Refactor: Split out VulkanQueueRunner from VulkanRenderManager

Should be no functionality change, but good to do before adding more
functionality.
This commit is contained in:
Henrik Rydgård 2017-10-27 22:10:36 +02:00
parent fa81dd9c44
commit 3f918ed328
5 changed files with 891 additions and 881 deletions

View File

@ -1 +1,690 @@
#include "VulkanQueueRunner.h"
#include "VulkanRenderManager.h"
void VulkanQueueRunner::CreateDeviceObjects() {
InitBackbufferRenderPass();
InitRenderpasses();
}
void VulkanQueueRunner::DestroyDeviceObjects() {
VkDevice device = vulkan_->GetDevice();
for (int i = 0; i < ARRAY_SIZE(renderPasses_); i++) {
assert(renderPasses_[i] != VK_NULL_HANDLE);
vkDestroyRenderPass(device, renderPasses_[i], nullptr);
}
assert(backbufferRenderPass_ != VK_NULL_HANDLE);
vkDestroyRenderPass(device, backbufferRenderPass_, nullptr);
}
void VulkanQueueRunner::InitBackbufferRenderPass() {
VkResult U_ASSERT_ONLY res;
VkAttachmentDescription attachments[2];
attachments[0].format = vulkan_->GetSwapchainFormat();
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat; // must use this same format later for the back depth buffer.
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].flags = 0;
VkAttachmentReference color_reference = {};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference{};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
VkRenderPassCreateInfo rp_info = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp_info.pNext = nullptr;
rp_info.attachmentCount = 2;
rp_info.pAttachments = attachments;
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
rp_info.dependencyCount = 0;
rp_info.pDependencies = nullptr;
res = vkCreateRenderPass(vulkan_->GetDevice(), &rp_info, nullptr, &backbufferRenderPass_);
assert(res == VK_SUCCESS);
}
void VulkanQueueRunner::InitRenderpasses() {
// Create a bunch of render pass objects, for normal rendering with a depth buffer,
// with clearing, without clearing, and dont-care for both depth/stencil and color, so 3*3=9 combos.
VkAttachmentDescription attachments[2] = {};
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].flags = 0;
VkAttachmentReference color_reference = {};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference = {};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
VkRenderPassCreateInfo rp = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp.attachmentCount = 2;
rp.pAttachments = attachments;
rp.subpassCount = 1;
rp.pSubpasses = &subpass;
rp.dependencyCount = 0;
rp.pDependencies = nullptr;
for (int depth = 0; depth < 3; depth++) {
switch ((VKRRenderPassAction)depth) {
case VKRRenderPassAction::CLEAR:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case VKRRenderPassAction::KEEP:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case VKRRenderPassAction::DONT_CARE:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
}
for (int color = 0; color < 3; color++) {
switch ((VKRRenderPassAction)color) {
case VKRRenderPassAction::CLEAR: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; break;
case VKRRenderPassAction::KEEP: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; break;
case VKRRenderPassAction::DONT_CARE: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; break;
}
int index = RPIndex((VKRRenderPassAction)color, (VKRRenderPassAction)depth);
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &renderPasses_[index]);
}
}
}
void VulkanQueueRunner::RunSteps(VkCommandBuffer cmd, const std::vector<VKRStep *> &steps) {
// Optimizes renderpasses, then sequences them.
for (int i = 0; i < steps.size(); i++) {
const VKRStep &step = *steps[i];
switch (step.stepType) {
case VKRStepType::RENDER:
PerformRenderPass(step, cmd);
break;
case VKRStepType::COPY:
PerformCopy(step, cmd);
break;
case VKRStepType::BLIT:
PerformBlit(step, cmd);
break;
case VKRStepType::READBACK:
// PerformReadback
break;
}
delete steps[i];
}
}
void VulkanQueueRunner::PerformRenderPass(const VKRStep &step, VkCommandBuffer cmd) {
// TODO: If there are multiple, we can transition them together.
for (const auto &iter : step.preTransitions) {
if (iter.fb->color.layout != iter.targetLayout) {
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = iter.fb->color.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = iter.fb->color.image;
barrier.srcAccessMask = 0;
VkPipelineStageFlags srcStage;
VkPipelineStageFlags dstStage;
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
barrier.newLayout = iter.targetLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
break;
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
iter.fb->color.layout = barrier.newLayout;
}
}
// This is supposed to bind a vulkan render pass to the command buffer.
PerformBindFramebufferAsRenderTarget(step, cmd);
int curWidth = step.render.framebuffer ? step.render.framebuffer->width : vulkan_->GetBackbufferWidth();
int curHeight = step.render.framebuffer ? step.render.framebuffer->height : vulkan_->GetBackbufferHeight();
VKRFramebuffer *fb = step.render.framebuffer;
VkPipeline lastPipeline = VK_NULL_HANDLE;
auto &commands = step.commands;
// TODO: Dynamic state commands (SetViewport, SetScissor, SetBlendConstants, SetStencil*) are only
// valid when a pipeline is bound with those as dynamic state. So we need to add some state tracking here
// for this to be correct. This is a bit of a pain but also will let us eliminate redundant calls.
for (const auto &c : commands) {
switch (c.cmd) {
case VKRRenderCommand::BIND_PIPELINE:
if (c.pipeline.pipeline != lastPipeline) {
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.pipeline.pipeline);
lastPipeline = c.pipeline.pipeline;
}
break;
case VKRRenderCommand::VIEWPORT:
vkCmdSetViewport(cmd, 0, 1, &c.viewport.vp);
break;
case VKRRenderCommand::SCISSOR:
vkCmdSetScissor(cmd, 0, 1, &c.scissor.scissor);
break;
case VKRRenderCommand::BLEND:
vkCmdSetBlendConstants(cmd, c.blendColor.color);
break;
case VKRRenderCommand::STENCIL:
vkCmdSetStencilWriteMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilCompareMask);
vkCmdSetStencilReference(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilRef);
break;
case VKRRenderCommand::DRAW_INDEXED:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.drawIndexed.pipelineLayout, 0, 1, &c.drawIndexed.ds, c.drawIndexed.numUboOffsets, c.drawIndexed.uboOffsets);
vkCmdBindIndexBuffer(cmd, c.drawIndexed.ibuffer, c.drawIndexed.ioffset, VK_INDEX_TYPE_UINT16);
vkCmdBindVertexBuffers(cmd, 0, 1, &c.drawIndexed.vbuffer, &c.drawIndexed.voffset);
vkCmdDrawIndexed(cmd, c.drawIndexed.count, c.drawIndexed.instances, 0, 0, 0);
break;
case VKRRenderCommand::DRAW:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.draw.pipelineLayout, 0, 1, &c.draw.ds, c.draw.numUboOffsets, c.draw.uboOffsets);
vkCmdBindVertexBuffers(cmd, 0, 1, &c.draw.vbuffer, &c.draw.voffset);
vkCmdDraw(cmd, c.draw.count, 1, 0, 0);
break;
case VKRRenderCommand::CLEAR:
{
int numAttachments = 0;
VkClearRect rc{};
rc.baseArrayLayer = 0;
rc.layerCount = 1;
rc.rect.extent.width = curWidth;
rc.rect.extent.height = curHeight;
VkClearAttachment attachments[2];
if (c.clear.clearMask & VK_IMAGE_ASPECT_COLOR_BIT) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = 0;
Uint8x4ToFloat4(attachment.clearValue.color.float32, c.clear.clearColor);
}
if (c.clear.clearMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = 0;
if (c.clear.clearMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
attachment.clearValue.depthStencil.depth = c.clear.clearZ;
attachment.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (c.clear.clearMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
attachment.clearValue.depthStencil.stencil = c.clear.clearStencil;
attachment.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
if (numAttachments) {
vkCmdClearAttachments(cmd, numAttachments, attachments, 1, &rc);
}
break;
}
default:
ELOG("Unimpl queue command");
;
}
}
vkCmdEndRenderPass(cmd);
// Transition the framebuffer if requested.
if (fb && step.render.finalColorLayout != VK_IMAGE_LAYOUT_UNDEFINED) {
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = fb->color.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = fb->color.image;
barrier.srcAccessMask = 0;
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
default:
Crash();
}
barrier.newLayout = step.render.finalColorLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
default:
Crash();
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// we're between passes so it's OK.
// ARM Best Practices guide recommends these stage bits.
vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
fb->color.layout = barrier.newLayout;
}
}
void VulkanQueueRunner::PerformBindFramebufferAsRenderTarget(const VKRStep &step, VkCommandBuffer cmd) {
VkFramebuffer framebuf;
int w;
int h;
VkImageLayout prevLayout;
if (step.render.framebuffer) {
VKRFramebuffer *fb = step.render.framebuffer;
framebuf = fb->framebuf;
w = fb->width;
h = fb->height;
prevLayout = fb->color.layout;
} else {
framebuf = backbuffer_;
w = vulkan_->GetBackbufferWidth();
h = vulkan_->GetBackbufferHeight();
}
VkRenderPass renderPass;
int numClearVals = 0;
VkClearValue clearVal[2];
memset(clearVal, 0, sizeof(clearVal));
if (step.render.framebuffer) {
VKRFramebuffer *fb = step.render.framebuffer;
// Now, if the image needs transitioning, let's transition.
// The backbuffer does not, that's handled by VulkanContext.
if (step.render.framebuffer->color.layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
VkAccessFlags srcAccessMask;
VkPipelineStageFlags srcStage;
switch (fb->color.layout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
TransitionImageLayout2(cmd, fb->color.image, VK_IMAGE_ASPECT_COLOR_BIT,
fb->color.layout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
srcStage, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
srcAccessMask, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT);
fb->color.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (fb->depth.layout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
VkAccessFlags srcAccessMask;
VkPipelineStageFlags srcStage;
switch (fb->depth.layout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
TransitionImageLayout2(cmd, fb->depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
fb->depth.layout, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
srcStage, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
srcAccessMask, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT);
fb->depth.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
renderPass = renderPasses_[RPIndex(step.render.color, step.render.depthStencil)];
// VLOG("Switching framebuffer to FBO (fc=%d, cmd=%x, rp=%x)", frameNum_, (int)(uintptr_t)cmd_, (int)(uintptr_t)renderPass);
if (step.render.color == VKRRenderPassAction::CLEAR) {
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
numClearVals = 1;
}
if (step.render.depthStencil == VKRRenderPassAction::CLEAR) {
clearVal[1].depthStencil.depth = step.render.clearDepth;
clearVal[1].depthStencil.stencil = step.render.clearStencil;
numClearVals = 2;
}
} else {
renderPass = GetBackbufferRenderPass();
numClearVals = 2; // We don't bother with a depth buffer here.
clearVal[1].depthStencil.depth = 0.0f;
clearVal[1].depthStencil.stencil = 0;
}
VkRenderPassBeginInfo rp_begin = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
rp_begin.renderPass = renderPass;
rp_begin.framebuffer = framebuf;
rp_begin.renderArea.offset.x = 0;
rp_begin.renderArea.offset.y = 0;
rp_begin.renderArea.extent.width = w;
rp_begin.renderArea.extent.height = h;
rp_begin.clearValueCount = numClearVals;
rp_begin.pClearValues = numClearVals ? clearVal : nullptr;
vkCmdBeginRenderPass(cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
}
void VulkanQueueRunner::PerformCopy(const VKRStep &step, VkCommandBuffer cmd) {
VKRFramebuffer *src = step.copy.src;
VKRFramebuffer *dst = step.copy.dst;
VkImageCopy copy{};
copy.srcOffset.x = step.copy.srcRect.offset.x;
copy.srcOffset.y = step.copy.srcRect.offset.y;
copy.srcOffset.z = 0;
copy.srcSubresource.mipLevel = 0;
copy.srcSubresource.layerCount = 1;
copy.dstOffset.x = step.copy.dstPos.x;
copy.dstOffset.y = step.copy.dstPos.y;
copy.dstOffset.z = 0;
copy.dstSubresource.mipLevel = 0;
copy.dstSubresource.layerCount = 1;
copy.extent.width = step.copy.srcRect.extent.width;
copy.extent.height = step.copy.srcRect.extent.height;
copy.extent.depth = 1;
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
int srcCount = 0;
int dstCount = 0;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
// First source barriers.
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately.
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
copy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdCopyImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &copy);
}
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
copy.srcSubresource.aspectMask = 0;
copy.dstSubresource.aspectMask = 0;
if (step.copy.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (step.copy.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
vkCmdCopyImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &copy);
}
}
void VulkanQueueRunner::PerformBlit(const VKRStep &step, VkCommandBuffer cmd) {
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
VKRFramebuffer *src = step.blit.src;
VKRFramebuffer *dst = step.blit.dst;
// If any validation needs to be performed here, it should probably have been done
// already when the blit was queued. So don't validate here.
VkImageBlit blit{};
blit.srcOffsets[0].x = step.blit.srcRect.offset.x;
blit.srcOffsets[0].y = step.blit.srcRect.offset.y;
blit.srcOffsets[0].z = 0;
blit.srcOffsets[1].x = step.blit.srcRect.offset.x + step.blit.srcRect.extent.width;
blit.srcOffsets[1].y = step.blit.srcRect.offset.y + step.blit.srcRect.extent.height;
blit.srcOffsets[1].z = 1;
blit.srcSubresource.mipLevel = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0].x = step.blit.dstRect.offset.x;
blit.dstOffsets[0].y = step.blit.dstRect.offset.y;
blit.dstOffsets[0].z = 0;
blit.dstOffsets[1].x = step.blit.dstRect.offset.x + step.blit.dstRect.extent.width;
blit.dstOffsets[1].y = step.blit.dstRect.offset.y + step.blit.dstRect.extent.height;
blit.dstOffsets[1].z = 1;
blit.dstSubresource.mipLevel = 0;
blit.dstSubresource.layerCount = 1;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
int srcCount = 0;
int dstCount = 0;
// First source barriers.
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdBlitImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &blit, step.blit.filter);
}
// TODO: Need to check if the depth format is blittable.
// Actually, we should probably almost always use copies rather than blits for depth buffers.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
blit.srcSubresource.aspectMask = 0;
blit.dstSubresource.aspectMask = 0;
if (step.blit.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
vkCmdBlitImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &blit, step.blit.filter);
}
}
void VulkanQueueRunner::SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.subresourceRange.aspectMask = aspect;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
}
void VulkanQueueRunner::SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.subresourceRange.aspectMask = aspect;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
}

View File

@ -1,6 +1,182 @@
#pragma once
#include <cstdint>
#include "Common/Vulkan/VulkanContext.h"
#include "math/dataconv.h"
#include "thin3d/thin3d.h"
class VKRFramebuffer;
struct VKRImage;
// The cool thing is that you can Flush on a different thread than you record the commands on!
enum class VKRRenderCommand : uint8_t {
BIND_PIPELINE,
STENCIL,
BLEND,
VIEWPORT,
SCISSOR,
CLEAR,
DRAW,
DRAW_INDEXED,
};
struct VkRenderData {
VKRRenderCommand cmd;
union {
struct {
VkPipeline pipeline;
} pipeline;
struct {
VkPipelineLayout pipelineLayout;
VkDescriptorSet ds;
int numUboOffsets;
uint32_t uboOffsets[3];
VkBuffer vbuffer;
VkDeviceSize voffset;
uint32_t count;
} draw;
struct {
VkPipelineLayout pipelineLayout;
VkDescriptorSet ds;
int numUboOffsets;
uint32_t uboOffsets[3];
VkBuffer vbuffer; // might need to increase at some point
VkDeviceSize voffset;
VkBuffer ibuffer;
VkDeviceSize ioffset;
uint32_t count;
int16_t instances;
VkIndexType indexType;
} drawIndexed;
struct {
uint32_t clearColor;
float clearZ;
int clearStencil;
int clearMask; // VK_IMAGE_ASPECT_COLOR_BIT etc
} clear;
struct {
VkViewport vp;
} viewport;
struct {
VkRect2D scissor;
} scissor;
struct {
uint8_t stencilWriteMask;
uint8_t stencilCompareMask;
uint8_t stencilRef;
} stencil;
struct {
float color[4];
} blendColor;
struct {
} beginRp;
struct {
} endRp;
};
};
enum class VKRStepType : uint8_t {
RENDER,
COPY,
BLIT,
READBACK,
};
enum class VKRRenderPassAction {
DONT_CARE,
CLEAR,
KEEP,
};
struct TransitionRequest {
VKRFramebuffer *fb;
VkImageLayout targetLayout;
};
struct VKRStep {
VKRStep(VKRStepType _type) : stepType(_type) {}
VKRStepType stepType;
std::vector<VkRenderData> commands;
std::vector<TransitionRequest> preTransitions;
union {
struct {
VKRFramebuffer *framebuffer;
VKRRenderPassAction color;
VKRRenderPassAction depthStencil;
uint32_t clearColor;
float clearDepth;
int clearStencil;
int numDraws;
VkImageLayout finalColorLayout;
} render;
struct {
VKRFramebuffer *src;
VKRFramebuffer *dst;
VkRect2D srcRect;
VkOffset2D dstPos;
int aspectMask;
} copy;
struct {
VKRFramebuffer *src;
VKRFramebuffer *dst;
VkRect2D srcRect;
VkRect2D dstRect;
int aspectMask;
VkFilter filter;
} blit;
struct {
VKRFramebuffer *src;
void *destPtr;
VkRect2D srcRect;
} readback;
};
};
class VulkanQueueRunner {
public:
VulkanQueueRunner(VulkanContext *vulkan) : vulkan_(vulkan) {}
void SetBackbuffer(VkFramebuffer fb) {
backbuffer_ = fb;
}
void RunSteps(VkCommandBuffer cmd, const std::vector<VKRStep *> &steps);
void CreateDeviceObjects();
void DestroyDeviceObjects();
VkRenderPass GetBackbufferRenderPass() const {
return backbufferRenderPass_;
}
VkRenderPass GetRenderPass(int i) const {
return renderPasses_[i];
}
inline int RPIndex(VKRRenderPassAction color, VKRRenderPassAction depth) {
return (int)depth * 3 + (int)color;
}
private:
void InitBackbufferRenderPass();
void InitRenderpasses();
void PerformBindFramebufferAsRenderTarget(const VKRStep &pass, VkCommandBuffer cmd);
void PerformRenderPass(const VKRStep &pass, VkCommandBuffer cmd);
void PerformCopy(const VKRStep &pass, VkCommandBuffer cmd);
void PerformBlit(const VKRStep &pass, VkCommandBuffer cmd);
static void SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect);
static void SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect);
VulkanContext *vulkan_;
VkFramebuffer backbuffer_;
VkFramebuffer curFramebuffer_ = VK_NULL_HANDLE;
VkRenderPass backbufferRenderPass_ = VK_NULL_HANDLE;
// Renderpasses, all combinations of preserving or clearing or dont-care-ing fb contents.
// TODO: Create these on demand.
VkRenderPass renderPasses_[9]{};
};

View File

@ -94,7 +94,7 @@ void CreateImage(VulkanContext *vulkan, VkCommandBuffer cmd, VKRImage &img, int
img.layout = initialLayout;
}
VulkanRenderManager::VulkanRenderManager(VulkanContext *vulkan) : vulkan_(vulkan) {
VulkanRenderManager::VulkanRenderManager(VulkanContext *vulkan) : vulkan_(vulkan), queueRunner_(vulkan) {
VkSemaphoreCreateInfo semaphoreCreateInfo = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
semaphoreCreateInfo.flags = 0;
VkResult res = vkCreateSemaphore(vulkan_->GetDevice(), &semaphoreCreateInfo, nullptr, &acquireSemaphore_);
@ -124,8 +124,7 @@ VulkanRenderManager::VulkanRenderManager(VulkanContext *vulkan) : vulkan_(vulkan
frameData_[i].fence = vulkan_->CreateFence(true); // So it can be instantly waited on
}
InitBackbufferRenderPass();
InitRenderpasses();
queueRunner_.CreateDeviceObjects();
}
void VulkanRenderManager::CreateBackbuffers() {
@ -229,12 +228,7 @@ VulkanRenderManager::~VulkanRenderManager() {
vkDestroyCommandPool(device, frameData_[i].cmdPoolMain, nullptr);
vkDestroyFence(device, frameData_[i].fence, nullptr);
}
for (int i = 0; i < ARRAY_SIZE(renderPasses_); i++) {
assert(renderPasses_[i] != VK_NULL_HANDLE);
vkDestroyRenderPass(device, renderPasses_[i], nullptr);
}
assert(backbufferRenderPass_ != VK_NULL_HANDLE);
vkDestroyRenderPass(device, backbufferRenderPass_, nullptr);
queueRunner_.DestroyDeviceObjects();
}
// TODO: Activate this code.
@ -340,7 +334,7 @@ void VulkanRenderManager::InitBackbufferFramebuffers(int width, int height) {
VLOG("InitFramebuffers: %dx%d", width, height);
VkFramebufferCreateInfo fb_info = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO };
fb_info.renderPass = backbufferRenderPass_;
fb_info.renderPass = queueRunner_.GetBackbufferRenderPass();
fb_info.attachmentCount = 2;
fb_info.pAttachments = attachments;
fb_info.width = width;
@ -356,63 +350,6 @@ void VulkanRenderManager::InitBackbufferFramebuffers(int width, int height) {
}
}
void VulkanRenderManager::InitBackbufferRenderPass() {
VkResult U_ASSERT_ONLY res;
VkAttachmentDescription attachments[2];
attachments[0].format = vulkan_->GetSwapchainFormat();
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat; // must use this same format later for the back depth buffer.
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].flags = 0;
VkAttachmentReference color_reference = {};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference{};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
VkRenderPassCreateInfo rp_info = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp_info.pNext = nullptr;
rp_info.attachmentCount = 2;
rp_info.pAttachments = attachments;
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
rp_info.dependencyCount = 0;
rp_info.pDependencies = nullptr;
res = vkCreateRenderPass(vulkan_->GetDevice(), &rp_info, nullptr, &backbufferRenderPass_);
assert(res == VK_SUCCESS);
}
void VulkanRenderManager::InitDepthStencilBuffer(VkCommandBuffer cmd) {
VkResult U_ASSERT_ONLY res;
bool U_ASSERT_ONLY pass;
@ -486,85 +423,6 @@ void VulkanRenderManager::InitDepthStencilBuffer(VkCommandBuffer cmd) {
assert(res == VK_SUCCESS);
}
void VulkanRenderManager::InitRenderpasses() {
// Create a bunch of render pass objects, for normal rendering with a depth buffer,
// with clearing, without clearing, and dont-care for both depth/stencil and color, so 3*3=9 combos.
VkAttachmentDescription attachments[2] = {};
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].flags = 0;
VkAttachmentReference color_reference = {};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference = {};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
VkRenderPassCreateInfo rp = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp.attachmentCount = 2;
rp.pAttachments = attachments;
rp.subpassCount = 1;
rp.pSubpasses = &subpass;
rp.dependencyCount = 0;
rp.pDependencies = nullptr;
for (int depth = 0; depth < 3; depth++) {
switch ((VKRRenderPassAction)depth) {
case VKRRenderPassAction::CLEAR:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case VKRRenderPassAction::KEEP:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case VKRRenderPassAction::DONT_CARE:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
}
for (int color = 0; color < 3; color++) {
switch ((VKRRenderPassAction)color) {
case VKRRenderPassAction::CLEAR: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; break;
case VKRRenderPassAction::KEEP: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; break;
case VKRRenderPassAction::DONT_CARE: attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; break;
}
int index = RPIndex((VKRRenderPassAction)color, (VKRRenderPassAction)depth);
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &renderPasses_[index]);
}
}
}
void VulkanRenderManager::Clear(uint32_t clearColor, float clearZ, int clearStencil, int clearMask) {
_dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
// If this is the first drawing command, merge it into the pass.
@ -605,7 +463,6 @@ void VulkanRenderManager::CopyFramebuffer(VKRFramebuffer *src, VkRect2D srcRect,
std::unique_lock<std::mutex> lock(mutex_);
steps_.push_back(step);
curRenderStep_ = nullptr;
curFramebuffer_ = VK_NULL_HANDLE;
}
void VulkanRenderManager::BlitFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkRect2D dstRect, int aspectMask, VkFilter filter) {
@ -631,7 +488,6 @@ void VulkanRenderManager::BlitFramebuffer(VKRFramebuffer *src, VkRect2D srcRect,
std::unique_lock<std::mutex> lock(mutex_);
steps_.push_back(step);
curRenderStep_ = nullptr;
curFramebuffer_ = VK_NULL_HANDLE;
}
VkImageView VulkanRenderManager::BindFramebufferAsTexture(VKRFramebuffer *fb, int binding, int aspectBit, int attachment) {
@ -655,7 +511,6 @@ VkImageView VulkanRenderManager::BindFramebufferAsTexture(VKRFramebuffer *fb, in
void VulkanRenderManager::Flush() {
curRenderStep_ = nullptr;
curFramebuffer_ = VK_NULL_HANDLE;
int curFrame = vulkan_->GetCurFrame();
FrameData &frameData = frameData_[curFrame];
if (frameData.hasInitCommands) {
@ -676,7 +531,7 @@ void VulkanRenderManager::Flush() {
void VulkanRenderManager::Run(int frame) {
FrameData &frameData = frameData_[frame];
auto &stepsOnThread_ = frameData_[frame].steps;
auto &stepsOnThread = frameData_[frame].steps;
VkDevice device = vulkan_->GetDevice();
uint32_t curSwapchainImage = 0;
@ -687,10 +542,10 @@ void VulkanRenderManager::Run(int frame) {
VkCommandBuffer cmd = frameData.mainCmd;
VkCommandBufferBeginInfo begin = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
VkCommandBufferBeginInfo begin{ VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
begin.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
begin.pInheritanceInfo = nullptr;
res = vkBeginCommandBuffer(cmd, &begin);
assert(res == VK_SUCCESS);
// TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
@ -699,26 +554,10 @@ void VulkanRenderManager::Run(int frame) {
assert(res == VK_SUCCESS);
TransitionFromPresent(cmd, swapchainImages_[curSwapchainImage].image);
// Optimizes renderpasses, then sequences them.
for (int i = 0; i < stepsOnThread_.size(); i++) {
const VKRStep &step = *stepsOnThread_[i];
switch (step.stepType) {
case VKRStepType::RENDER:
PerformRenderPass(step, cmd, curSwapchainImage);
break;
case VKRStepType::COPY:
PerformCopy(step, cmd);
break;
case VKRStepType::BLIT:
PerformBlit(step, cmd);
break;
case VKRStepType::READBACK:
// PerformReadback
break;
}
delete stepsOnThread_[i];
}
stepsOnThread_.clear();
queueRunner_.SetBackbuffer(framebuffers_[curSwapchainImage]);
queueRunner_.RunSteps(cmd, stepsOnThread);
stepsOnThread.clear();
insideFrame_ = false;
TransitionToPresent(frameData.mainCmd, swapchainImages_[curSwapchainImage].image);
@ -742,6 +581,7 @@ void VulkanRenderManager::Run(int frame) {
VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &acquireSemaphore_;
VkPipelineStageFlags waitStage[1] = { VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT };
submit_info.pWaitDstStageMask = waitStage;
submit_info.commandBufferCount = (uint32_t)cmdBufs.size();
@ -777,552 +617,3 @@ void VulkanRenderManager::Run(int frame) {
VLOG("PULL: Finished running frame %d", frame);
}
void VulkanRenderManager::PerformRenderPass(const VKRStep &step, VkCommandBuffer cmd, int swapChainImage) {
// TODO: If there are multiple, we can transition them together.
for (const auto &iter : step.preTransitions) {
if (iter.fb->color.layout != iter.targetLayout) {
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = iter.fb->color.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = iter.fb->color.image;
barrier.srcAccessMask = 0;
VkPipelineStageFlags srcStage;
VkPipelineStageFlags dstStage;
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
barrier.newLayout = iter.targetLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
break;
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
iter.fb->color.layout = barrier.newLayout;
}
}
// This is supposed to bind a vulkan render pass to the command buffer.
PerformBindFramebufferAsRenderTarget(step, cmd, swapChainImage);
VKRFramebuffer *fb = step.render.framebuffer;
VkPipeline lastPipeline = VK_NULL_HANDLE;
auto &commands = step.commands;
// TODO: Dynamic state commands (SetViewport, SetScissor, SetBlendConstants, SetStencil*) are only
// valid when a pipeline is bound with those as dynamic state. So we need to add some state tracking here
// for this to be correct. This is a bit of a pain but also will let us eliminate redundant calls.
for (const auto &c : commands) {
switch (c.cmd) {
case VKRRenderCommand::BIND_PIPELINE:
if (c.pipeline.pipeline != lastPipeline) {
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.pipeline.pipeline);
lastPipeline = c.pipeline.pipeline;
}
break;
case VKRRenderCommand::VIEWPORT:
vkCmdSetViewport(cmd, 0, 1, &c.viewport.vp);
break;
case VKRRenderCommand::SCISSOR:
vkCmdSetScissor(cmd, 0, 1, &c.scissor.scissor);
break;
case VKRRenderCommand::BLEND:
vkCmdSetBlendConstants(cmd, c.blendColor.color);
break;
case VKRRenderCommand::STENCIL:
vkCmdSetStencilWriteMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilCompareMask);
vkCmdSetStencilReference(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilRef);
break;
case VKRRenderCommand::DRAW_INDEXED:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.drawIndexed.pipelineLayout, 0, 1, &c.drawIndexed.ds, c.drawIndexed.numUboOffsets, c.drawIndexed.uboOffsets);
vkCmdBindIndexBuffer(cmd, c.drawIndexed.ibuffer, c.drawIndexed.ioffset, VK_INDEX_TYPE_UINT16);
vkCmdBindVertexBuffers(cmd, 0, 1, &c.drawIndexed.vbuffer, &c.drawIndexed.voffset);
vkCmdDrawIndexed(cmd, c.drawIndexed.count, c.drawIndexed.instances, 0, 0, 0);
break;
case VKRRenderCommand::DRAW:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.draw.pipelineLayout, 0, 1, &c.draw.ds, c.draw.numUboOffsets, c.draw.uboOffsets);
vkCmdBindVertexBuffers(cmd, 0, 1, &c.draw.vbuffer, &c.draw.voffset);
vkCmdDraw(cmd, c.draw.count, 1, 0, 0);
break;
case VKRRenderCommand::CLEAR:
{
int numAttachments = 0;
VkClearRect rc{};
rc.baseArrayLayer = 0;
rc.layerCount = 1;
rc.rect.extent.width = curWidth_;
rc.rect.extent.height = curHeight_;
VkClearAttachment attachments[2];
if (c.clear.clearMask & VK_IMAGE_ASPECT_COLOR_BIT) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = 0;
Uint8x4ToFloat4(attachment.clearValue.color.float32, c.clear.clearColor);
}
if (c.clear.clearMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = 0;
if (c.clear.clearMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
attachment.clearValue.depthStencil.depth = c.clear.clearZ;
attachment.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (c.clear.clearMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
attachment.clearValue.depthStencil.stencil = c.clear.clearStencil;
attachment.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
if (numAttachments) {
vkCmdClearAttachments(cmd, numAttachments, attachments, 1, &rc);
}
break;
}
default:
ELOG("Unimpl queue command");
;
}
}
vkCmdEndRenderPass(cmd);
// Transition the framebuffer if requested.
if (fb && step.render.finalColorLayout != VK_IMAGE_LAYOUT_UNDEFINED) {
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = fb->color.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = fb->color.image;
barrier.srcAccessMask = 0;
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
default:
Crash();
}
barrier.newLayout = step.render.finalColorLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
default:
Crash();
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// we're between passes so it's OK.
// ARM Best Practices guide recommends these stage bits.
vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
fb->color.layout = barrier.newLayout;
}
}
void VulkanRenderManager::PerformBindFramebufferAsRenderTarget(const VKRStep &step, VkCommandBuffer cmd, int swapChainImage) {
VkFramebuffer framebuf;
int w;
int h;
VkImageLayout prevLayout;
if (step.render.framebuffer) {
VKRFramebuffer *fb = step.render.framebuffer;
framebuf = fb->framebuf;
w = fb->width;
h = fb->height;
prevLayout = fb->color.layout;
} else {
framebuf = framebuffers_[swapChainImage];
w = vulkan_->GetBackbufferWidth();
h = vulkan_->GetBackbufferHeight();
}
#if 0
// This part is based on faulty old thinking.
if (framebuf == curFramebuffer_) {
if (framebuf == 0)
Crash();
// If we're asking to clear, but already bound, we'll just keep it bound but send a clear command.
// We will try to avoid this as much as possible.
VkClearAttachment clear[2]{};
int count = 0;
if (step.render.color == VKRRenderPassAction::CLEAR) {
clear[count].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
Uint8x4ToFloat4(clear[count].clearValue.color.float32, step.render.clearColor);
clear[count].colorAttachment = 0;
count++;
}
if (step.render.depthStencil == VKRRenderPassAction::CLEAR) {
clear[count].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
clear[count].clearValue.depthStencil.depth = step.render.clearDepth;
clear[count].clearValue.depthStencil.stencil = step.render.clearStencil;
clear[count].colorAttachment = 0;
count++;
}
if (count > 0) {
VkClearRect rc{ { 0,0,(uint32_t)w,(uint32_t)h }, 0, 1 };
vkCmdClearAttachments(cmd, count, clear, 1, &rc);
}
// We're done.
return;
}
#endif
VkRenderPass renderPass;
int numClearVals = 0;
VkClearValue clearVal[2];
memset(clearVal, 0, sizeof(clearVal));
if (step.render.framebuffer) {
VKRFramebuffer *fb = step.render.framebuffer;
// Now, if the image needs transitioning, let's transition.
// The backbuffer does not, that's handled by VulkanContext.
if (step.render.framebuffer->color.layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
VkAccessFlags srcAccessMask;
VkPipelineStageFlags srcStage;
switch (fb->color.layout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
TransitionImageLayout2(cmd, fb->color.image, VK_IMAGE_ASPECT_COLOR_BIT,
fb->color.layout, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
srcStage, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
srcAccessMask, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT);
fb->color.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (fb->depth.layout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
VkAccessFlags srcAccessMask;
VkPipelineStageFlags srcStage;
switch (fb->depth.layout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
TransitionImageLayout2(cmd, fb->depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
fb->depth.layout, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
srcStage, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
srcAccessMask, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT);
fb->depth.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
renderPass = renderPasses_[RPIndex(step.render.color, step.render.depthStencil)];
// VLOG("Switching framebuffer to FBO (fc=%d, cmd=%x, rp=%x)", frameNum_, (int)(uintptr_t)cmd_, (int)(uintptr_t)renderPass);
if (step.render.color == VKRRenderPassAction::CLEAR) {
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
numClearVals = 1;
}
if (step.render.depthStencil == VKRRenderPassAction::CLEAR) {
clearVal[1].depthStencil.depth = step.render.clearDepth;
clearVal[1].depthStencil.stencil = step.render.clearStencil;
numClearVals = 2;
}
} else {
renderPass = GetBackbufferRenderpass();
numClearVals = 2; // We don't bother with a depth buffer here.
clearVal[1].depthStencil.depth = 0.0f;
clearVal[1].depthStencil.stencil = 0;
}
VkRenderPassBeginInfo rp_begin = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
rp_begin.renderPass = renderPass;
rp_begin.framebuffer = framebuf;
rp_begin.renderArea.offset.x = 0;
rp_begin.renderArea.offset.y = 0;
rp_begin.renderArea.extent.width = w;
rp_begin.renderArea.extent.height = h;
rp_begin.clearValueCount = numClearVals;
rp_begin.pClearValues = numClearVals ? clearVal : nullptr;
vkCmdBeginRenderPass(cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
curWidth_ = w;
curHeight_ = h;
curFramebuffer_ = framebuf;
}
void VulkanRenderManager::PerformCopy(const VKRStep &step, VkCommandBuffer cmd) {
VKRFramebuffer *src = step.copy.src;
VKRFramebuffer *dst = step.copy.dst;
VkImageCopy copy{};
copy.srcOffset.x = step.copy.srcRect.offset.x;
copy.srcOffset.y = step.copy.srcRect.offset.y;
copy.srcOffset.z = 0;
copy.srcSubresource.mipLevel = 0;
copy.srcSubresource.layerCount = 1;
copy.dstOffset.x = step.copy.dstPos.x;
copy.dstOffset.y = step.copy.dstPos.y;
copy.dstOffset.z = 0;
copy.dstSubresource.mipLevel = 0;
copy.dstSubresource.layerCount = 1;
copy.extent.width = step.copy.srcRect.extent.width;
copy.extent.height = step.copy.srcRect.extent.height;
copy.extent.depth = 1;
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
int srcCount = 0;
int dstCount = 0;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
// First source barriers.
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately.
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
copy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdCopyImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &copy);
}
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
copy.srcSubresource.aspectMask = 0;
copy.dstSubresource.aspectMask = 0;
if (step.copy.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (step.copy.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
copy.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
copy.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
vkCmdCopyImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &copy);
}
}
void VulkanRenderManager::PerformBlit(const VKRStep &step, VkCommandBuffer cmd) {
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
VKRFramebuffer *src = step.blit.src;
VKRFramebuffer *dst = step.blit.dst;
// If any validation needs to be performed here, it should probably have been done
// already when the blit was queued. So don't validate here.
VkImageBlit blit{};
blit.srcOffsets[0].x = step.blit.srcRect.offset.x;
blit.srcOffsets[0].y = step.blit.srcRect.offset.y;
blit.srcOffsets[0].z = 0;
blit.srcOffsets[1].x = step.blit.srcRect.offset.x + step.blit.srcRect.extent.width;
blit.srcOffsets[1].y = step.blit.srcRect.offset.y + step.blit.srcRect.extent.height;
blit.srcOffsets[1].z = 1;
blit.srcSubresource.mipLevel = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0].x = step.blit.dstRect.offset.x;
blit.dstOffsets[0].y = step.blit.dstRect.offset.y;
blit.dstOffsets[0].z = 0;
blit.dstOffsets[1].x = step.blit.dstRect.offset.x + step.blit.dstRect.extent.width;
blit.dstOffsets[1].y = step.blit.dstRect.offset.y + step.blit.dstRect.extent.height;
blit.dstOffsets[1].z = 1;
blit.dstSubresource.mipLevel = 0;
blit.dstSubresource.layerCount = 1;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
int srcCount = 0;
int dstCount = 0;
// First source barriers.
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdBlitImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &blit, step.blit.filter);
}
// TODO: Need to check if the depth format is blittable.
// Actually, we should probably almost always use copies rather than blits for depth buffers.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
blit.srcSubresource.aspectMask = 0;
blit.dstSubresource.aspectMask = 0;
if (step.blit.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
vkCmdBlitImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &blit, step.blit.filter);
}
}
void VulkanRenderManager::SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.subresourceRange.aspectMask = aspect;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
}
void VulkanRenderManager::SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.subresourceRange.aspectMask = aspect;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
}

View File

@ -8,140 +8,12 @@
#include "Common/Vulkan/VulkanContext.h"
#include "math/dataconv.h"
#include "thin3d/thin3d.h"
#include "thin3d/VulkanQueueRunner.h"
// Takes the role that a GL driver does of sequencing and optimizing render passes.
// Only draws and binds are handled here, resource creation and allocations are handled as normal -
// that's the nice thing with Vulkan.
// The cool thing is that you can Flush on a different thread than you record the commands on!
enum class VKRRenderCommand : uint8_t {
BIND_PIPELINE,
STENCIL,
BLEND,
VIEWPORT,
SCISSOR,
CLEAR,
DRAW,
DRAW_INDEXED,
};
struct VkRenderData {
VKRRenderCommand cmd;
union {
struct {
VkPipeline pipeline;
} pipeline;
struct {
VkPipelineLayout pipelineLayout;
VkDescriptorSet ds;
int numUboOffsets;
uint32_t uboOffsets[3];
VkBuffer vbuffer;
VkDeviceSize voffset;
uint32_t count;
} draw;
struct {
VkPipelineLayout pipelineLayout;
VkDescriptorSet ds;
int numUboOffsets;
uint32_t uboOffsets[3];
VkBuffer vbuffer; // might need to increase at some point
VkDeviceSize voffset;
VkBuffer ibuffer;
VkDeviceSize ioffset;
uint32_t count;
int16_t instances;
VkIndexType indexType;
} drawIndexed;
struct {
uint32_t clearColor;
float clearZ;
int clearStencil;
int clearMask; // VK_IMAGE_ASPECT_COLOR_BIT etc
} clear;
struct {
VkViewport vp;
} viewport;
struct {
VkRect2D scissor;
} scissor;
struct {
uint8_t stencilWriteMask;
uint8_t stencilCompareMask;
uint8_t stencilRef;
} stencil;
struct {
float color[4];
} blendColor;
struct {
} beginRp;
struct {
} endRp;
};
};
enum class VKRStepType : uint8_t {
RENDER,
COPY,
BLIT,
READBACK,
};
class VKRFramebuffer;
enum class VKRRenderPassAction {
DONT_CARE,
CLEAR,
KEEP,
};
struct TransitionRequest {
VKRFramebuffer *fb;
VkImageLayout targetLayout;
};
struct VKRStep {
VKRStep(VKRStepType _type) : stepType(_type) {}
VKRStepType stepType;
std::vector<VkRenderData> commands;
std::vector<TransitionRequest> preTransitions;
union {
struct {
VKRFramebuffer *framebuffer;
VKRRenderPassAction color;
VKRRenderPassAction depthStencil;
uint32_t clearColor;
float clearDepth;
int clearStencil;
int numDraws;
VkImageLayout finalColorLayout;
} render;
struct {
VKRFramebuffer *src;
VKRFramebuffer *dst;
VkRect2D srcRect;
VkOffset2D dstPos;
int aspectMask;
} copy;
struct {
VKRFramebuffer *src;
VKRFramebuffer *dst;
VkRect2D srcRect;
VkRect2D dstRect;
int aspectMask;
VkFilter filter;
} blit;
struct {
VKRFramebuffer *src;
void *destPtr;
VkRect2D srcRect;
} readback;
};
};
// Simple independent framebuffer image. Gets its own allocation, we don't have that many framebuffers so it's fine
// to let them have individual non-pooled allocations. Until it's not fine. We'll see.
struct VKRImage {
@ -211,6 +83,7 @@ public:
void Run(int frame);
// Bad for performance but sometimes necessary for synchronous CPU readbacks (screenshots and whatnot).
void Sync();
void RunSteps(VkCommandBuffer cmd, const std::vector<VKRStep *> &steps, int curSwapChainImage);
void BindFramebufferAsRenderTarget(VKRFramebuffer *fb, VKRRenderPassAction color, VKRRenderPassAction depth, uint32_t clearColor, float clearDepth, uint8_t clearStencil);
VkImageView BindFramebufferAsTexture(VKRFramebuffer *fb, int binding, int aspectBit, int attachment);
@ -292,17 +165,18 @@ public:
}
VkCommandBuffer GetInitCmd();
VkRenderPass GetBackbufferRenderpass() const {
return backbufferRenderPass_;
VkRenderPass GetRenderPass(int pass) const {
return queueRunner_.GetRenderPass(pass);
}
VkRenderPass GetRenderPass(int i) const {
return renderPasses_[i];
VkRenderPass GetBackbufferRenderPass() const {
return queueRunner_.GetBackbufferRenderPass();
}
VkRenderPass GetCompatibleRenderpass() const {
VkRenderPass GetCompatibleRenderPass() const {
if (curRenderStep_ && curRenderStep_->render.framebuffer != nullptr) {
return GetRenderPass(0);
return queueRunner_.GetRenderPass(0);
} else {
return backbufferRenderPass_;
return queueRunner_.GetBackbufferRenderPass();
}
}
@ -311,30 +185,10 @@ public:
private:
void InitBackbufferFramebuffers(int width, int height);
void InitBackbufferRenderPass();
void InitRenderpasses();
void InitDepthStencilBuffer(VkCommandBuffer cmd); // Used for non-buffered rendering.
void PerformBindFramebufferAsRenderTarget(const VKRStep &pass, VkCommandBuffer cmd, int swapChainImage);
void PerformRenderPass(const VKRStep &pass, VkCommandBuffer cmd, int swapChainImage);
void PerformCopy(const VKRStep &pass, VkCommandBuffer cmd);
void PerformBlit(const VKRStep &pass, VkCommandBuffer cmd);
inline int RPIndex(VKRRenderPassAction color, VKRRenderPassAction depth) {
return (int)depth * 3 + (int)color;
}
static void SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect);
static void SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect);
// Permanent objects
VkSemaphore acquireSemaphore_;
VkSemaphore renderingCompleteSemaphore_;
VkRenderPass backbufferRenderPass_ = VK_NULL_HANDLE;
// Renderpasses, all combinations of preserving or clearing or dont-care-ing fb contents.
// TODO: Create these on demand.
VkRenderPass renderPasses_[9];
// Per-frame data, round-robin so we can overlap submission with execution of the previous frame.
struct FrameData {
@ -370,7 +224,7 @@ private:
VulkanContext *vulkan_;
std::thread thread_;
std::mutex mutex_;
VkFramebuffer curFramebuffer_ = VK_NULL_HANDLE;
VulkanQueueRunner queueRunner_;
// Swap chain management
struct SwapchainImageData {

View File

@ -448,9 +448,9 @@ public:
// Return a representative renderpass.
return (uintptr_t)renderManager_.GetRenderPass(0);
case NativeObject::BACKBUFFER_RENDERPASS:
return (uintptr_t)renderManager_.GetBackbufferRenderpass();
return (uintptr_t)renderManager_.GetBackbufferRenderPass();
case NativeObject::COMPATIBLE_RENDERPASS:
return (uintptr_t)renderManager_.GetCompatibleRenderpass();
return (uintptr_t)renderManager_.GetCompatibleRenderPass();
case NativeObject::INIT_COMMANDBUFFER:
return (uintptr_t)renderManager_.GetInitCmd();
case NativeObject::BOUND_TEXTURE_IMAGEVIEW:
@ -893,7 +893,7 @@ Pipeline *VKContext::CreateGraphicsPipeline(const PipelineDesc &desc) {
info.pViewportState = &vs; // Must set viewport and scissor counts even if we set the actual state dynamically.
info.layout = pipelineLayout_;
info.subpass = 0;
info.renderPass = renderManager_.GetBackbufferRenderpass();
info.renderPass = renderManager_.GetBackbufferRenderPass();
// OK, need to create a new pipeline.
VkResult result = vkCreateGraphicsPipelines(device_, pipelineCache_, 1, &info, nullptr, &pipeline->vkpipeline);