Move spline generation to SplineCommon, make SplineDX9.cpp identical to Spline.cpp (merge later somehow)

This commit is contained in:
Henrik Rydgard 2014-09-13 15:13:34 +02:00
parent 31ce0e7eb1
commit a4ae0f951a
17 changed files with 1004 additions and 839 deletions

View File

@ -1305,6 +1305,10 @@ add_library(GPU OBJECT
GPU/Common/FramebufferCommon.cpp
GPU/Common/FramebufferCommon.h
GPU/Common/GPUDebugInterface.h
GPU/Common/DrawEngineCommon.cpp
GPU/Common/DrawEngineCommon.h
GPU/Common/SplineCommon.cpp
GPU/Common/SplineCommon.h
GPU/Common/SoftwareTransformCommon.cpp
GPU/Common/SoftwareTransformCommon.h
GPU/Common/VertexDecoderCommon.cpp

View File

@ -0,0 +1,20 @@
// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "GPU/Common/DrawEngineCommon.h"
DrawEngineCommon::~DrawEngineCommon() { }

View File

@ -0,0 +1,24 @@
// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
class DrawEngineCommon {
public:
virtual ~DrawEngineCommon();
};

484
GPU/Common/SplineCommon.cpp Normal file
View File

@ -0,0 +1,484 @@
// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <string.h>
#include <algorithm>
#include "Core/Config.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#define START_OPEN 1
#define END_OPEN 2
static void CopyQuad(u8 *&dest, const SimpleVertex *v1, const SimpleVertex *v2, const SimpleVertex* v3, const SimpleVertex *v4) {
int vertexSize = sizeof(SimpleVertex);
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
memcpy(dest, v4, vertexSize);
dest += vertexSize;
}
#undef b2
// Bernstein basis functions
inline float bern0(float x) { return (1 - x) * (1 - x) * (1 - x); }
inline float bern1(float x) { return 3 * x * (1 - x) * (1 - x); }
inline float bern2(float x) { return 3 * x * x * (1 - x); }
inline float bern3(float x) { return x * x * x; }
// Not sure yet if these have any use
inline float bern0deriv(float x) { return -3 * (x - 1) * (x - 1); }
inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; }
inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; }
inline float bern3deriv(float x) { return 3 * x * x; }
// http://en.wikipedia.org/wiki/Bernstein_polynomial
Vec3Packedf Bernstein3D(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) {
return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x);
}
Vec3Packedf Bernstein3DDerivative(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) {
return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x);
}
void spline_n_4(int i, float t, float *knot, float *splineVal) {
knot += i + 1;
float t0 = (t - knot[0]);
float t1 = (t - knot[1]);
float t2 = (t - knot[2]);
float f30 = t0/(knot[3]-knot[0]);
float f41 = t1/(knot[4]-knot[1]);
float f52 = t2/(knot[5]-knot[2]);
float f31 = t1/(knot[3]-knot[1]);
float f42 = t2/(knot[4]-knot[2]);
float f32 = t2/(knot[3]-knot[2]);
float a = (1-f30)*(1-f31);
float b = (f31*f41);
float c = (1-f41)*(1-f42);
float d = (f42*f52);
splineVal[0] = a-(a*f32);
splineVal[1] = 1-a-b+((a+b+c-1)*f32);
splineVal[2] = b+((1-b-c-d)*f32);
splineVal[3] = d*f32;
}
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void spline_knot(int n, int type, float *knot) {
memset(knot, 0, sizeof(float) * (n + 5));
for (int i = 0; i < n - 1; ++i)
knot[i + 3] = i;
if ((type & 1) == 0) {
knot[0] = -3;
knot[1] = -2;
knot[2] = -1;
}
if ((type & 2) == 0) {
knot[n + 2] = n - 1;
knot[n + 3] = n;
knot[n + 4] = n + 1;
} else {
knot[n + 2] = n - 2;
knot[n + 3] = n - 2;
knot[n + 4] = n - 2;
}
}
void _SplinePatchLowQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.
const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
int point_index = tile_u + tile_v * spatch.count_u;
SimpleVertex v0 = *spatch.points[point_index];
SimpleVertex v1 = *spatch.points[point_index + 1];
SimpleVertex v2 = *spatch.points[point_index + spatch.count_u];
SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = tile_u * third;
float v = tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
}
void _SplinePatchFullQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType, int patch_cap) {
// Full (mostly) correct tessellation of spline patches.
// Not very fast.
// First, generate knot vectors.
int n = spatch.count_u - 1;
int m = spatch.count_v - 1;
float *knot_u = new float[n + 5];
float *knot_v = new float[m + 5];
spline_knot(n, spatch.type_u, knot_u);
spline_knot(m, spatch.type_v, knot_v);
// Increase tesselation based on the size. Should be approximately right?
// JPCSP is wrong at least because their method results in square loco roco.
int patch_div_s = (spatch.count_u - 3) * gstate.getPatchDivisionU() / 3;
int patch_div_t = (spatch.count_v - 3) * gstate.getPatchDivisionV() / 3;
if (patch_div_s <= 0) patch_div_s = 1;
if (patch_div_t <= 0) patch_div_t = 1;
// TODO: Remove this cap when spline_s has been optimized.
if (patch_div_s > patch_cap) patch_div_s = patch_cap;
if (patch_div_t > patch_cap) patch_div_t = patch_cap;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];
float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f / 3.0f;
float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f / 3.0f;
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s
if (v < 0.0f)
v = 0.0f;
for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));
if (u < 0.0f)
u = 0.0f;
SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
vert->pos.SetZero();
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.SetZero();
}
else {
vert->nrm.SetZero();
vert->nrm.z = 1.0f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
memset(vert->color, 0, 4);
}
else {
memcpy(vert->color, spatch.points[0]->color, 4);
}
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] = 0.0f;
vert->uv[1] = 0.0f;
}
else {
vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s);
vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t);
}
// Collect influences from surrounding control points.
float u_weights[4];
float v_weights[4];
int iu = (int)u;
int iv = (int)v;
spline_n_4(iu, u, knot_u, u_weights);
spline_n_4(iv, v, knot_v, v_weights);
// Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points.
int patch_w = std::min(spatch.count_u, 4);
int patch_h = std::min(spatch.count_v, 4);
for (int ii = 0; ii < patch_w; ++ii) {
for (int jj = 0; jj < patch_h; ++jj) {
float u_spline = u_weights[ii];
float v_spline = v_weights[jj];
float f = u_spline * v_spline;
if (f > 0.0f) {
int idx = spatch.count_u * (iv + jj) + (iu + ii);
SimpleVertex *a = spatch.points[idx];
vert->pos += a->pos * f;
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] += a->uv[0] * f;
vert->uv[1] += a->uv[1] * f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
vert->color[0] += a->color[0] * f;
vert->color[1] += a->color[1] * f;
vert->color[2] += a->color[2] * f;
vert->color[3] += a->color[3] * f;
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm += a->nrm * f;
}
}
}
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.Normalize();
}
}
}
delete[] knot_u;
delete[] knot_v;
// Hacky normal generation through central difference.
if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) {
for (int v = 0; v < patch_div_t + 1; v++) {
for (int u = 0; u < patch_div_s + 1; u++) {
int l = std::max(0, u - 1);
int t = std::max(0, v - 1);
int r = std::min(patch_div_s, u + 1);
int b = std::min(patch_div_t, v + 1);
const Vec3Packedf &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos;
const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos;
vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized();
if (gstate.patchfacing & 1) {
vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f;
}
}
}
}
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
float u = ((float)tile_u / (float)patch_div_s);
float v = ((float)tile_v / (float)patch_div_t);
SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete[] vertices;
}
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
_SplinePatchLowQuality(dest, count, spatch, origVertType);
break;
case MEDIUM_QUALITY:
_SplinePatchFullQuality(dest, count, spatch, origVertType, 8);
break;
case HIGH_QUALITY:
_SplinePatchFullQuality(dest, count, spatch, origVertType, 64);
break;
}
}
void _BezierPatchLowQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.
float u_base = patch.u_index / 3.0f;
float v_base = patch.v_index / 3.0f;
for (int tile_v = 0; tile_v < 3; tile_v++) {
for (int tile_u = 0; tile_u < 3; tile_u++) {
int point_index = tile_u + tile_v * 4;
SimpleVertex v0 = *patch.points[point_index];
SimpleVertex v1 = *patch.points[point_index + 1];
SimpleVertex v2 = *patch.points[point_index + 4];
SimpleVertex v3 = *patch.points[point_index + 5];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = u_base + tile_u * third;
float v = v_base + tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
}
void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Full correct tesselation of bezier patches.
// Note: Does not handle splines correctly.
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];
Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;
// Precompute the horizontal curves to we only have to evaluate the vertical ones.
for (int i = 0; i < tess_u + 1; i++) {
float u = ((float)i / (float)tess_u);
horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
}
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
float bu = u;
float bv = v;
// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
const Vec3Packedf &pos1 = horiz[tile_u];
const Vec3Packedf &pos2 = horiz2[tile_u];
const Vec3Packedf &pos3 = horiz3[tile_u];
const Vec3Packedf &pos4 = horiz4[tile_u];
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
if (computeNormals) {
Vec3Packedf derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3Packedf derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
Vec3Packedf derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
Vec3Packedf derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
Vec3Packedf derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);
// TODO: Interpolate normals instead of generating them, if available?
vert.nrm = Cross(derivU, derivV).Normalized();
if (gstate.patchfacing & 1)
vert.nrm *= -1.0f;
}
else {
vert.nrm.SetZero();
}
vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
// Generate texcoord
vert.uv[0] = u + patch.u_index * third;
vert.uv[1] = v + patch.v_index * third;
} else {
// Sample UV from control points
patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
}
if (origVertType & GE_VTYPE_COL_MASK) {
patch.sampleColor(u, v, vert.color);
} else {
memcpy(vert.color, patch.points[0]->color, 4);
}
}
}
delete[] horiz;
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete[] vertices;
}
void TesselateBezierPatch(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
_BezierPatchLowQuality(dest, count, tess_u, tess_v, patch, origVertType);
break;
case MEDIUM_QUALITY:
case HIGH_QUALITY:
_BezierPatchHighQuality(dest, count, tess_u, tess_v, patch, origVertType);
break;
}
}

View File

@ -27,3 +27,140 @@ struct SimpleVertex {
Vec3Packedf nrm;
Vec3Packedf pos;
};
inline float lerp(float a, float b, float x) {
return a + x * (b - a);
}
// SLOW!
inline void lerpColor(u8 a[4], u8 b[4], float x, u8 out[4]) {
for (int i = 0; i < 4; i++) {
out[i] = (u8)((float)a[i] + x * ((float)b[i] - (float)a[i]));
}
}
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct BezierPatch {
SimpleVertex *points[16];
// These are used to generate UVs.
int u_index, v_index;
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}
};
struct SplinePatchLocal {
SimpleVertex **points;
int count_u;
int count_v;
int type_u;
int type_v;
/*
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}*/
};
enum quality {
LOW_QUALITY = 0,
MEDIUM_QUALITY = 1,
HIGH_QUALITY = 2,
};
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType);
void TesselateBezierPatch(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType);

View File

@ -1,4 +1,3 @@
// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify

View File

@ -317,8 +317,8 @@ static const CommandTableEntry commandTable[] = {
// Changing the vertex type requires us to flush.
{GE_CMD_VERTEXTYPE, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, &DIRECTX9_GPU::Execute_VertexType},
{GE_CMD_BEZIER, FLAG_FLUSHBEFORE | FLAG_EXECUTE},
{GE_CMD_SPLINE, FLAG_FLUSHBEFORE | FLAG_EXECUTE},
{GE_CMD_BEZIER, FLAG_FLUSHBEFORE | FLAG_EXECUTE, &DIRECTX9_GPU::Execute_Bezier},
{GE_CMD_SPLINE, FLAG_FLUSHBEFORE | FLAG_EXECUTE, &DIRECTX9_GPU::Execute_Spline},
// These two are actually processed in CMD_END.
{GE_CMD_SIGNAL, FLAG_FLUSHBEFORE},
@ -684,6 +684,163 @@ void DIRECTX9_GPU::Execute_VertexTypeSkinning(u32 op, u32 diff) {
}
}
void DIRECTX9_GPU::Execute_Prim(u32 op, u32 diff) {
// This drives all drawing. All other state we just buffer up, then we apply it only
// when it's time to draw. As most PSP games set state redundantly ALL THE TIME, this is a huge optimization.
u32 data = op & 0xFFFFFF;
u32 count = data & 0xFFFF;
GEPrimitiveType prim = static_cast<GEPrimitiveType>(data >> 16);
if (count == 0)
return;
// Discard AA lines as we can't do anything that makes sense with these anyway. The SW plugin might, though.
if (gstate.isAntiAliasEnabled()) {
// Discard AA lines in DOA
if (prim == GE_PRIM_LINE_STRIP)
return;
// Discard AA lines in Summon Night 5
if ((prim == GE_PRIM_LINES) && gstate.isSkinningEnabled())
return;
}
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
transformDraw_.SetupVertexDecoder(gstate.vertType);
// Rough estimate, not sure what's correct.
int vertexCost = transformDraw_.EstimatePerVertexCost();
cyclesExecuted += vertexCost * count;
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
void *verts = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
void *inds = 0;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
inds = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
#ifndef MOBILE_DEVICE
if (prim > GE_PRIM_RECTANGLES) {
ERROR_LOG_REPORT_ONCE(reportPrim, G3D, "Unexpected prim type: %d", prim);
}
#endif
int bytesRead = 0;
transformDraw_.SubmitPrim(verts, inds, prim, count, gstate.vertType, &bytesRead);
int vertexCost = transformDraw_.EstimatePerVertexCost();
gpuStats.vertexGPUCycles += vertexCost * count;
cyclesExecuted += vertexCost * count;
// After drawing, we advance the vertexAddr (when non indexed) or indexAddr (when indexed).
// Some games rely on this, they don't bother reloading VADDR and IADDR.
// The VADDR/IADDR registers are NOT updated.
if (inds) {
int indexSize = 1;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT)
indexSize = 2;
gstate_c.indexAddr += count * indexSize;
} else {
gstate_c.vertexAddr += bytesRead;
}
}
void DIRECTX9_GPU::Execute_Bezier(u32 op, u32 diff) {
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (gstate.getPatchPrimitiveType() != GE_PATCHPRIM_TRIANGLES) {
ERROR_LOG_REPORT(G3D, "Unsupported patch primitive %x", gstate.getPatchPrimitiveType());
return;
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Bezier + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Bezier + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
int bz_ucount = op & 0xFF;
int bz_vcount = (op >> 8) & 0xFF;
transformDraw_.SubmitBezier(control_points, indices, bz_ucount, bz_vcount, patchPrim, gstate.vertType);
}
void DIRECTX9_GPU::Execute_Spline(u32 op, u32 diff) {
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (gstate.getPatchPrimitiveType() != GE_PATCHPRIM_TRIANGLES) {
ERROR_LOG_REPORT(G3D, "Unsupported patch primitive %x", gstate.getPatchPrimitiveType());
return;
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Spline + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Spline + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
int sp_ucount = op & 0xFF;
int sp_vcount = (op >> 8) & 0xFF;
int sp_utype = (op >> 16) & 0x3;
int sp_vtype = (op >> 18) & 0x3;
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
transformDraw_.SubmitSpline(control_points, indices, sp_ucount, sp_vcount, sp_utype, sp_vtype, patchPrim, gstate.vertType);
}
void DIRECTX9_GPU::Execute_ViewportType(u32 op, u32 diff) {
gstate_c.framebufChanged = true;
gstate_c.textureChanged |= TEXCHANGE_PARAMSONLY;
@ -921,162 +1078,25 @@ void DIRECTX9_GPU::Execute_Generic(u32 op, u32 diff) {
case GE_CMD_BASE:
break;
case GE_CMD_PRIM:
{
// This drives all drawing. All other state we just buffer up, then we apply it only
// when it's time to draw. As most PSP games set state redundantly ALL THE TIME, this is a huge optimization.
u32 count = data & 0xFFFF;
GEPrimitiveType prim = static_cast<GEPrimitiveType>(data >> 16);
if (count == 0)
break;
// Discard AA lines as we can't do anything that makes sense with these anyway. The SW plugin might, though.
if (gstate.isAntiAliasEnabled()) {
// Discard AA lines in DOA
if (prim == GE_PRIM_LINE_STRIP)
break;
// Discard AA lines in Summon Night 5
if ((prim == GE_PRIM_LINES) && vertTypeIsSkinningEnabled(gstate.vertType))
break;
}
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
transformDraw_.SetupVertexDecoder(gstate.vertType);
// Rough estimate, not sure what's correct.
int vertexCost = transformDraw_.EstimatePerVertexCost();
cyclesExecuted += vertexCost * count;
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
break;
}
void *verts = Memory::GetPointer(gstate_c.vertexAddr);
void *inds = 0;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
break;
}
inds = Memory::GetPointer(gstate_c.indexAddr);
}
int bytesRead;
transformDraw_.SubmitPrim(verts, inds, prim, count, gstate.vertType, &bytesRead);
int vertexCost = transformDraw_.EstimatePerVertexCost();
gpuStats.vertexGPUCycles += vertexCost * count;
cyclesExecuted += vertexCost * count;
// After drawing, we advance the vertexAddr (when non indexed) or indexAddr (when indexed).
// Some games rely on this, they don't bother reloading VADDR and IADDR.
// The VADDR/IADDR registers are NOT updated.
if (inds) {
int indexSize = 1;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT)
indexSize = 2;
gstate_c.indexAddr += count * indexSize;
} else {
gstate_c.vertexAddr += bytesRead;
}
}
case GE_CMD_VADDR:
Execute_Vaddr(op, diff);
break;
// The arrow and other rotary items in Puzbob are bezier patches, strangely enough.
case GE_CMD_IADDR:
Execute_Iaddr(op, diff);
break;
case GE_CMD_PRIM:
Execute_Prim(op, diff);
break;
// The arrow and other rotary items in Puzbob are bezier patches, strangely enough.
case GE_CMD_BEZIER:
{
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
break;
}
void *control_points = Memory::GetPointer(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
break;
}
indices = Memory::GetPointer(gstate_c.indexAddr);
}
if (gstate.getPatchPrimitiveType() != GE_PATCHPRIM_TRIANGLES) {
ERROR_LOG_REPORT(G3D, "Unsupported patch primitive %x", gstate.getPatchPrimitiveType());
break;
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Bezier + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Bezier + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
int bz_ucount = data & 0xFF;
int bz_vcount = (data >> 8) & 0xFF;
transformDraw_.SubmitBezier(control_points, indices, bz_ucount, bz_vcount, patchPrim, gstate.vertType);
}
Execute_Bezier(op, diff);
break;
case GE_CMD_SPLINE:
{
// This also make skipping drawing very effective.
framebufferManager_.SetRenderFrameBuffer();
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
break;
}
void *control_points = Memory::GetPointer(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
break;
}
indices = Memory::GetPointer(gstate_c.indexAddr);
}
if (gstate.getPatchPrimitiveType() != GE_PATCHPRIM_TRIANGLES) {
ERROR_LOG_REPORT(G3D, "Unsupported patch primitive %x", gstate.getPatchPrimitiveType());
break;
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Spline + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Spline + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
int sp_ucount = data & 0xFF;
int sp_vcount = (data >> 8) & 0xFF;
int sp_utype = (data >> 16) & 0x3;
int sp_vtype = (data >> 18) & 0x3;
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
transformDraw_.SubmitSpline(control_points, indices, sp_ucount, sp_vcount, sp_utype, sp_vtype, patchPrim, gstate.vertType);
}
Execute_Spline(op, diff);
break;
case GE_CMD_BOUNDINGBOX:

View File

@ -87,6 +87,9 @@ public:
void Execute_Generic(u32 op, u32 diff);
void Execute_Vaddr(u32 op, u32 diff);
void Execute_Iaddr(u32 op, u32 diff);
void Execute_Prim(u32 op, u32 diff);
void Execute_Bezier(u32 op, u32 diff);
void Execute_Spline(u32 op, u32 diff);
void Execute_VertexType(u32 op, u32 diff);
void Execute_VertexTypeSkinning(u32 op, u32 diff);
void Execute_ViewportType(u32 op, u32 diff);

View File

@ -22,7 +22,7 @@
#include "GPU/Common/VertexDecoderCommon.h"
namespace DX9 {
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
@ -37,7 +37,7 @@ u32 TransformDrawEngineDX9::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *
VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);
SimpleVertex *sverts = (SimpleVertex *)outPtr;
SimpleVertex *sverts = (SimpleVertex *)outPtr;
const u8 defaultColor[4] = {
(u8)gstate.getMaterialAmbientR(),
@ -132,33 +132,7 @@ u32 TransformDrawEngineDX9::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *
return NormalizeVertices(outPtr, bufPtr, inPtr, dec, lowerBound, upperBound, vertType);
}
// Spline implementation copied and modified from neobrain's softgpu (orphis code?)
#define START_OPEN_U 1
#define END_OPEN_U 2
#define START_OPEN_V 4
#define END_OPEN_V 8
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct HWSplinePatch {
u8 *points[16];
int type;
// We need to generate both UVs and normals later...
// float u0, v0, u1, v1;
};
static void CopyTriangle(u8 *&dest, u8 *v1, u8 *v2, u8 * v3, int vertexSize) {
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
}
void TransformDrawEngineDX9::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
void TransformDrawEngineDX9::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
@ -166,94 +140,165 @@ void TransformDrawEngineDX9::SubmitSpline(void* control_points, void* indices, i
return;
}
// We're not actually going to decode, only reshuffle.
VertexDecoder *vdecoder = GetVertexDecoder(vertex_type);
int undecodedVertexSize = vdecoder->VertexSize();
const DecVtxFormat & vtxfmt = vdecoder->GetDecVtxFmt();
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
u8* indices8 = (u8*)indices;
u16* indices16 = (u16*)indices;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
int num_patches_u = count_u - 3;
int num_patches_v = count_v - 3;
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
// TODO: Do something less idiotic to manage this buffer
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
SimpleVertex **points = new SimpleVertex *[count_u * count_v];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
if (indices)
patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx;
}
patch.type = (type_u | (type_v<<2));
if (patch_u != 0) patch.type &= ~START_OPEN_U;
if (patch_v != 0) patch.type &= ~START_OPEN_V;
if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
}
// Make an array of pointers to the control points, to get rid of indices.
for (int idx = 0; idx < count_u * count_v; idx++) {
if (indices)
points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
points[idx] = simplified_control_points + idx;
}
u8 *decoded2 = decoded + 65536 * 24;
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
SplinePatchLocal patch;
patch.type_u = type_u;
patch.type_v = type_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.points = points;
// TODO: Should do actual patch subdivision instead of just drawing the control points!
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
int point_index = tile_u + tile_v*4;
TesselateSplinePatch(dest, count, patch, origVertType);
u8 *v0 = patch.points[point_index];
u8 *v1 = patch.points[point_index+1];
u8 *v2 = patch.points[point_index+4];
u8 *v3 = patch.points[point_index+5];
delete[] points;
// TODO: Insert UVs and normals if not present.
CopyTriangle(dest, v0, v2, v1, undecodedVertexSize);
CopyTriangle(dest, v1, v2, v3, undecodedVertexSize);
count += 6;
}
}
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if (g_Config.bPrescaleUV) {
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0;
gstate_c.uv.vOff = 0;
}
delete[] patches;
SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);
u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK;
SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, 0);
Flush();
if (g_Config.bPrescaleUV) {
gstate_c.uv = prevUVScale;
}
}
// TODO
void TransformDrawEngineDX9::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertex_type) {
void TransformDrawEngineDX9::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
// We're not actually going to decode, only reshuffle.
//VertexDecoder vdecoder;
//vdecoder.SetVertexType(vertex_type);
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = (count_u - 1) / 3;
int num_patches_v = (count_v - 1) / 3;
BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
if (indices)
patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = simplified_control_points + idx;
}
patch.u_index = patch_u * 3;
patch.v_index = patch_v * 3;
}
}
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
// Simple approximation of the real tesselation factor.
// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
// like the splines, so we subdivide across the whole "mega-patch".
if (num_patches_u == 0) num_patches_u = 1;
if (num_patches_v == 0) num_patches_v = 1;
int tess_u = gstate.getPatchDivisionU() / num_patches_u;
int tess_v = gstate.getPatchDivisionV() / num_patches_v;
if (tess_u < 4) tess_u = 4;
if (tess_v < 4) tess_v = 4;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
BezierPatch& patch = patches[patch_idx];
TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType);
}
delete[] patches;
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if (g_Config.bPrescaleUV) {
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0;
gstate_c.uv.vOff = 0;
}
SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);
Flush();
if (g_Config.bPrescaleUV) {
gstate_c.uv = prevUVScale;
}
}
};

View File

@ -786,7 +786,7 @@ void TextureCacheDX9::UpdateCurrentClut() {
if (gstate.getClutPaletteFormat() == GE_CMODE_16BIT_ABGR4444 && gstate.isClutIndexSimple()) {
const u16_le *clut = GetCurrentClut<u16_le>();
clutAlphaLinear_ = true;
clutAlphaLinearColor_ = clut[15] & 0xFFF0;
clutAlphaLinearColor_ = clut[15] & 0x0FFF;
for (int i = 0; i < 16; ++i) {
if ((clut[i] >> 12) != i) {
clutAlphaLinear_ = false;

View File

@ -24,6 +24,7 @@
#include "GPU/Common/GPUDebugInterface.h"
#include "GPU/Common/IndexGenerator.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
struct DecVtxFormat;
@ -102,7 +103,7 @@ public:
};
// Handles transform, lighting and drawing.
class TransformDrawEngineDX9 {
class TransformDrawEngineDX9 : public DrawEngineCommon {
public:
TransformDrawEngineDX9();
virtual ~TransformDrawEngineDX9();

View File

@ -25,12 +25,6 @@
// Here's how to evaluate them fast:
// http://and-what-happened.blogspot.se/2012/07/evaluating-b-splines-aka-basis-splines.html
enum quality {
LOW_QUALITY = 0,
MEDIUM_QUALITY = 1,
HIGH_QUALITY = 2,
};
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
@ -140,589 +134,6 @@ u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inP
return NormalizeVertices(outPtr, bufPtr, inPtr, dec, lowerBound, upperBound, vertType);
}
#define START_OPEN 1
#define END_OPEN 2
static float lerp(float a, float b, float x) {
return a + x * (b - a);
}
static void lerpColor(u8 a[4], u8 b[4], float x, u8 out[4]) {
for (int i = 0; i < 4; i++) {
out[i] = (float)a[i] + x * ((float)b[i] - (float)a[i]);
}
}
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct BezierPatch {
SimpleVertex *points[16];
// These are used to generate UVs.
int u_index, v_index;
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}
};
struct SplinePatchLocal {
SimpleVertex **points;
int count_u;
int count_v;
int type_u;
int type_v;
/*
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}*/
};
static void CopyQuad(u8 *&dest, const SimpleVertex *v1, const SimpleVertex *v2, const SimpleVertex* v3, const SimpleVertex *v4) {
int vertexSize = sizeof(SimpleVertex);
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
memcpy(dest, v4, vertexSize);
dest += vertexSize;
}
#undef b2
// Bernstein basis functions
inline float bern0(float x) { return (1 - x) * (1 - x) * (1 - x); }
inline float bern1(float x) { return 3 * x * (1 - x) * (1 - x); }
inline float bern2(float x) { return 3 * x * x * (1 - x); }
inline float bern3(float x) { return x * x * x; }
// Not sure yet if these have any use
inline float bern0deriv(float x) { return -3 * (x - 1) * (x - 1); }
inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; }
inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; }
inline float bern3deriv(float x) { return 3 * x * x; }
// http://en.wikipedia.org/wiki/Bernstein_polynomial
Vec3Packedf Bernstein3D(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) {
return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x);
}
Vec3Packedf Bernstein3DDerivative(const Vec3Packedf p0, const Vec3Packedf p1, const Vec3Packedf p2, const Vec3Packedf p3, float x) {
return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x);
}
void spline_n_4(int i, float t, float *knot, float *splineVal) {
knot += i + 1;
float t0 = (t - knot[0]);
float t1 = (t - knot[1]);
float t2 = (t - knot[2]);
float f30 = t0/(knot[3]-knot[0]);
float f41 = t1/(knot[4]-knot[1]);
float f52 = t2/(knot[5]-knot[2]);
float f31 = t1/(knot[3]-knot[1]);
float f42 = t2/(knot[4]-knot[2]);
float f32 = t2/(knot[3]-knot[2]);
float a = (1-f30)*(1-f31);
float b = (f31*f41);
float c = (1-f41)*(1-f42);
float d = (f42*f52);
splineVal[0] = a-(a*f32);
splineVal[1] = 1-a-b+((a+b+c-1)*f32);
splineVal[2] = b+((1-b-c-d)*f32);
splineVal[3] = d*f32;
}
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void spline_knot(int n, int type, float *knot) {
memset(knot, 0, sizeof(float) * (n + 5));
for (int i = 0; i < n - 1; ++i)
knot[i + 3] = i;
if ((type & 1) == 0) {
knot[0] = -3;
knot[1] = -2;
knot[2] = -1;
}
if ((type & 2) == 0) {
knot[n + 2] = n - 1;
knot[n + 3] = n;
knot[n + 4] = n + 1;
} else {
knot[n + 2] = n - 2;
knot[n + 3] = n - 2;
knot[n + 4] = n - 2;
}
}
void _SplinePatchLowQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.
const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
int point_index = tile_u + tile_v * spatch.count_u;
SimpleVertex v0 = *spatch.points[point_index];
SimpleVertex v1 = *spatch.points[point_index + 1];
SimpleVertex v2 = *spatch.points[point_index + spatch.count_u];
SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = tile_u * third;
float v = tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
}
void _SplinePatchFullQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType, int patch_cap) {
// Full (mostly) correct tessellation of spline patches.
// Not very fast.
// First, generate knot vectors.
int n = spatch.count_u - 1;
int m = spatch.count_v - 1;
float *knot_u = new float[n + 5];
float *knot_v = new float[m + 5];
spline_knot(n, spatch.type_u, knot_u);
spline_knot(m, spatch.type_v, knot_v);
// Increase tesselation based on the size. Should be approximately right?
// JPCSP is wrong at least because their method results in square loco roco.
int patch_div_s = (spatch.count_u - 3) * gstate.getPatchDivisionU() / 3;
int patch_div_t = (spatch.count_v - 3) * gstate.getPatchDivisionV() / 3;
if (patch_div_s <= 0) patch_div_s = 1;
if (patch_div_t <= 0) patch_div_t = 1;
// TODO: Remove this cap when spline_s has been optimized.
if (patch_div_s > patch_cap) patch_div_s = patch_cap;
if (patch_div_t > patch_cap) patch_div_t = patch_cap;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];
float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f / 3.0f;
float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f / 3.0f;
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s
if (v < 0.0f)
v = 0.0f;
for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));
if (u < 0.0f)
u = 0.0f;
SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
vert->pos.SetZero();
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.SetZero();
}
else {
vert->nrm.SetZero();
vert->nrm.z = 1.0f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
memset(vert->color, 0, 4);
}
else {
memcpy(vert->color, spatch.points[0]->color, 4);
}
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] = 0.0f;
vert->uv[1] = 0.0f;
}
else {
vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s);
vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t);
}
// Collect influences from surrounding control points.
float u_weights[4];
float v_weights[4];
int iu = (int)u;
int iv = (int)v;
spline_n_4(iu, u, knot_u, u_weights);
spline_n_4(iv, v, knot_v, v_weights);
// Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points.
int patch_w = std::min(spatch.count_u, 4);
int patch_h = std::min(spatch.count_v, 4);
for (int ii = 0; ii < patch_w; ++ii) {
for (int jj = 0; jj < patch_h; ++jj) {
float u_spline = u_weights[ii];
float v_spline = v_weights[jj];
float f = u_spline * v_spline;
if (f > 0.0f) {
int idx = spatch.count_u * (iv + jj) + (iu + ii);
SimpleVertex *a = spatch.points[idx];
vert->pos += a->pos * f;
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] += a->uv[0] * f;
vert->uv[1] += a->uv[1] * f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
vert->color[0] += a->color[0] * f;
vert->color[1] += a->color[1] * f;
vert->color[2] += a->color[2] * f;
vert->color[3] += a->color[3] * f;
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm += a->nrm * f;
}
}
}
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.Normalize();
}
}
}
delete[] knot_u;
delete[] knot_v;
// Hacky normal generation through central difference.
if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) {
for (int v = 0; v < patch_div_t + 1; v++) {
for (int u = 0; u < patch_div_s + 1; u++) {
int l = std::max(0, u - 1);
int t = std::max(0, v - 1);
int r = std::min(patch_div_s, u + 1);
int b = std::min(patch_div_t, v + 1);
const Vec3Packedf &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos;
const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos;
vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized();
if (gstate.patchfacing & 1) {
vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f;
}
}
}
}
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
float u = ((float)tile_u / (float)patch_div_s);
float v = ((float)tile_v / (float)patch_div_t);
SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete[] vertices;
}
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
_SplinePatchLowQuality(dest, count, spatch, origVertType);
break;
case MEDIUM_QUALITY:
_SplinePatchFullQuality(dest, count, spatch, origVertType, 8);
break;
case HIGH_QUALITY:
_SplinePatchFullQuality(dest, count, spatch, origVertType, 64);
break;
}
}
void _BezierPatchLowQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.
float u_base = patch.u_index / 3.0f;
float v_base = patch.v_index / 3.0f;
for (int tile_v = 0; tile_v < 3; tile_v++) {
for (int tile_u = 0; tile_u < 3; tile_u++) {
int point_index = tile_u + tile_v * 4;
SimpleVertex v0 = *patch.points[point_index];
SimpleVertex v1 = *patch.points[point_index + 1];
SimpleVertex v2 = *patch.points[point_index + 4];
SimpleVertex v3 = *patch.points[point_index + 5];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = u_base + tile_u * third;
float v = v_base + tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
}
void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
// Full correct tesselation of bezier patches.
// Note: Does not handle splines correctly.
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];
Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;
// Precompute the horizontal curves to we only have to evaluate the vertical ones.
for (int i = 0; i < tess_u + 1; i++) {
float u = ((float)i / (float)tess_u);
horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
}
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
float bu = u;
float bv = v;
// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
const Vec3Packedf &pos1 = horiz[tile_u];
const Vec3Packedf &pos2 = horiz2[tile_u];
const Vec3Packedf &pos3 = horiz3[tile_u];
const Vec3Packedf &pos4 = horiz4[tile_u];
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
if (computeNormals) {
Vec3Packedf derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3Packedf derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
Vec3Packedf derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
Vec3Packedf derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
Vec3Packedf derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);
// TODO: Interpolate normals instead of generating them, if available?
vert.nrm = Cross(derivU, derivV).Normalized();
if (gstate.patchfacing & 1)
vert.nrm *= -1.0f;
}
else {
vert.nrm.SetZero();
}
vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
// Generate texcoord
vert.uv[0] = u + patch.u_index * third;
vert.uv[1] = v + patch.v_index * third;
} else {
// Sample UV from control points
patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
}
if (origVertType & GE_VTYPE_COL_MASK) {
patch.sampleColor(u, v, vert.color);
} else {
memcpy(vert.color, patch.points[0]->color, 4);
}
}
}
delete[] horiz;
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete[] vertices;
}
void TesselateBezierPatch(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
switch (g_Config.iSplineBezierQuality) {
case LOW_QUALITY:
_BezierPatchLowQuality(dest, count, tess_u, tess_v, patch, origVertType);
break;
case MEDIUM_QUALITY:
case HIGH_QUALITY:
_BezierPatchHighQuality(dest, count, tess_u, tess_v, patch, origVertType);
break;
}
}
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();

View File

@ -22,6 +22,7 @@
#include "GPU/Common/GPUDebugInterface.h"
#include "GPU/Common/IndexGenerator.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "gfx/gl_common.h"
#include "gfx/gl_lost_manager.h"
@ -98,7 +99,7 @@ public:
};
// Handles transform, lighting and drawing.
class TransformDrawEngine : public GfxResourceHolder {
class TransformDrawEngine : public DrawEngineCommon, public GfxResourceHolder {
public:
TransformDrawEngine();
virtual ~TransformDrawEngine();

View File

@ -161,6 +161,7 @@
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="..\ext\xbrz\xbrz.h" />
<ClInclude Include="Common\DrawEngineCommon.h" />
<ClInclude Include="Common\FramebufferCommon.h" />
<ClInclude Include="Common\GPUDebugInterface.h" />
<ClInclude Include="Common\IndexGenerator.h" />
@ -218,9 +219,11 @@
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\ext\xbrz\xbrz.cpp" />
<ClCompile Include="Common\DrawEngineCommon.cpp" />
<ClCompile Include="Common\FramebufferCommon.cpp" />
<ClCompile Include="Common\IndexGenerator.cpp" />
<ClCompile Include="Common\PostShader.cpp" />
<ClCompile Include="Common\SplineCommon.cpp" />
<ClCompile Include="Common\TextureDecoderNEON.cpp">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">true</ExcludedFromBuild>
@ -289,4 +292,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View File

@ -174,6 +174,9 @@
<ClInclude Include="Common\SoftwareTransformCommon.h">
<Filter>Common</Filter>
</ClInclude>
<ClInclude Include="Common\DrawEngineCommon.h">
<Filter>Common</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<ClCompile Include="Math3D.cpp">
@ -269,9 +272,6 @@
<ClCompile Include="GeDisasm.cpp">
<Filter>Common</Filter>
</ClCompile>
<ClCompile Include="GLES\Spline.cpp">
<Filter>GLES</Filter>
</ClCompile>
<ClCompile Include="..\ext\xbrz\xbrz.cpp">
<Filter>Common</Filter>
</ClCompile>
@ -326,8 +326,17 @@
<ClCompile Include="Common\SoftwareTransformCommon.cpp">
<Filter>Common</Filter>
</ClCompile>
<ClCompile Include="Common\DrawEngineCommon.cpp">
<Filter>Common</Filter>
</ClCompile>
<ClCompile Include="GLES\Spline.cpp">
<Filter>GLES</Filter>
</ClCompile>
<ClCompile Include="Common\SplineCommon.cpp">
<Filter>Common</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<None Include="CMakeLists.txt" />
</ItemGroup>
</Project>
</Project>

View File

@ -49,6 +49,8 @@ SOURCES += $$P/GPU/GeDisasm.cpp \ # GPU
$$P/GPU/Common/SoftwareTransformCommon.cpp \
$$P/GPU/Common/PostShader.cpp \
$$P/GPU/Common/FramebufferCommon.cpp \
$$P/GPU/Common/SplineCommon.cpp \
$$P/GPU/Common/DrawEngineCommon.cpp \
$$P/ext/xxhash.c \ # xxHash
$$P/ext/xbrz/*.cpp # XBRZ

View File

@ -141,6 +141,8 @@ EXEC_AND_LIB_FILES := \
$(SRC)/GPU/Common/SoftwareTransformCommon.cpp.arm \
$(SRC)/GPU/Common/VertexDecoderCommon.cpp.arm \
$(SRC)/GPU/Common/TextureCacheCommon.cpp.arm \
$(SRC)/GPU/Common/SplineCommon.cpp.arm \
$(SRC)/GPU/Common/DrawEngineCommon.cpp.arm \
$(SRC)/GPU/Common/TransformCommon.cpp.arm \
$(SRC)/GPU/Common/TextureDecoder.cpp \
$(SRC)/GPU/Common/PostShader.cpp \