From 392087f26b92681c8242ab7efdcb338fae0e9276 Mon Sep 17 00:00:00 2001 From: Peter Thoman Date: Tue, 30 Apr 2013 03:44:54 +0200 Subject: [PATCH] Added xBRZ library --- GPU/GPU.vcxproj | 2 + ext/xbrz/config.h | 40 ++ ext/xbrz/xbrz.cpp | 1185 +++++++++++++++++++++++++++++++++++++++++++++ ext/xbrz/xbrz.h | 80 +++ 4 files changed, 1307 insertions(+) create mode 100644 ext/xbrz/config.h create mode 100644 ext/xbrz/xbrz.cpp create mode 100644 ext/xbrz/xbrz.h diff --git a/GPU/GPU.vcxproj b/GPU/GPU.vcxproj index e7afcb5d7..4a83118ee 100644 --- a/GPU/GPU.vcxproj +++ b/GPU/GPU.vcxproj @@ -129,6 +129,7 @@ + @@ -148,6 +149,7 @@ + diff --git a/ext/xbrz/config.h b/ext/xbrz/config.h new file mode 100644 index 000000000..ae11f7a0f --- /dev/null +++ b/ext/xbrz/config.h @@ -0,0 +1,40 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#ifndef XBRZ_CONFIG_HEADER_284578425345 +#define XBRZ_CONFIG_HEADER_284578425345 + +//do NOT include any headers here! used by xBRZ_dll!!! + +namespace xbrz +{ +struct ScalerCfg +{ + ScalerCfg() : + luminanceWeight_(1), + equalColorTolerance_(30), + dominantDirectionThreshold(3.6), + steepDirectionThreshold(2.2), + newTestAttribute_(0) {} + + double luminanceWeight_; + double equalColorTolerance_; + double dominantDirectionThreshold; + double steepDirectionThreshold; + double newTestAttribute_; //unused; test new parameters +}; +} + +#endif \ No newline at end of file diff --git a/ext/xbrz/xbrz.cpp b/ext/xbrz/xbrz.cpp new file mode 100644 index 000000000..8f4a70de6 --- /dev/null +++ b/ext/xbrz/xbrz.cpp @@ -0,0 +1,1185 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#include "xbrz.h" +#include +#include + +namespace +{ +template inline +unsigned char getByte(uint32_t val) { return static_cast((val >> (8 * N)) & 0xff); } + +// adjusted for RGBA +// - Durante +inline unsigned char getRed (uint32_t val) { return getByte<3>(val); } +inline unsigned char getGreen(uint32_t val) { return getByte<2>(val); } +inline unsigned char getBlue (uint32_t val) { return getByte<1>(val); } + +template inline +T abs(T value) +{ + static_assert(std::is_signed::value, ""); + return value < 0 ? -value : value; +} + +const uint32_t redMask = 0x00ff0000; +const uint32_t greenMask = 0x0000ff00; +const uint32_t blueMask = 0x000000ff; + +template inline +void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M +{ + static_assert(N < 256, "possible overflow of (col & redMask) * N"); + static_assert(M < 256, "possible overflow of (col & redMask ) * N + (dst & redMask ) * (M - N)"); + static_assert(0 < N && N < M, ""); + //dst = (redMask & ((col & redMask ) * N + (dst & redMask ) * (M - N)) / M) | //this works because 8 upper bits are free + // (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) | + // (blueMask & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M); + + // the upper 8 bits are not free in our case, so we need to do this differently + // could probably be MUCH faster + // - Durante + uint8_t a = (((col ) >> 24) * N + ((dst ) >> 24) * (M - N) ) / M; + uint8_t r = (((col & redMask) >> 16) * N + ((dst & redMask) >> 16) * (M - N) ) / M; + uint8_t g = (((col & greenMask) >> 8) * N + ((dst & greenMask) >> 8) * (M - N) ) / M; + uint8_t b = (((col & blueMask) ) * N + ((dst & blueMask) ) * (M - N) ) / M; + + dst = (a << 24) | (r << 16) | (g << 8) | (b << 0); +} + +inline +uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha) +{ + return (redMask & static_cast((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) | + (greenMask & static_cast((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) | + (blueMask & static_cast((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha))); +} + + +uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); } +const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast(reinterpret_cast(ptr) + bytes); } + + +//fill block with the given color +inline +void fillBlock(uint32_t* trg, int pitch, uint32_t col, int blockWidth, int blockHeight) +{ + //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) + // std::fill(trg, trg + blockWidth, col); + + for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) + for (int x = 0; x < blockWidth; ++x) + trg[x] = col; +} + +inline +void fillBlock(uint32_t* trg, int pitch, uint32_t col, int n) { fillBlock(trg, pitch, col, n, n); } + + +#ifdef _MSC_VER +#define FORCE_INLINE __forceinline +#elif defined __GNUC__ +#define FORCE_INLINE __attribute__((always_inline)) inline +#else +#define FORCE_INLINE inline +#endif + + +enum RotationDegree //clock-wise +{ + ROT_0, + ROT_90, + ROT_180, + ROT_270 +}; + +//calculate input matrix coordinates after rotation at compile time +template +struct MatrixRotation; + +template +struct MatrixRotation +{ + static const size_t I_old = I; + static const size_t J_old = J; +}; + +template //(i, j) = (row, col) indices, N = size of (square) matrix +struct MatrixRotation +{ + static const size_t I_old = N - 1 - MatrixRotation(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! + static const size_t J_old = MatrixRotation(rotDeg - 1), I, J, N>::I_old; // +}; + + +template +class OutputMatrix +{ +public: + OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width + out_(out), + outWidth_(outWidth) {} + + template + uint32_t& ref() const + { + static const size_t I_old = MatrixRotation::I_old; + static const size_t J_old = MatrixRotation::J_old; + return *(out_ + J_old + I_old * outWidth_); + } + +private: + uint32_t* out_; + const int outWidth_; +}; + + +template inline +T square(T value) { return value * value; } + + +/* +inline +void rgbtoLuv(uint32_t c, double& L, double& u, double& v) +{ + //http://www.easyrgb.com/index.php?X=MATH&H=02#text2 + double r = getRed (c) / 255.0; + double g = getGreen(c) / 255.0; + double b = getBlue (c) / 255.0; + + if ( r > 0.04045 ) + r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4); + else + r /= 12.92; + if ( g > 0.04045 ) + g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4); + else + g /= 12.92; + if ( b > 0.04045 ) + b = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4); + else + b /= 12.92; + + r *= 100; + g *= 100; + b *= 100; + + double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; + double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; + double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; + //--------------------- + double var_U = 4 * x / ( x + 15 * y + 3 * z ); + double var_V = 9 * y / ( x + 15 * y + 3 * z ); + double var_Y = y / 100; + + if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 ); + else var_Y = 7.787 * var_Y + 16.0 / 116; + + const double ref_X = 95.047; //Observer= 2°, Illuminant= D65 + const double ref_Y = 100.000; + const double ref_Z = 108.883; + + const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); + const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); + + L = ( 116 * var_Y ) - 16; + u = 13 * L * ( var_U - ref_U ); + v = 13 * L * ( var_V - ref_V ); +} +*/ + +inline +void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B) +{ + //code: http://www.easyrgb.com/index.php?X=MATH + //test: http://www.workwithcolor.com/color-converter-01.htm + //------RGB to XYZ------ + double r = getRed (c) / 255.0; + double g = getGreen(c) / 255.0; + double b = getBlue (c) / 255.0; + + r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92; + r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92; + r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92; + + r *= 100; + g *= 100; + b *= 100; + + double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; + double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; + double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; + //------XYZ to Lab------ + const double refX = 95.047; // + const double refY = 100.000; //Observer= 2°, Illuminant= D65 + const double refZ = 108.883; // + double var_X = x / refX; + double var_Y = y / refY; + double var_Z = z / refZ; + + var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29; + var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29; + var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29; + + L = static_cast(116 * var_Y - 16); + A = static_cast< signed char>(500 * (var_X - var_Y)); + B = static_cast< signed char>(200 * (var_Y - var_Z)); +}; + + +inline +double distLAB(uint32_t pix1, uint32_t pix2) +{ + unsigned char L1 = 0; //[0, 100] + signed char a1 = 0; //[-128, 127] + signed char b1 = 0; //[-128, 127] + rgbtoLab(pix1, L1, a1, b1); + + unsigned char L2 = 0; + signed char a2 = 0; + signed char b2 = 0; + rgbtoLab(pix2, L2, a2, b2); + + //----------------------------- + //http://www.easyrgb.com/index.php?X=DELT + + //Delta E/CIE76 + return std::sqrt(square(1.0 * L1 - L2) + + square(1.0 * a1 - a2) + + square(1.0 * b1 - b2)); +} + + +/* +inline +void rgbtoHsl(uint32_t c, double& h, double& s, double& l) +{ + //http://www.easyrgb.com/index.php?X=MATH&H=18#text18 + const int r = getRed (c); + const int g = getGreen(c); + const int b = getBlue (c); + + const int varMin = numeric::min(r, g, b); + const int varMax = numeric::max(r, g, b); + const int delMax = varMax - varMin; + + l = (varMax + varMin) / 2.0 / 255.0; + + if (delMax == 0) //gray, no chroma... + { + h = 0; + s = 0; + } + else + { + s = l < 0.5 ? + delMax / (1.0 * varMax + varMin) : + delMax / (2.0 * 255 - varMax - varMin); + + double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax; + double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax; + double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax; + + if (r == varMax) + h = delB - delG; + else if (g == varMax) + h = 1 / 3.0 + delR - delB; + else if (b == varMax) + h = 2 / 3.0 + delG - delR; + + if (h < 0) + h += 1; + if (h > 1) + h -= 1; + } +} + +inline +double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight) +{ + double h1 = 0; + double s1 = 0; + double l1 = 0; + rgbtoHsl(pix1, h1, s1, l1); + double h2 = 0; + double s2 = 0; + double l2 = 0; + rgbtoHsl(pix2, h2, s2, l2); + + //HSL is in cylindric coordinatates where L represents height, S radius, H angle, + //however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1 + assert(0 <= h1 && h1 <= 1); + assert(0 <= h2 && h2 <= 1); + + double r1 = l1 < 0.5 ? + l1 * 2 : + 2 - l1 * 2; + + double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi); + double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi); + double z1 = l1; + + double r2 = l2 < 0.5 ? + l2 * 2 : + 2 - l2 * 2; + + double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi); + double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi); + double z2 = l2; + + return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) + square(lightningWeight * (z1 - z2))); +} +*/ + + +inline +double distRGB(uint32_t pix1, uint32_t pix2) +{ + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + //euklidean RGB distance + return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); +} + + +inline +double distNonLinearRGB(uint32_t pix1, uint32_t pix2) +{ + //non-linear rgb: http://www.compuphase.com/cmetric.htm + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + const double r_avg = (static_cast(getRed(pix1)) + getRed(pix2)) / 2; + return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff)); +} + + +inline +double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) +{ + //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion + //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! + const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication + const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); // + const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! + + const double k_b = 0.0722; //ITU-R BT.709 conversion + const double k_r = 0.2126; // + const double k_g = 1 - k_b - k_r; + + const double scale_b = 0.5 / (1 - k_b); + const double scale_r = 0.5 / (1 - k_r); + + const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! + const double c_b = scale_b * (b_diff - y); + const double c_r = scale_r * (r_diff - y); + + //we skip division by 255 to have similar range like other distance functions + return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); +} + + +inline +double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight) +{ + //perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6% + //since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property) + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + //http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB + const double w_b = 0.114; + const double w_r = 0.299; + const double w_g = 1 - w_r - w_b; + + const double u_max = 0.436; + const double v_max = 0.615; + + const double scale_u = u_max / (1 - w_b); + const double scale_v = v_max / (1 - w_r); + + double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1] + double u = scale_u * (b_diff - y); //value range: 255 * 2 * u_max * [-1, 1] + double v = scale_v * (r_diff - y); //value range: 255 * 2 * v_max * [-1, 1] + +#ifndef NDEBUG + const double eps = 0.5; +#endif + assert(std::abs(y) <= 255 + eps); + assert(std::abs(u) <= 255 * 2 * u_max + eps); + assert(std::abs(v) <= 255 * 2 * v_max + eps); + + return std::sqrt(square(luminanceWeight * y) + square(u) + square(v)); +} + + +inline +double colorDist(uint32_t pix1, uint32_t pix2, double luminanceWeight) +{ + if (pix1 == pix2) //about 8% perf boost + return 0; + + //return distHSL(pix1, pix2, luminanceWeight); + //return distRGB(pix1, pix2); + //return distLAB(pix1, pix2); + //return distNonLinearRGB(pix1, pix2); + //return distYUV(pix1, pix2, luminanceWeight); + + return distYCbCr(pix1, pix2, luminanceWeight); +} + + +enum BlendType +{ + BLEND_NONE = 0, + BLEND_NORMAL, //a normal indication to blend + BLEND_DOMINANT, //a strong indication to blend + //attention: BlendType must fit into the value range of 2 bit!!! +}; + +struct BlendResult +{ + BlendType + /**/blend_f, blend_g, + /**/blend_j, blend_k; +}; + + +struct Kernel_4x4 //kernel for preprocessing step +{ + uint32_t + /**/a, b, c, d, + /**/e, f, g, h, + /**/i, j, k, l, + /**/m, n, o, p; +}; + +/* +input kernel area naming convention: +----------------- +| A | B | C | D | +----|---|---|---| +| E | F | G | H | //evalute the four corners between F, G, J, K +----|---|---|---| //input pixel is at position F +| I | J | K | L | +----|---|---|---| +| M | N | O | P | +----------------- +*/ +FORCE_INLINE //detect blend direction +BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType" +{ + BlendResult result = {}; + + if ((ker.f == ker.g && + ker.j == ker.k) || + (ker.f == ker.j && + ker.g == ker.k)) + return result; + + auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); }; + + const int weight = 4; + double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g); + double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k); + + if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 + { + const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk; + if (ker.f != ker.g && ker.f != ker.j) + result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + + if (ker.k != ker.j && ker.k != ker.g) + result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + } + else if (fk < jg) + { + const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg; + if (ker.j != ker.f && ker.j != ker.k) + result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + + if (ker.g != ker.f && ker.g != ker.k) + result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + } + return result; +} + +struct Kernel_3x3 +{ + uint32_t + /**/a, b, c, + /**/d, e, f, + /**/g, h, i; +}; + +#define DEF_GETTER(x) template uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } +//we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token +DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) +DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) +DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) +DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) +DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) +DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) +DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) +DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) +DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) +#undef DEF_GETTER + + +//compress four blend types into a single byte +inline BlendType getTopL (unsigned char b) { return static_cast(0x3 & b); } +inline BlendType getTopR (unsigned char b) { return static_cast(0x3 & (b >> 2)); } +inline BlendType getBottomR(unsigned char b) { return static_cast(0x3 & (b >> 4)); } +inline BlendType getBottomL(unsigned char b) { return static_cast(0x3 & (b >> 6)); } + +inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! +inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } +inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } +inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } + +inline bool blendingNeeded(unsigned char b) { return b != 0; } + +template inline +unsigned char rotateBlendInfo(unsigned char b) { return b; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } + + +#ifndef NDEBUG +int debugPixelX = -1; +int debugPixelY = 84; +bool breakIntoDebugger = false; +#endif + + +/* +input kernel area naming convention: +------------- +| A | B | C | +----|---|---| +| D | E | F | //input pixel is at position E +----|---|---| +| G | H | I | +------------- +*/ +template +FORCE_INLINE //perf: quite worth it! +void scalePixel(const Kernel_3x3& ker, + uint32_t* target, int trgWidth, + unsigned char blendInfo, //result of preprocessing all four corners of pixel "e" + const xbrz::ScalerCfg& cfg) +{ +#define a get_a(ker) +#define b get_b(ker) +#define c get_c(ker) +#define d get_d(ker) +#define e get_e(ker) +#define f get_f(ker) +#define g get_g(ker) +#define h get_h(ker) +#define i get_i(ker) + +#ifndef NDEBUG + if (breakIntoDebugger) + __debugbreak(); //__asm int 3; +#endif + + const unsigned char blend = rotateBlendInfo(blendInfo); + + if (getBottomR(blend) >= BLEND_NORMAL) + { + auto eq = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; }; + auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); }; + + const bool doLineBlend = [&]() -> bool + { + if (getBottomR(blend) >= BLEND_DOMINANT) + return true; + + //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes + if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners + return false; + if (getBottomL(blend) != BLEND_NONE && !eq(e, c)) + return false; + + //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") + if (eq(g, h) && eq(h , i) && eq(i, f) && eq(f, c) && !eq(e, i)) + return false; + + return true; + }(); + + const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color + + OutputMatrix out(target, trgWidth); + + if (doLineBlend) + { + const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 + const double hc = dist(h, c); // + + const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; + const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; + + if (haveShallowLine) + { + if (haveSteepLine) + Scaler::blendLineSteepAndShallow(px, out); + else + Scaler::blendLineShallow(px, out); + } + else + { + if (haveSteepLine) + Scaler::blendLineSteep(px, out); + else + Scaler::blendLineDiagonal(px,out); + } + } + else + Scaler::blendCorner(px, out); + } + +#undef a +#undef b +#undef c +#undef d +#undef e +#undef f +#undef g +#undef h +#undef i +} + + +template //scaler policy: see "Scaler2x" reference implementation +void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) +{ + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, srcHeight); + if (yFirst >= yLast || srcWidth <= 0) + return; + + const int trgWidth = srcWidth * Scaler::scale; + + //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of + //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing + const int bufferSize = srcWidth; + unsigned char* preProcBuffer = reinterpret_cast(trg + yLast * Scaler::scale * trgWidth) - bufferSize; + std::fill(preProcBuffer, preProcBuffer + bufferSize, 0); + static_assert(BLEND_NONE == 0, ""); + + //initialize preprocessing buffer for first row: detect upper left and right corner blending + //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! + if (yFirst > 0) + { + const int y = yFirst - 1; + + const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); + const uint32_t* s_0 = src + srcWidth * y; //center line + const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); + const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); + + for (int x = 0; x < srcWidth; ++x) + { + const int x_m1 = std::max(x - 1, 0); + const int x_p1 = std::min(x + 1, srcWidth - 1); + const int x_p2 = std::min(x + 2, srcWidth - 1); + + Kernel_4x4 ker = {}; //perf: initialization is negligable + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + ker.d = s_m1[x_p2]; + + ker.e = s_0[x_m1]; + ker.f = s_0[x]; + ker.g = s_0[x_p1]; + ker.h = s_0[x_p2]; + + ker.i = s_p1[x_m1]; + ker.j = s_p1[x]; + ker.k = s_p1[x_p1]; + ker.l = s_p1[x_p2]; + + ker.m = s_p2[x_m1]; + ker.n = s_p2[x]; + ker.o = s_p2[x_p1]; + ker.p = s_p2[x_p2]; + + const BlendResult res = preProcessCorners(ker, cfg); + /* + preprocessing blend result: + --------- + | F | G | //evalute corner between F, G, J, K + ----|---| //input pixel is at position F + | J | K | + --------- + */ + setTopR(preProcBuffer[x], res.blend_j); + + if (x + 1 < srcWidth) + setTopL(preProcBuffer[x + 1], res.blend_k); + } + } + //------------------------------------------------------------------------------------ + + for (int y = yFirst; y < yLast; ++y) + { + uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access + + const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); + const uint32_t* s_0 = src + srcWidth * y; //center line + const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); + const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); + + unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position + + for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) + { +#ifndef NDEBUG + breakIntoDebugger = debugPixelX == x && debugPixelY == y; +#endif + //all those bounds checks have only insignificant impact on performance! + const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! + const int x_p1 = std::min(x + 1, srcWidth - 1); + const int x_p2 = std::min(x + 2, srcWidth - 1); + + //evaluate the four corners on bottom-right of current pixel + unsigned char blend_xy = 0; //for current (x, y) position + { + Kernel_4x4 ker = {}; //perf: initialization is negligable + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + ker.d = s_m1[x_p2]; + + ker.e = s_0[x_m1]; + ker.f = s_0[x]; + ker.g = s_0[x_p1]; + ker.h = s_0[x_p2]; + + ker.i = s_p1[x_m1]; + ker.j = s_p1[x]; + ker.k = s_p1[x_p1]; + ker.l = s_p1[x_p2]; + + ker.m = s_p2[x_m1]; + ker.n = s_p2[x]; + ker.o = s_p2[x_p1]; + ker.p = s_p2[x_p2]; + + const BlendResult res = preProcessCorners(ker, cfg); + /* + preprocessing blend result: + --------- + | F | G | //evalute corner between F, G, J, K + ----|---| //current input pixel is at position F + | J | K | + --------- + */ + blend_xy = preProcBuffer[x]; + setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! + + setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) + preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row + + blend_xy1 = 0; + setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column + + if (x + 1 < srcWidth) //set 3rd known corner for (x + 1, y) + setBottomL(preProcBuffer[x + 1], res.blend_g); + } + + //fill block of size scale * scale with the given color + fillBlock(out, trgWidth * sizeof(uint32_t), s_0[x], Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! + + //blend four corners of current pixel + if (blendingNeeded(blend_xy)) //good 20% perf-improvement + { + Kernel_3x3 ker = {}; //perf: initialization is negligable + + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + + ker.d = s_0[x_m1]; + ker.e = s_0[x]; + ker.f = s_0[x_p1]; + + ker.g = s_p1[x_m1]; + ker.h = s_p1[x]; + ker.i = s_p1[x_p1]; + + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + } + } + } +} + + +struct Scaler2x +{ + static const int scale = 2; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<1, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 1>(), col); + alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 2>(out.template ref<1, 1>(), col); + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 + } +}; + + +struct Scaler3x +{ + static const int scale = 3; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + out.template ref<2, scale - 1>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<2, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 2>(), col); + alphaBlend<3, 4>(out.template ref<2, 1>(), col); + alphaBlend<3, 4>(out.template ref<1, 2>(), col); + out.template ref<2, 2>() = col; + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 8>(out.template ref<1, 2>(), col); + alphaBlend<1, 8>(out.template ref<2, 1>(), col); + alphaBlend<7, 8>(out.template ref<2, 2>(), col); + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 + //alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligable + //alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627 + } +}; + + +struct Scaler4x +{ + static const int scale = 4; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref() = col; + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<3, 4>(out.template ref<3, 1>(), col); + alphaBlend<3, 4>(out.template ref<1, 3>(), col); + alphaBlend<1, 4>(out.template ref<3, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 3>(), col); + alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR + out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col; + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 2>(out.template ref(), col); + alphaBlend<1, 2>(out.template ref(), col); + out.template ref() = col; + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 + alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 + alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 + } +}; + + +struct Scaler5x +{ + static const int scale = 5; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref() = col; + out.template ref() = col; + out.template ref() = col; + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + out.template ref<4, scale - 1>() = col; + out.template ref<4, scale - 2>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + + out.template ref() = col; + out.template ref() = col; + + out.template ref<4, scale - 1>() = col; + + alphaBlend<2, 3>(out.template ref<3, 3>(), col); + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 8>(out.template ref(), col); + alphaBlend<1, 8>(out.template ref(), col); + alphaBlend<1, 8>(out.template ref(), col); + + alphaBlend<7, 8>(out.template ref<4, 3>(), col); + alphaBlend<7, 8>(out.template ref<3, 4>(), col); + + out.template ref<4, 4>() = col; + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 + alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 + alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 + //alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligable + //alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834 + } +}; +} + + +void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) +{ + switch (factor) + { + case 2: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 3: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 4: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 5: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + } + assert(false); +} + + +bool xbrz::equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) +{ + return colorDist(col1, col2, luminanceWeight) < equalColorTolerance; +} + + +void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, + uint32_t* trg, int trgWidth, int trgHeight, int trgPitch, + SliceType st, int yFirst, int yLast) +{ + if (srcPitch < srcWidth * static_cast(sizeof(uint32_t)) || + trgPitch < trgWidth * static_cast(sizeof(uint32_t))) + { + assert(false); + return; + } + + switch (st) + { + case NN_SCALE_SLICE_SOURCE: + //nearest-neighbor (going over source image - fast for upscaling, since source is read only once + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, srcHeight); + if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) + // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight + + //keep within for loop to support MT input slices! + const int yTrg_first = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) + const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) + const int blockHeight = yTrg_last - yTrg_first; + + if (blockHeight > 0) + { + const uint32_t* srcLine = byteAdvance(src, y * srcPitch); + uint32_t* trgLine = byteAdvance(trg, yTrg_first * trgPitch); + int xTrg_first = 0; + + for (int x = 0; x < srcWidth; ++x) + { + int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; + const int blockWidth = xTrg_last - xTrg_first; + if (blockWidth > 0) + { + xTrg_first = xTrg_last; + fillBlock(trgLine, trgPitch, srcLine[x], blockWidth, blockHeight); + trgLine += blockWidth; + } + } + } + } + break; + + case NN_SCALE_SLICE_TARGET: + //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!) + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, trgHeight); + if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + uint32_t* trgLine = byteAdvance(trg, y * trgPitch); + const int ySrc = srcHeight * y / trgHeight; + const uint32_t* srcLine = byteAdvance(src, ySrc * srcPitch); + for (int x = 0; x < trgWidth; ++x) + { + const int xSrc = srcWidth * x / trgWidth; + trgLine[x] = srcLine[xSrc]; + } + } + break; + } +} diff --git a/ext/xbrz/xbrz.h b/ext/xbrz/xbrz.h new file mode 100644 index 000000000..11572d7c6 --- /dev/null +++ b/ext/xbrz/xbrz.h @@ -0,0 +1,80 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#ifndef XBRZ_HEADER_3847894708239054 +#define XBRZ_HEADER_3847894708239054 + +#include //size_t +#include //uint32_t +#include +#include "config.h" + +namespace xbrz +{ +/* +------------------------------------------------------------------------- +| xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju | +------------------------------------------------------------------------- +using a modified approach of xBR: +http://board.byuu.org/viewtopic.php?f=10&t=2248 +- new rule set preserving small image features +- support multithreading +- support 64 bit architectures +*/ + +/* +-> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing rows [yFirst, yLast) only +-> color format: ARGB (BGRA byte order) +-> optional source/target pitch in bytes! + +THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap! + - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only +*/ +void scale(size_t factor, //valid range: 2 - 5 + const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, + const ScalerCfg& cfg = ScalerCfg(), + int yFirst = 0, int yLast = std::numeric_limits::max()); //slice of source image + +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, + uint32_t* trg, int trgWidth, int trgHeight); + +enum SliceType +{ + NN_SCALE_SLICE_SOURCE, + NN_SCALE_SLICE_TARGET, +}; +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, //pitch in bytes! + uint32_t* trg, int trgWidth, int trgHeight, int trgPitch, + SliceType st, int yFirst, int yLast); + +//parameter tuning +bool equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance); + + + + + +//########################### implementation ########################### +inline +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, + uint32_t* trg, int trgWidth, int trgHeight) +{ + nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), + trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), + NN_SCALE_SLICE_TARGET, 0, trgHeight); +} +} + +#endif