SoftGPU: Match GLES lighting better, use floats.

Using floats simplifies things and also makes it faster.
This commit is contained in:
Unknown W. Brackets 2017-05-13 12:45:36 -07:00
parent 86a1898732
commit 1a56466865
3 changed files with 56 additions and 61 deletions

View File

@ -316,7 +316,7 @@ struct GPUgstate {
GELightType getLightType(int chan) const { return static_cast<GELightType>((ltype[chan] >> 8) & 3); }
bool isDirectionalLight(int chan) const { return getLightType(chan) == GE_LIGHTTYPE_DIRECTIONAL; }
bool isPointLight(int chan) const { return getLightType(chan) == GE_LIGHTTYPE_POINT; }
bool isSpotLight(int chan) const { return getLightType(chan) == GE_LIGHTTYPE_SPOT; }
bool isSpotLight(int chan) const { return getLightType(chan) >= GE_LIGHTTYPE_SPOT; }
GEShadeMode getShadeMode() const { return static_cast<GEShadeMode>(shademodel & 1); }
unsigned int getAmbientR() const { return ambientcolor&0xFF; }
unsigned int getAmbientG() const { return (ambientcolor>>8)&0xFF; }

View File

@ -23,21 +23,22 @@ namespace Lighting {
void Process(VertexData& vertex, bool hasColor)
{
Vec3<int> mec = Vec3<int>(gstate.getMaterialEmissiveR(), gstate.getMaterialEmissiveG(), gstate.getMaterialEmissiveB());
const int materialupdate = gstate.materialupdate & (hasColor ? 7 : 0);
Vec3<int> mac = hasColor && (gstate.materialupdate&1)
? vertex.color0.rgb()
: Vec3<int>(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB());
Vec3<int> final_color = mec + mac * Vec3<int>(gstate.getAmbientR(), gstate.getAmbientG(), gstate.getAmbientB()) / 255;
Vec3<int> specular_color(0, 0, 0);
Vec3<float> vcol0 = vertex.color0.rgb().Cast<float>() * Vec3<float>::AssignToAll(1.0f / 255.0f);
Vec3<float> mec = Vec3<float>::FromRGB(gstate.getMaterialEmissive());
Vec3<float> mac = (materialupdate & 1) ? vcol0 : Vec3<float>::FromRGB(gstate.getMaterialAmbientRGBA());
Vec3<float> final_color = mec + mac * Vec3<float>::FromRGB(gstate.getAmbientRGBA());
Vec3<float> specular_color(0.0f, 0.0f, 0.0f);
for (unsigned int light = 0; light < 4; ++light) {
// Always calculate texture coords from lighting results if environment mapping is active
// TODO: specular lighting should affect this, too!
// TODO: Should specular lighting should affect this, too? Doesn't in GLES.
// TODO: Not sure if this really should be done even if lighting is disabled altogether
if (gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP) {
Vec3<float> L = Vec3<float>(getFloat24(gstate.lpos[3*light]&0xFFFFFF), getFloat24(gstate.lpos[3*light+1]&0xFFFFFF),getFloat24(gstate.lpos[3*light+2]&0xFFFFFF));
float diffuse_factor = Dot(L,vertex.worldnormal) / L.Length() / vertex.worldnormal.Length();
Vec3<float> L = Vec3<float>(getFloat24(gstate.lpos[3 * light]), getFloat24(gstate.lpos[3 * light + 1]),getFloat24(gstate.lpos[3 * light + 2]));
float diffuse_factor = Dot(L.Normalized(), vertex.worldnormal);
if (gstate.getUVLS0() == (int)light)
vertex.texturecoords.s() = (diffuse_factor + 1.f) / 2.f;
@ -55,14 +56,16 @@ void Process(VertexData& vertex, bool hasColor)
continue;
// L = vector from vertex to light source
// TODO: Should transfer the light positions to world/view space for these calculations
Vec3<float> L = Vec3<float>(getFloat24(gstate.lpos[3*light]&0xFFFFFF), getFloat24(gstate.lpos[3*light+1]&0xFFFFFF),getFloat24(gstate.lpos[3*light+2]&0xFFFFFF));
L -= vertex.worldpos;
float d = L.Length();
// TODO: Should transfer the light positions to world/view space for these calculations?
Vec3<float> L = Vec3<float>(getFloat24(gstate.lpos[3 * light]), getFloat24(gstate.lpos[3 * light + 1]),getFloat24(gstate.lpos[3 * light + 2]));
if (!gstate.isDirectionalLight(light)) {
L -= vertex.worldpos;
}
float d = L.Normalize();
float lka = getFloat24(gstate.latt[3*light]&0xFFFFFF);
float lkb = getFloat24(gstate.latt[3*light+1]&0xFFFFFF);
float lkc = getFloat24(gstate.latt[3*light+2]&0xFFFFFF);
float lka = getFloat24(gstate.latt[3 * light]);
float lkb = getFloat24(gstate.latt[3 * light + 1]);
float lkc = getFloat24(gstate.latt[3 * light + 2]);
float att = 1.f;
if (!gstate.isDirectionalLight(light)) {
att = 1.f / (lka + lkb * d + lkc * d * d);
@ -72,11 +75,11 @@ void Process(VertexData& vertex, bool hasColor)
float spot = 1.f;
if (gstate.isSpotLight(light)) {
Vec3<float> dir = Vec3<float>(getFloat24(gstate.ldir[3*light]&0xFFFFFF), getFloat24(gstate.ldir[3*light+1]&0xFFFFFF),getFloat24(gstate.ldir[3*light+2]&0xFFFFFF));
float _spot = Dot(-L,dir) / d / dir.Length();
float cutoff = getFloat24(gstate.lcutoff[light]&0xFFFFFF);
if (_spot > cutoff) {
float conv = getFloat24(gstate.lconv[light]&0xFFFFFF);
Vec3<float> dir = Vec3<float>(getFloat24(gstate.ldir[3 * light]), getFloat24(gstate.ldir[3 * light + 1]),getFloat24(gstate.ldir[3 * light + 2]));
float _spot = Dot(dir.Normalized(), L);
float cutoff = getFloat24(gstate.lcutoff[light]);
if (_spot >= cutoff) {
float conv = getFloat24(gstate.lconv[light]);
spot = pow(_spot, conv);
} else {
spot = 0.f;
@ -84,69 +87,59 @@ void Process(VertexData& vertex, bool hasColor)
}
// ambient lighting
Vec3<int> lac = Vec3<int>(gstate.getLightAmbientColorR(light), gstate.getLightAmbientColorG(light), gstate.getLightAmbientColorB(light));
final_color.r() += (int)(att * spot * lac.r() * mac.r() / 255);
final_color.g() += (int)(att * spot * lac.g() * mac.g() / 255);
final_color.b() += (int)(att * spot * lac.b() * mac.b() / 255);
Vec3<float> lac = Vec3<float>::FromRGB(gstate.getLightAmbientColor(light));
final_color += lac * mac * att * spot;
// diffuse lighting
Vec3<int> ldc = Vec3<int>(gstate.getDiffuseColorR(light), gstate.getDiffuseColorG(light), gstate.getDiffuseColorB(light));
Vec3<int> mdc = hasColor && (gstate.materialupdate&2)
? vertex.color0.rgb()
: Vec3<int>(gstate.getMaterialDiffuseR(), gstate.getMaterialDiffuseG(), gstate.getMaterialDiffuseB());
Vec3<float> ldc = Vec3<float>::FromRGB(gstate.getDiffuseColor(light));
Vec3<float> mdc = (materialupdate & 2) ? vcol0 : Vec3<float>::FromRGB(gstate.getMaterialDiffuse());
float diffuse_factor = Dot(L,vertex.worldnormal) / d / vertex.worldnormal.Length();
float diffuse_factor = Dot(L, vertex.worldnormal);
if (gstate.isUsingPoweredDiffuseLight(light)) {
float k = getFloat24(gstate.materialspecularcoef&0xFFFFFF);
diffuse_factor = pow(diffuse_factor, k);
float k = gstate.getMaterialSpecularCoef();
// TODO: Validate Tales of the World: Radiant Mythology (#2424.)
// pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0.
if (diffuse_factor <= 0.0f && k == 0.0f) {
diffuse_factor = 1.0f;
} else {
diffuse_factor = pow(diffuse_factor, k);
}
}
if (diffuse_factor > 0.f) {
final_color.r() += (int)(att * spot * ldc.r() * mdc.r() * diffuse_factor / 255);
final_color.g() += (int)(att * spot * ldc.g() * mdc.g() * diffuse_factor / 255);
final_color.b() += (int)(att * spot * ldc.b() * mdc.b() * diffuse_factor / 255);
final_color += ldc * mdc * diffuse_factor * att * spot;
}
if (gstate.isUsingSpecularLight(light)) {
Vec3<float> E(0.f, 0.f, 1.f);
Mat3x3<float> view_matrix(gstate.viewMatrix);
Vec3<float> worldE = view_matrix.Inverse() * (E - Vec3<float>(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]));
Vec3<float> H = worldE / worldE.Length() + L / L.Length();
//Mat3x3<float> view_matrix(gstate.viewMatrix);
//Vec3<float> worldE = view_matrix.Inverse() * (E - Vec3<float>(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]));
Vec3<float> H = L + E;//worldE.Normalized();
Vec3<int> lsc = Vec3<int>(gstate.getSpecularColorR(light), gstate.getSpecularColorG(light), gstate.getSpecularColorB(light));
Vec3<int> msc = hasColor && (gstate.materialupdate&4)
? vertex.color0.rgb()
: Vec3<int>(gstate.getMaterialSpecularR(), gstate.getMaterialSpecularG(), gstate.getMaterialSpecularB());
Vec3<float> lsc = Vec3<float>::FromRGB(gstate.getSpecularColor(light));
Vec3<float> msc = (materialupdate & 4) ? vcol0 : Vec3<float>::FromRGB(gstate.getMaterialSpecular());
float specular_factor = Dot(H,vertex.worldnormal) / H.Length() / vertex.worldnormal.Length();
float k = getFloat24(gstate.materialspecularcoef&0xFFFFFF);
float specular_factor = Dot(H.Normalized(), vertex.worldnormal);
float k = gstate.getMaterialSpecularCoef();
specular_factor = pow(specular_factor, k);
if (specular_factor > 0.f) {
specular_color.r() += (int)(att * spot * lsc.r() * msc.r() * specular_factor / 255);
specular_color.g() += (int)(att * spot * lsc.g() * msc.g() * specular_factor / 255);
specular_color.b() += (int)(att * spot * lsc.b() * msc.b() * specular_factor / 255);
specular_color += lsc * msc * specular_factor * att * spot;
}
}
}
vertex.color0.r() = final_color.r();
vertex.color0.g() = final_color.g();
vertex.color0.b() = final_color.b();
int maa = (materialupdate & 1) ? vertex.color0.a() : gstate.getMaterialAmbientA();
int final_alpha = (gstate.getAmbientA() * maa) / 255;
if (gstate.isUsingSecondaryColor()) {
vertex.color1 = specular_color.Clamp(0, 255);
Vec3<int> final_color_int = (final_color.Clamp(0.0f, 1.0f) * 255.0f).Cast<int>();
vertex.color0 = Vec4<int>(final_color_int, final_alpha);
vertex.color1 = (specular_color.Clamp(0.0f, 1.0f) * 255.0f).Cast<int>();
} else {
vertex.color0.r() += specular_color.r();
vertex.color0.g() += specular_color.g();
vertex.color0.b() += specular_color.b();
vertex.color1 = Vec3<int>(0, 0, 0);
Vec3<int> final_color_int = ((final_color + specular_color).Clamp(0.0f, 1.0f) * 255.0f).Cast<int>();
vertex.color0 = Vec4<int>(final_color_int, final_alpha);
}
int maa = hasColor && (gstate.materialupdate&1) ? vertex.color0.a() : gstate.getMaterialAmbientA();
vertex.color0.a() = gstate.getAmbientA() * maa / 255;
vertex.color0 = vertex.color0.Clamp(0, 255);
}
} // namespace

View File

@ -188,6 +188,8 @@ VertexData TransformUnit::ReadVertex(VertexReader& vreader)
vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal);
// TODO: Isn't there a flag that controls whether to normalize the normal?
vertex.worldnormal /= vertex.worldnormal.Length();
} else {
vertex.worldnormal = Vec3<float>(0.0f, 0.0f, 1.0f);
}
Lighting::Process(vertex, vreader.hasColor0());