ppsspp/GPU/Math3D.h

191 lines
4.2 KiB
C
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include <cmath>
template<typename T>
2012-11-01 15:19:01 +00:00
class Vec3
{
public:
struct
2012-11-01 15:19:01 +00:00
{
T x,y,z;
2012-11-01 15:19:01 +00:00
};
T* AsArray() { return &x; }
2012-11-01 15:19:01 +00:00
Vec3() {}
Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {}
Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {}
// Only implemented for T=int and T=float
static Vec3 FromRGB(unsigned int rgb);
static Vec3 AssignToAll(const T& f)
{
return Vec3<T>(f, f, f);
}
void Write(T a[3])
2012-11-01 15:19:01 +00:00
{
a[0] = x; a[1] = y; a[2] = z;
}
2012-11-01 15:19:01 +00:00
Vec3 operator +(const Vec3 &other) const
{
return Vec3(x+other.x, y+other.y, z+other.z);
}
void operator += (const Vec3 &other)
{
x+=other.x; y+=other.y; z+=other.z;
}
Vec3 operator -(const Vec3 &other) const
{
return Vec3(x-other.x, y-other.y, z-other.z);
}
void operator -= (const Vec3 &other)
{
x-=other.x; y-=other.y; z-=other.z;
}
Vec3 operator -() const
{
return Vec3(-x,-y,-z);
}
Vec3 Mul(const Vec3 &other) const
{
return Vec3(x*other.x, y*other.y, z*other.z);
}
template<typename V>
Vec3 operator * (const V& f) const
2012-11-01 15:19:01 +00:00
{
return Vec3(x*f,y*f,z*f);
}
template<typename V>
void operator *= (const V& f)
2012-11-01 15:19:01 +00:00
{
x*=f; y*=f; z*=f;
}
template<typename V>
Vec3 operator / (const V& f) const
2012-11-01 15:19:01 +00:00
{
return Vec3(x/f,y/f,z/f);
2012-11-01 15:19:01 +00:00
}
template<typename V>
void operator /= (const V& f)
2012-11-01 15:19:01 +00:00
{
*this = *this / f;
}
T Length2() const
2012-11-01 15:19:01 +00:00
{
return x*x + y*y + z*z;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec3 WithLength(const float l) const;
float Distance2To(Vec3 &other);
Vec3 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
2012-11-01 15:19:01 +00:00
{
return *((&x) + i);
}
T operator [] (const int i) const
2012-11-01 15:19:01 +00:00
{
return *((&x) + i);
}
2013-05-30 12:55:48 +00:00
Vec3 Lerp(const Vec3 &other, const float t) const
2012-11-01 15:19:01 +00:00
{
return (*this)*(1-t) + other*t;
}
2012-11-01 15:19:01 +00:00
void SetZero()
{
x=0; y=0; z=0;
2012-11-01 15:19:01 +00:00
}
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
T& u() { return x; }
T& v() { return y; }
T& w() { return z; }
T& r() { return x; }
T& g() { return y; }
T& b() { return z; }
T& s() { return x; }
T& t() { return y; }
T& q() { return z; }
const T& u() const { return x; }
const T& v() const { return y; }
const T& w() const { return z; }
const T& r() const { return x; }
const T& g() const { return y; }
const T& b() const { return z; }
const T& s() const { return x; }
const T& t() const { return y; }
const T& q() const { return z; }
2012-11-01 15:19:01 +00:00
};
template<typename T, typename V>
Vec3<T> operator * (const V& f, const Vec3<T>& vec)
{
return Vec3<T>(f*vec.x,f*vec.y,f*vec.z);
}
typedef Vec3<float> Vec3f;
2012-11-01 15:19:01 +00:00
inline void Vec3ByMatrix43(float vecOut[3], const float v[3], const float m[12])
{
vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6] + m[9];
vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7] + m[10];
vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8] + m[11];
}
inline void Norm3ByMatrix43(float vecOut[3], const float v[3], const float m[12])
{
vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6];
vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7];
vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8];
}
inline float Vec3Dot(const float v1[3], const float v2[3])
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
template<typename T>
inline T Dot(const Vec3<T>& a, const Vec3<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
inline Vec3<T> Cross(const Vec3<T>& a, const Vec3<T>& b)
{
return Vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}