IR: SIMD another matrix orientation. Fix various issues.

This commit is contained in:
Henrik Rydgard 2016-05-12 13:10:26 +02:00
parent cb251ea93f
commit 182674cddf

View File

@ -34,7 +34,7 @@
// All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly.
// Currently known non working ones should have DISABLE.
// #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
// #define CONDITIONAL_DISABLE { Comp_Generic(op); return; }
#define CONDITIONAL_DISABLE ;
#define DISABLE { Comp_Generic(op); return; }
@ -280,8 +280,9 @@ namespace MIPSComp {
}
void IRFrontend::Comp_VVectorInit(MIPSOpcode op) {
if (!js.HasNoPrefix())
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int type = (op >> 16) & 0xF;
@ -299,8 +300,9 @@ namespace MIPSComp {
}
void IRFrontend::Comp_VIdt(MIPSOpcode op) {
if (!js.HasNoPrefix())
if (js.HasUnknownPrefix()) {
DISABLE;
}
int vd = _VD;
VectorSize sz = GetVecSize(op);
@ -447,7 +449,18 @@ namespace MIPSComp {
GetVectorRegsPrefixT(tregs, sz, _VT);
GetVectorRegsPrefixD(dregs, sz, _VD);
if (allowSIMD && sz == V_Quad && IsConsecutive4(sregs) && IsConsecutive4(dregs) && IsConsecutive4(sregs)) {
int tempregs[4];
bool usingTemps = false;
for (int i = 0; i < n; i++) {
if (!IsOverlapSafe(dregs[i], i, n, sregs, n, tregs)) {
tempregs[i] = IRVTEMP_0 + i;
usingTemps = true;
} else {
tempregs[i] = dregs[i];
}
}
if (allowSIMD && sz == V_Quad && !usingTemps && IsConsecutive4(sregs) && IsConsecutive4(dregs) && IsConsecutive4(sregs)) {
IROp opFunc = IROp::Nop;
bool symmetric = false;
switch (op >> 26) {
@ -490,7 +503,6 @@ namespace MIPSComp {
if (opFunc != IROp::Nop) {
ir.Write(opFunc, dregs[0], sregs[0], tregs[0]);
}
ApplyPrefixD(dregs, sz);
return;
}
@ -500,30 +512,30 @@ namespace MIPSComp {
case 24: //VFPU0
switch ((op >> 23) & 7) {
case 0: // d[i] = s[i] + t[i]; break; //vadd
ir.Write(IROp::FAdd, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FAdd, tempregs[i], sregs[i], tregs[i]);
break;
case 1: // d[i] = s[i] - t[i]; break; //vsub
ir.Write(IROp::FSub, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FSub, tempregs[i], sregs[i], tregs[i]);
break;
case 7: // d[i] = s[i] / t[i]; break; //vdiv
ir.Write(IROp::FDiv, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FDiv, tempregs[i], sregs[i], tregs[i]);
break;
}
break;
case 25: //VFPU1
switch ((op >> 23) & 7) {
case 0: // d[i] = s[i] * t[i]; break; //vmul
ir.Write(IROp::FMul, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FMul, tempregs[i], sregs[i], tregs[i]);
break;
}
break;
case 27: //VFPU3
switch ((op >> 23) & 7) {
case 2: // vmin
ir.Write(IROp::FMin, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FMin, tempregs[i], sregs[i], tregs[i]);
break;
case 3: // vmax
ir.Write(IROp::FMax, dregs[i], sregs[i], tregs[i]);
ir.Write(IROp::FMax, tempregs[i], sregs[i], tregs[i]);
break;
case 6: // vsge
case 7: // vslt
@ -534,6 +546,12 @@ namespace MIPSComp {
}
}
for (int i = 0; i < n; i++) {
if (dregs[i] != tempregs[i]) {
ir.Write(IROp::FMov, dregs[i], tempregs[i]);
}
}
ApplyPrefixD(dregs, sz);
}
@ -556,6 +574,17 @@ namespace MIPSComp {
GetVectorRegsPrefixS(sregs, sz, vs);
GetVectorRegsPrefixD(dregs, sz, vd);
bool usingTemps = false;
int tempregs[4];
for (int i = 0; i < n; ++i) {
if (!IsOverlapSafe(dregs[i], i, n, sregs)) {
usingTemps = true;
tempregs[i] = IRVTEMP_0 + i;
} else {
tempregs[i] = dregs[i];
}
}
bool canSIMD = false;
// Some can be SIMD'd.
switch ((op >> 16) & 0x1f) {
@ -564,7 +593,7 @@ namespace MIPSComp {
break;
}
if (canSIMD && IsConsecutive4(sregs) && IsConsecutive4(dregs)) {
if (canSIMD && !usingTemps && IsConsecutive4(sregs) && IsConsecutive4(dregs)) {
switch ((op >> 16) & 0x1f) {
case 0: // vmov
ir.Write(IROp::Vec4Mov, dregs[0], sregs[0]);
@ -578,31 +607,31 @@ namespace MIPSComp {
switch ((op >> 16) & 0x1f) {
case 0: // d[i] = s[i]; break; //vmov
// Probably for swizzle.
ir.Write(IROp::FMov, dregs[i], sregs[i]);
ir.Write(IROp::FMov, tempregs[i], sregs[i]);
break;
case 1: // d[i] = fabsf(s[i]); break; //vabs
ir.Write(IROp::FAbs, dregs[i], sregs[i]);
ir.Write(IROp::FAbs, tempregs[i], sregs[i]);
break;
case 2: // d[i] = -s[i]; break; //vneg
ir.Write(IROp::FNeg, dregs[i], sregs[i]);
ir.Write(IROp::FNeg, tempregs[i], sregs[i]);
break;
case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0
ir.Write(IROp::FSat0_1, dregs[i], sregs[i]);
ir.Write(IROp::FSat0_1, tempregs[i], sregs[i]);
break;
case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1
ir.Write(IROp::FSatMinus1_1, dregs[i], sregs[i]);
ir.Write(IROp::FSatMinus1_1, tempregs[i], sregs[i]);
break;
case 16: // d[i] = 1.0f / s[i]; break; //vrcp
ir.Write(IROp::FRecip, dregs[i], sregs[i]);
ir.Write(IROp::FRecip, tempregs[i], sregs[i]);
break;
case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq
ir.Write(IROp::FRSqrt, dregs[i], sregs[i]);
ir.Write(IROp::FRSqrt, tempregs[i], sregs[i]);
break;
case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin
ir.Write(IROp::FSin, dregs[i], sregs[i]);
ir.Write(IROp::FSin, tempregs[i], sregs[i]);
break;
case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos
ir.Write(IROp::FCos, dregs[i], sregs[i]);
ir.Write(IROp::FCos, tempregs[i], sregs[i]);
break;
case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2
DISABLE;
@ -611,18 +640,18 @@ namespace MIPSComp {
DISABLE;
break;
case 22: // d[i] = sqrtf(s[i]); break; //vsqrt
ir.Write(IROp::FSqrt, dregs[i], sregs[i]);
ir.Write(IROp::FSqrt, tempregs[i], sregs[i]);
break;
case 23: // d[i] = asinf(s[i]) / M_PI_2; break; //vasin
ir.Write(IROp::FAsin, dregs[i], sregs[i]);
ir.Write(IROp::FAsin, tempregs[i], sregs[i]);
break;
case 24: // d[i] = -1.0f / s[i]; break; // vnrcp
ir.Write(IROp::FRecip, dregs[i], sregs[i]);
ir.Write(IROp::FNeg, dregs[i], dregs[i]);
ir.Write(IROp::FRecip, tempregs[i], sregs[i]);
ir.Write(IROp::FNeg, tempregs[i], tempregs[i]);
break;
case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin
ir.Write(IROp::FSin, dregs[i], sregs[i]);
ir.Write(IROp::FNeg, dregs[i], dregs[i]);
ir.Write(IROp::FSin, tempregs[i], sregs[i]);
ir.Write(IROp::FNeg, tempregs[i], tempregs[i]);
break;
case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2
default:
@ -630,6 +659,12 @@ namespace MIPSComp {
break;
}
}
for (int i = 0; i < n; i++) {
if (dregs[i] != tempregs[i]) {
ir.Write(IROp::FMov, dregs[i], tempregs[i]);
}
}
ApplyPrefixD(dregs, sz);
}
@ -782,20 +817,32 @@ namespace MIPSComp {
MatrixSize sz = GetMtxSize(op);
int n = GetMatrixSide(sz);
MatrixOverlapType soverlap = GetMatrixOverlap(_VS, _VD, sz);
MatrixOverlapType toverlap = GetMatrixOverlap(_VT, _VD, sz);
int vs = _VS;
int vd = _VD;
int vt = _VT;
MatrixOverlapType soverlap = GetMatrixOverlap(vs, vd, sz);
MatrixOverlapType toverlap = GetMatrixOverlap(vt, vd, sz);
// A very common arrangment. Rearrange to something we can handle.
if (IsMatrixTransposed(vd) && !IsMatrixTransposed(vs) && IsMatrixTransposed(vt)) {
// Matrix identity says (At * Bt) = (B * A)t
// D = S * T
// Dt = (S * T)t = (Tt * St)
vd = TransposeMatrixReg(vd);
std::swap(vs, vt);
}
u8 sregs[16], tregs[16], dregs[16];
GetMatrixRegs(sregs, sz, _VS);
GetMatrixRegs(tregs, sz, _VT);
GetMatrixRegs(dregs, sz, _VD);
GetMatrixRegs(sregs, sz, vs);
GetMatrixRegs(tregs, sz, vt);
GetMatrixRegs(dregs, sz, vd);
if (soverlap || toverlap) {
DISABLE;
}
if (sz == M_4x4 && IsConsecutive4(tregs) && IsConsecutive4(dregs)) {
logBlocks = 1;
// TODO: The interpreter would like proper matrix ops better. Can generate those, and
// expand them like this as needed on "real" architectures.
int s0 = IRVTEMP_0;
int s1 = IRVTEMP_PFX_T;
if (!IsConsecutive4(sregs)) {
@ -817,10 +864,12 @@ namespace MIPSComp {
}
return;
}
} else {
// logBlocks = 1;
} else if (sz == M_4x4) {
// Tekken 6 has a case here: MEE
logBlocks = 1;
}
// Fallback. Expands a LOT
int temp0 = IRVTEMP_0;
int temp1 = IRVTEMP_0 + 1;
for (int a = 0; a < n; a++) {
@ -867,18 +916,23 @@ namespace MIPSComp {
GetVectorRegs(dregs, sz, _VD);
// SIMD-optimized implementations
if (msz == M_4x4 && !homogenous && IsConsecutive4(tregs) && IsConsecutive4(dregs)) {
if (msz == M_4x4 && IsConsecutive4(tregs) && IsConsecutive4(dregs)) {
int s0 = IRVTEMP_0;
int s1 = IRVTEMP_PFX_T;
if (!IsConsecutive4(sregs)) {
ir.Write(IROp::Vec4Scale, s0, sregs[0], tregs[0]);
for (int i = 1; i < 4; i++) {
ir.Write(IROp::Vec4Scale, s1, sregs[i], tregs[i]);
ir.Write(IROp::Vec4Add, s0, s0, s1);
if (!homogenous || (i != n - 1)) {
ir.Write(IROp::Vec4Scale, s1, sregs[i], tregs[i]);
ir.Write(IROp::Vec4Add, s0, s0, s1);
} else {
logBlocks = 1;
ir.Write(IROp::Vec4Add, s0, s0, sregs[i]);
}
}
ir.Write(IROp::Vec4Mov, dregs[0], s0);
return;
} else {
} else if (!homogenous) {
for (int i = 0; i < 4; i++) {
ir.Write(IROp::Vec4Dot, s0 + i, sregs[i], tregs[0]);
}
@ -886,7 +940,7 @@ namespace MIPSComp {
return;
}
} else if (msz == M_4x4) {
logBlocks = 1;
// logBlocks = 1;
}
// TODO: test overlap, optimize.