets u32)
// In 16 bits texture one packet is "0000 DATA"
__m128i imask = _mm_cvtsi32_si128(pix_mask);
imask = _mm_shuffle_epi32(imask, 0);
// apply the mask on new values
pixels_0 = _mm_andnot_si128(imask, pixels_0);
__m128i old_pixels_0;
__m128i final_pixels_0;
old_pixels_0 = _mm_and_si128(imask, _mm_load_si128((__m128i*)dst_add));
final_pixels_0 = _mm_or_si128(old_pixels_0, pixels_0);
_mm_store_si128((__m128i*)dst_add, final_pixels_0);
} else {
// Note: because we did not read the previous value of add. We could bypass the cache.
// We gains a few percents
_mm_stream_si128((__m128i*)dst_add, pixels_0);
}
}
// Update 2 lines of a page (2*64 pixels)
template <u32 psm, u32 size, u32 pageTable[size][64], bool null_second_line>
__forceinline void update_pixels_row_sse2(u32* src, u32* basepage, u32 i_msk, u32 j, u32 pix_mask, u32 raw_size)
{
update_8pixels_sse2<psm, size, pageTable, null_second_line, 0>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 2>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 4>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 6>(src, basepage, i_msk, j, pix_mask, raw_size);
if(!PSMT_ISHALF(psm)) {
update_8pixels_sse2<psm, size, pageTable, null_second_line, 8>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 10>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 12>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 14>(src, basepage, i_msk, j, pix_mask, raw_size);
}
update_8pixels_sse2<psm, size, pageTable, null_second_line, 16>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 18>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 20>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 22>(src, basepage, i_msk, j, pix_mask, raw_size);
if(!PSMT_ISHALF(psm)) {
update_8pixels_sse2<psm, size, pageTable, null_second_line, 24>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 26>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 28>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 30>(src, basepage, i_msk, j, pix_mask, raw_size);
}
update_8pixels_sse2<psm, size, pageTable, null_second_line, 32>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 34>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 36>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 38>(src, basepage, i_msk, j, pix_mask, raw_size);
if(!PSMT_ISHALF(psm)) {
update_8pixels_sse2<psm, size, pageTable, null_second_line, 40>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 42>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 44>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 46>(src, basepage, i_msk, j, pix_mask, raw_size);
}
update_8pixels_sse2<psm, size, pageTable, null_second_line, 48>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 50>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 52>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 54>(src, basepage, i_msk, j, pix_mask, raw_size);
if(!PSMT_ISHALF(psm)) {
update_8pixels_sse2<psm, size, pageTable, null_second_line, 56>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 58>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 60>(src, basepage, i_msk, j, pix_mask, raw_size);
update_8pixels_sse2<psm, size, pageTable, null_second_line, 62>(src, basepage, i_msk, j, pix_mask, raw_size);
}
}
template <u32 psm, u32 size, u32 pageTable[size][64]>
void Resolve_32_Bit_sse2(const void* psrc, int fbp, int fbw, int fbh, u32 fbm)
{
// Note a basic implementation was done in Resolve_32_Bit function
#ifdef LOG_RESOLVE_PROFILE
u32 startime = timeGetPreciseTime();
#endif
u32 pix_mask;
if (PSMT_ISHALF(psm)) /* 16 bit format */
{
/* Use 2 16bits mask */
u32 pix16_mask = RGBA32to16(fbm);
pix_mask = (pix16_mask<<16) | pix16_mask;
}
else
pix_mask = fbm;
// Note GS register: frame_register__fbp is specified in units of the 32 bits address divided by 2048
// fbp is stored as 32*frame_register__fbp
u32* pPageOffset = (u32*)g_pbyGSMemory + (fbp/32)*2048;
int maxfbh;
int memory_space = MEMORY_END-(fbp/32)*2048*4;
if (PSMT_ISHALF(psm))
maxfbh = memory_space / (2*fbw);
else
maxfbh = memory_space / (4*fbw);
if( maxfbh > fbh ) maxfbh = fbh;
#ifdef LOG_RESOLVE_PROFILE
ZZLog::Dev_Log("*** Resolve 32 to 32 bits: %dx%d. Frame Mask %x. Format %x", maxfbh, fbw, pix_mask, psm);
#endif
// Start the src array at the end to reduce testing in loop
// If maxfbh is odd, proces maxfbh -1 alone and then go back to maxfbh -3
u32 raw_size = RH(Pitch(fbw))/sizeof(u32);
u32* src;
if (maxfbh&0x1) {
ZZLog::Dev_Log("*** Warning resolve 32bits have an odd number of lines");
// decrease maxfbh to process the bottom line (maxfbh-1)
maxfbh--;
src = (u32*)(psrc) + maxfbh*raw_size;
u32 i_msk = maxfbh & (size-1);
// Note fbw is a multiple of 64. So you can unroll the loop 64 times
for(int j = (fbw - 64); j >= 0; j -= 64) {
u32* basepage = pPageOffset + ((maxfbh/size) * (fbw/64) + (j/64)) * 2048;
update_pixels_row_sse2<psm, size, pageTable, true>(src, basepage, i_msk, j, pix_mask, raw_size);
}
// realign the src pointer to process others lines
src -= 2*raw_size;
} else {
// Because we process 2 lines at once go back to maxfbh-2.
src = (u32*)(psrc) + (maxfbh-2)*raw_size;
}
// Note i must be even for the update_8pixels functions
assert((maxfbh&0x1) == 0);
for(int i = (maxfbh-2); i >= 0; i -= 2) {
u32 i_msk = i & (size-1);
// Note fbw is a multiple of 64. So you can unroll the loop 64 times
for(int j = (fbw - 64); j >= 0; j -= 64) {
u32* basepage = pPageOffset + ((i/size) * (fbw/64) + (j/64)) * 2048;
update_pixels_row_sse2<psm, size, pageTable, false>(src, basepage, i_msk, j, pix_mask, raw_size);
}
// Note update_8pixels process 2 lines at onces hence the factor 2
src -= 2*raw_size;
}
if(!pix_mask) {
// Ensure that previous (out of order) write are done. It must be done after non temporal instruction
// (or *_stream_* intrinsic)
_mm_sfence();
}
#ifdef LOG_RESOLVE_PROFILE
ZZLog::Dev_Log("*** 32 bits: execution time %d", timeGetPreciseTime()-startime);
#endif
}
#endif
void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm, bool mode = true)
{
FUNCLOG
int start, end;
s_nResolved += 2;
// align the rect to the nearest page
// note that fbp is always aligned on page boundaries
GetRectMemAddressZero(start, end, psm, fbw, fbh, fbp, fbw);
// Comment this to restore the previous resolve_32 version
#define OPTI_RESOLVE_32
// start the conversion process A8R8G8B8 -> psm
switch (psm)
{
// NOTE pass psm as a constant value otherwise gcc does not do its job. It keep
// the psm switch in Resolve_32_Bit
case PSMCT32:
case PSMCT24:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMCT32, 32, g_pageTable32 >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u32, false >(psrc, fbp, fbw, fbh, PSMCT32, fbm);
#endif
break;
case PSMCT16:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMCT16, 64, g_pageTable16 >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u16, true >(psrc, fbp, fbw, fbh, PSMCT16, fbm);
#endif
break;
case PSMCT16S:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMCT16S, 64, g_pageTable16S >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u16, true >(psrc, fbp, fbw, fbh, PSMCT16S, fbm);
#endif
break;
case PSMT32Z:
case PSMT24Z:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMT32Z, 32, g_pageTable32Z >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u32, false >(psrc, fbp, fbw, fbh, PSMT32Z, fbm);
#endif
break;
case PSMT16Z:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMT16Z, 64, g_pageTable16Z >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u16, false >(psrc, fbp, fbw, fbh, PSMT16Z, fbm);
#endif
break;
case PSMT16SZ:
#if defined(ZEROGS_SSE2) && defined(OPTI_RESOLVE_32)
Resolve_32_Bit_sse2<PSMT16SZ, 64, g_pageTable16SZ >(psrc, fbp, fbw, fbh, fbm);
#else
Resolve_32_Bit<u16, false >(psrc, fbp, fbw, fbh, PSMT16SZ, fbm);
#endif
break;
}
g_MemTargs.ClearRange(start, end);
INC_RESOLVE();
}
// Leaving this code in for reference for the moment.
#if 0
void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm, bool mode)
{
FUNCLOG
//GL_REPORT_ERRORD();
s_nResolved += 2;
// align the rect to the nearest page
// note that fbp is always aligned on page boundaries
int start, end;
GetRectMemAddressZero(start, end, psm, fbw, fbh, fbp, fbw);
int i, j;
//short smask1 = gs.smask&1;
//short smask2 = gs.smask&2;
u32 mask, imask;
if (PSMT_ISHALF(psm)) // 16 bit
{
// mask is shifted
imask = RGBA32to16(fbm);
mask = (~imask) & 0xffff;
}
else
{
mask = ~fbm;
imask = fbm;
if ((psm&0xf) > 0 && 0)
{
// preserve the alpha?
mask &= 0x00ffffff;
imask |= 0xff000000;
}
}
// Targets over 2000 should be shuffle. FFX and KH2 (0x2100)
int X = (psm == 0) ? 0 : 0;
//if (X == 1)
//ZZLog::Error_Log("resolve: %x %x %x %x (%x-%x).", psm, fbp, fbw, fbh, start, end);
#define RESOLVE_32BIT(psm, T, Tsrc, blockbits, blockwidth, blockheight, convfn, frame, aax, aay) \
{ \
Tsrc* src = (Tsrc*)(psrc); \
T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \
int srcpitch = Pitch(fbw) * blockheight/sizeof(Tsrc); \
int maxfbh = (MEMORY_END-fbp*256) / (sizeof(T) * fbw); \
if( maxfbh > fbh ) maxfbh = fbh; \
for(i = 0; i < (maxfbh&~(blockheight-1))*X; i += blockheight) { \
/*if( smask2 && (i&1) == smask1 ) continue; */ \
for(j = 0; j < fbw; j += blockwidth) { \
/* have to write in the tiled format*/ \
frame##SwizzleBlock##blockbits(pPageOffset + getPixelAddress##psm##_0(j, i, fbw), \
src+RW(j), Pitch(fbw)/sizeof(Tsrc), mask); \
} \
src += RH(srcpitch); \
} \
for(; i < maxfbh; ++i) { \
for(j = 0; j < fbw; ++j) { \
T dsrc = convfn(src[RW(j)]); \
dst = pPageOffset + getPixelAddress##psm##_0(j, i, fbw); \
*dst = (dsrc & mask) | (*dst & imask); \
} \
src += RH(Pitch(fbw))/sizeof(Tsrc); \
} \
} \
if( GetRenderFormat() == RFT_byte8 ) {
// start the conversion process A8R8G8B8 -> psm
switch (psm)
{
case PSMCT32:
case PSMCT24:
if (AA.y)
{
RESOLVE_32BIT(32, u32, u32, 32A4, 8, 8, (u32), Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(32, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0);
}
else
{
RESOLVE_32BIT(32, u32, u32, 32, 8, 8, (u32), Frame, 0, 0);
}
break;
case PSMCT16:
if (AA.y)
{
RESOLVE_32BIT(16, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(16, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0);
}
else
{
RESOLVE_32BIT(16, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0);
}
break;
case PSMCT16S:
if (AA.y)
{
RESOLVE_32BIT(16S, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(16S, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0);
}
else
{
RESOLVE_32BIT(16S, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0);
}
break;
case PSMT32Z:
case PSMT24Z:
if (AA.y)
{
RESOLVE_32BIT(32Z, u32, u32, 32A4, 8, 8, (u32), Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(32Z, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0);
}
else
{
RESOLVE_32BIT(32Z, u32, u32, 32, 8, 8, (u32), Frame, 0, 0);
}
break;
case PSMT16Z:
if (AA.y)
{
RESOLVE_32BIT(16Z, u16, u32, 16A4, 16, 8, (u16), Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(16Z, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0);
}
else
{
RESOLVE_32BIT(16Z, u16, u32, 16, 16, 8, (u16), Frame, 0, 0);
}
break;
case PSMT16SZ:
if (AA.y)
{
RESOLVE_32BIT(16SZ, u16, u32, 16A4, 16, 8, (u16), Frame, AA.x, AA.y);
}
else if (AA.x)
{
RESOLVE_32BIT(16SZ, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0);
}
else
{
RESOLVE_32BIT(16SZ, u16, u32, 16, 16, 8, (u16), Frame, 0, 0);
}
break;
}
}
else // float16
{
switch (psm)
{
case PSMCT32:
case PSMCT24:
if (AA.y)
{
RESOLVE_32BIT(32, u32, Vector_16F, 32A4, 8, 8, Float16ToARGB, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(32, u32, Vector_16F, 32A2, 8, 8, Float16ToARGB, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(32, u32, Vector_16F, 32, 8, 8, Float16ToARGB, Frame16, 0, 0);
}
break;
case PSMCT16:
if (AA.y)
{
RESOLVE_32BIT(16, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(16, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(16, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0);
}
break;
case PSMCT16S:
if (AA.y)
{
RESOLVE_32BIT(16S, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(16S, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(16S, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0);
}
break;
case PSMT32Z:
case PSMT24Z:
if (AA.y)
{
RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA4, 8, 8, Float16ToARGB_Z, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA2, 8, 8, Float16ToARGB_Z, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(32Z, u32, Vector_16F, 32Z, 8, 8, Float16ToARGB_Z, Frame16, 0, 0);
}
break;
case PSMT16Z:
if (AA.y)
{
RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(16Z, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0);
}
break;
case PSMT16SZ:
if (AA.y)
{
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1);
}
else if (AA.x)
{
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0);
}
else
{
RESOLVE_32BIT(16SZ, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0);
}
break;
}
}
g_MemTargs.ClearRange(start, end);
INC_RESOLVE();
}
#endif