Move ThreadQueueList to a separate file.

Not reused anywhere, but just so it's a little cleaner.
This commit is contained in:
Unknown W. Brackets 2015-09-12 13:03:15 -07:00
parent a1139a4f45
commit c03b163537
5 changed files with 284 additions and 292 deletions

View File

@ -1215,6 +1215,7 @@ add_library(${CoreLibName} ${CoreLinkType}
Core/HLE/HLETables.cpp
Core/HLE/HLETables.h
Core/HLE/KernelWaitHelpers.h
Core/HLE/ThreadQueueList.h
Core/HLE/__sceAudio.cpp
Core/HLE/__sceAudio.h
Core/HLE/sceAdler.cpp

View File

@ -605,6 +605,7 @@
<ClInclude Include="HLE\sceUtility.h" />
<ClInclude Include="HLE\sceKernelVTimer.h" />
<ClInclude Include="HLE\sceVaudio.h" />
<ClInclude Include="HLE\ThreadQueueList.h" />
<ClInclude Include="HLE\__sceAudio.h" />
<ClInclude Include="Host.h" />
<ClInclude Include="HW\BufferQueue.h" />

View File

@ -1164,6 +1164,9 @@
<ClInclude Include="FileLoaders\DiskCachingFileLoader.h">
<Filter>FileLoaders</Filter>
</ClInclude>
<ClInclude Include="HLE\ThreadQueueList.h">
<Filter>HLE</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="CMakeLists.txt" />

278
Core/HLE/ThreadQueueList.h Normal file
View File

@ -0,0 +1,278 @@
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include "Core/HLE/sceKernel.h"
#include "Common/ChunkFile.h"
struct ThreadQueueList {
// Number of queues (number of priority levels starting at 0.)
static const int NUM_QUEUES = 128;
// Initial number of threads a single queue can handle.
static const int INITIAL_CAPACITY = 32;
struct Queue {
// Next ever-been-used queue (worse priority.)
Queue *next;
// First valid item in data.
int first;
// One after last valid item in data.
int end;
// A too-large array with room on the front and end.
SceUID *data;
// Size of data array.
int capacity;
inline int size() const {
return end - first;
}
inline bool empty() const {
return first == end;
}
inline int full() const {
return end == capacity;
}
};
ThreadQueueList() {
memset(queues, 0, sizeof(queues));
first = invalid();
}
~ThreadQueueList() {
clear();
}
// Only for debugging, returns priority level.
int contains(const SceUID uid) {
for (int i = 0; i < NUM_QUEUES; ++i) {
if (queues[i].data == nullptr)
continue;
Queue *cur = &queues[i];
for (int j = cur->first; j < cur->end; ++j) {
if (cur->data[j] == uid)
return i;
}
}
return -1;
}
inline SceUID pop_first() {
Queue *cur = first;
while (cur != invalid()) {
if (cur->size() > 0)
return cur->data[cur->first++];
cur = cur->next;
}
_dbg_assert_msg_(SCEKERNEL, false, "ThreadQueueList should not be empty.");
return 0;
}
inline SceUID pop_first_better(u32 priority) {
Queue *cur = first;
// Don't bother looking past (worse than) this priority.
Queue *stop = &queues[priority];
while (cur < stop) {
if (cur->size() > 0)
return cur->data[cur->first++];
cur = cur->next;
}
return 0;
}
inline void push_front(u32 priority, const SceUID threadID) {
Queue *cur = &queues[priority];
cur->data[--cur->first] = threadID;
// If we ran out of room toward the front, add more room for next time.
if (cur->first == 0)
rebalance(priority);
}
inline void push_back(u32 priority, const SceUID threadID) {
Queue *cur = &queues[priority];
cur->data[cur->end++] = threadID;
if (cur->full())
rebalance(priority);
}
inline void remove(u32 priority, const SceUID threadID) {
Queue *cur = &queues[priority];
_dbg_assert_msg_(SCEKERNEL, cur->next != nullptr, "ThreadQueueList::Queue should already be linked up.");
for (int i = cur->first; i < cur->end; ++i) {
if (cur->data[i] == threadID) {
// How many more after this one?
int remaining = cur->end - i;
// If there are more, move them into place.
if (remaining > 0)
memmove(&cur->data[i], &cur->data[i + 1], remaining * sizeof(SceUID));
// Now we're one shorter.
--cur->end;
return;
}
}
// Wasn't there.
}
inline void rotate(u32 priority) {
Queue *cur = &queues[priority];
_dbg_assert_msg_(SCEKERNEL, cur->next != nullptr, "ThreadQueueList::Queue should already be linked up.");
if (cur->size() > 1) {
// Grab the front and push it on the end.
cur->data[cur->end++] = cur->data[cur->first++];
if (cur->full())
rebalance(priority);
}
}
inline void clear() {
for (int i = 0; i < NUM_QUEUES; ++i) {
if (queues[i].data != nullptr)
free(queues[i].data);
}
memset(queues, 0, sizeof(queues));
first = invalid();
}
inline bool empty(u32 priority) const {
const Queue *cur = &queues[priority];
return cur->empty();
}
inline void prepare(u32 priority) {
Queue *cur = &queues[priority];
if (cur->next == nullptr)
link(priority, INITIAL_CAPACITY);
}
void DoState(PointerWrap &p) {
auto s = p.Section("ThreadQueueList", 1);
if (!s)
return;
int numQueues = NUM_QUEUES;
p.Do(numQueues);
if (numQueues != NUM_QUEUES) {
p.SetError(p.ERROR_FAILURE);
ERROR_LOG(SCEKERNEL, "Savestate loading error: invalid data");
return;
}
if (p.mode == p.MODE_READ)
clear();
for (int i = 0; i < NUM_QUEUES; ++i) {
Queue *cur = &queues[i];
int size = cur->size();
p.Do(size);
int capacity = cur->capacity;
p.Do(capacity);
if (capacity == 0)
continue;
if (p.mode == p.MODE_READ) {
link(i, capacity);
cur->first = (cur->capacity - size) / 2;
cur->end = cur->first + size;
}
if (size != 0)
p.DoArray(&cur->data[cur->first], size);
}
}
private:
Queue *invalid() const {
return (Queue *)-1;
}
// Initialize a priority level and link to other queues.
void link(u32 priority, int size) {
_dbg_assert_msg_(SCEKERNEL, queues[priority].data == nullptr, "ThreadQueueList::Queue should only be initialized once.");
// Make sure we stay a multiple of INITIAL_CAPACITY.
if (size <= INITIAL_CAPACITY)
size = INITIAL_CAPACITY;
else {
int goal = size;
size = INITIAL_CAPACITY;
while (size < goal)
size *= 2;
}
// Allocate the queue.
Queue *cur = &queues[priority];
cur->data = (SceUID *)malloc(sizeof(SceUID) * size);
cur->capacity = size;
// Start smack in the middle so it can move both directions.
cur->first = size / 2;
cur->end = size / 2;
for (int i = (int)priority - 1; i >= 0; --i) {
// This queue is before ours, and points past us.
// We'll have it point to our new queue, inserting into the chain.
if (queues[i].next != nullptr) {
cur->next = queues[i].next;
queues[i].next = cur;
return;
}
}
// Never found above - that means there's no better queue yet.
// The new one is now first, and whoever was first is after it.
cur->next = first;
first = cur;
}
// Move or allocate as necessary to maintain free space on both sides.
void rebalance(u32 priority) {
Queue *cur = &queues[priority];
int size = cur->size();
// Basically full. Time for a larger queue?
if (size >= cur->capacity - 2) {
int new_capacity = cur->capacity * 2;
SceUID *new_data = (SceUID *)realloc(cur->data, new_capacity * sizeof(SceUID));
if (new_data != nullptr) {
// Success, it's bigger now.
cur->capacity = new_capacity;
cur->data = new_data;
}
}
// If we center all the items, it should start here.
int newFirst = (cur->capacity - size) / 2;
if (newFirst != cur->first) {
memmove(&cur->data[newFirst], &cur->data[cur->first], size * sizeof(SceUID));
cur->first = newFirst;
cur->end = newFirst + size;
}
}
// The first queue that's ever been used.
Queue *first;
// The priority level queues of thread ids.
Queue queues[NUM_QUEUES];
};

View File

@ -41,6 +41,7 @@
#include "Core/HLE/sceKernelModule.h"
#include "Core/HLE/sceKernelInterrupt.h"
#include "Core/HLE/KernelWaitHelpers.h"
#include "Core/HLE/ThreadQueueList.h"
typedef struct
{
@ -600,298 +601,6 @@ public:
std::map<SceUID, u64> pausedWaits;
};
struct ThreadQueueList
{
// Number of queues (number of priority levels starting at 0.)
static const int NUM_QUEUES = 128;
// Initial number of threads a single queue can handle.
static const int INITIAL_CAPACITY = 32;
struct Queue
{
// Next ever-been-used queue (worse priority.)
Queue *next;
// First valid item in data.
int first;
// One after last valid item in data.
int end;
// A too-large array with room on the front and end.
SceUID *data;
// Size of data array.
int capacity;
inline int size() const {
return end - first;
}
inline bool empty() const {
return first == end;
}
inline int full() const {
return end == capacity;
}
};
ThreadQueueList()
{
memset(queues, 0, sizeof(queues));
first = invalid();
}
~ThreadQueueList()
{
clear();
}
// Only for debugging, returns priority level.
int contains(const SceUID uid)
{
for (int i = 0; i < NUM_QUEUES; ++i)
{
if (queues[i].data == nullptr)
continue;
Queue *cur = &queues[i];
for (int j = cur->first; j < cur->end; ++j)
{
if (cur->data[j] == uid)
return i;
}
}
return -1;
}
inline SceUID pop_first()
{
Queue *cur = first;
while (cur != invalid())
{
if (cur->size() > 0)
return cur->data[cur->first++];
cur = cur->next;
}
_dbg_assert_msg_(SCEKERNEL, false, "ThreadQueueList should not be empty.");
return 0;
}
inline SceUID pop_first_better(u32 priority)
{
Queue *cur = first;
// Don't bother looking past (worse than) this priority.
Queue *stop = &queues[priority];
while (cur < stop)
{
if (cur->size() > 0)
return cur->data[cur->first++];
cur = cur->next;
}
return 0;
}
inline void push_front(u32 priority, const SceUID threadID)
{
Queue *cur = &queues[priority];
cur->data[--cur->first] = threadID;
// If we ran out of room toward the front, add more room for next time.
if (cur->first == 0)
rebalance(priority);
}
inline void push_back(u32 priority, const SceUID threadID)
{
Queue *cur = &queues[priority];
cur->data[cur->end++] = threadID;
if (cur->full())
rebalance(priority);
}
inline void remove(u32 priority, const SceUID threadID)
{
Queue *cur = &queues[priority];
_dbg_assert_msg_(SCEKERNEL, cur->next != nullptr, "ThreadQueueList::Queue should already be linked up.");
for (int i = cur->first; i < cur->end; ++i)
{
if (cur->data[i] == threadID)
{
// How many more after this one?
int remaining = cur->end - i;
// If there are more, move them into place.
if (remaining > 0)
memmove(&cur->data[i], &cur->data[i + 1], remaining * sizeof(SceUID));
// Now we're one shorter.
--cur->end;
return;
}
}
// Wasn't there.
}
inline void rotate(u32 priority)
{
Queue *cur = &queues[priority];
_dbg_assert_msg_(SCEKERNEL, cur->next != nullptr, "ThreadQueueList::Queue should already be linked up.");
if (cur->size() > 1)
{
// Grab the front and push it on the end.
cur->data[cur->end++] = cur->data[cur->first++];
if (cur->full())
rebalance(priority);
}
}
inline void clear()
{
for (int i = 0; i < NUM_QUEUES; ++i)
{
if (queues[i].data != nullptr)
free(queues[i].data);
}
memset(queues, 0, sizeof(queues));
first = invalid();
}
inline bool empty(u32 priority) const
{
const Queue *cur = &queues[priority];
return cur->empty();
}
inline void prepare(u32 priority)
{
Queue *cur = &queues[priority];
if (cur->next == nullptr)
link(priority, INITIAL_CAPACITY);
}
void DoState(PointerWrap &p)
{
auto s = p.Section("ThreadQueueList", 1);
if (!s)
return;
int numQueues = NUM_QUEUES;
p.Do(numQueues);
if (numQueues != NUM_QUEUES)
{
p.SetError(p.ERROR_FAILURE);
ERROR_LOG(SCEKERNEL, "Savestate loading error: invalid data");
return;
}
if (p.mode == p.MODE_READ)
clear();
for (int i = 0; i < NUM_QUEUES; ++i)
{
Queue *cur = &queues[i];
int size = cur->size();
p.Do(size);
int capacity = cur->capacity;
p.Do(capacity);
if (capacity == 0)
continue;
if (p.mode == p.MODE_READ)
{
link(i, capacity);
cur->first = (cur->capacity - size) / 2;
cur->end = cur->first + size;
}
if (size != 0)
p.DoArray(&cur->data[cur->first], size);
}
}
private:
Queue *invalid() const
{
return (Queue *) -1;
}
// Initialize a priority level and link to other queues.
void link(u32 priority, int size)
{
_dbg_assert_msg_(SCEKERNEL, queues[priority].data == nullptr, "ThreadQueueList::Queue should only be initialized once.");
// Make sure we stay a multiple of INITIAL_CAPACITY.
if (size <= INITIAL_CAPACITY)
size = INITIAL_CAPACITY;
else
{
int goal = size;
size = INITIAL_CAPACITY;
while (size < goal)
size *= 2;
}
// Allocate the queue.
Queue *cur = &queues[priority];
cur->data = (SceUID *) malloc(sizeof(SceUID) * size);
cur->capacity = size;
// Start smack in the middle so it can move both directions.
cur->first = size / 2;
cur->end = size / 2;
for (int i = (int) priority - 1; i >= 0; --i)
{
// This queue is before ours, and points past us.
// We'll have it point to our new queue, inserting into the chain.
if (queues[i].next != nullptr)
{
cur->next = queues[i].next;
queues[i].next = cur;
return;
}
}
// Never found above - that means there's no better queue yet.
// The new one is now first, and whoever was first is after it.
cur->next = first;
first = cur;
}
// Move or allocate as necessary to maintain free space on both sides.
void rebalance(u32 priority)
{
Queue *cur = &queues[priority];
int size = cur->size();
// Basically full. Time for a larger queue?
if (size >= cur->capacity - 2)
{
int new_capacity = cur->capacity * 2;
SceUID *new_data = (SceUID *)realloc(cur->data, new_capacity * sizeof(SceUID));
if (new_data != nullptr)
{
// Success, it's bigger now.
cur->capacity = new_capacity;
cur->data = new_data;
}
}
// If we center all the items, it should start here.
int newFirst = (cur->capacity - size) / 2;
if (newFirst != cur->first)
{
memmove(&cur->data[newFirst], &cur->data[cur->first], size * sizeof(SceUID));
cur->first = newFirst;
cur->end = newFirst + size;
}
}
// The first queue that's ever been used.
Queue *first;
// The priority level queues of thread ids.
Queue queues[NUM_QUEUES];
};
struct WaitTypeFuncs
{
WaitBeginCallbackFunc beginFunc;