Update xBRZ to 1.4.

Now a lot of our customizations aren't needed, yay.
This commit is contained in:
Unknown W. Brackets 2015-12-30 13:05:44 -08:00
parent e898043249
commit c3a031d276
4 changed files with 332 additions and 413 deletions

View File

@ -490,7 +490,6 @@ TextureScaler::TextureScaler() {
}
TextureScaler::~TextureScaler() {
xbrz::shutdown();
}
bool TextureScaler::IsEmptyOrFlat(u32* data, int pixels, int fmt) {
@ -564,7 +563,6 @@ void TextureScaler::Scale(u32* &data, u32 &dstFmt, int &width, int &height, int
void TextureScaler::ScaleXBRZ(int factor, u32* source, u32* dest, int width, int height) {
xbrz::ScalerCfg cfg;
xbrz::init();
GlobalThreadPool::Loop(std::bind(&xbrz::scale, factor, source, dest, width, height, xbrz::ColorFormat::ARGB, cfg, placeholder::_1, placeholder::_2), 0, height);
}

View File

@ -23,17 +23,17 @@ namespace xbrz
struct ScalerCfg
{
ScalerCfg() :
luminanceWeight_(1),
equalColorTolerance_(30),
luminanceWeight(1),
equalColorTolerance(30),
dominantDirectionThreshold(3.6),
steepDirectionThreshold(2.2),
newTestAttribute_(0) {}
newTestAttribute(0) {}
double luminanceWeight_;
double equalColorTolerance_;
double luminanceWeight;
double equalColorTolerance;
double dominantDirectionThreshold;
double steepDirectionThreshold;
double newTestAttribute_; //unused; test new parameters
double newTestAttribute; //unused; test new parameters
};
}

View File

@ -27,47 +27,65 @@ unsigned char getByte(uint32_t val) { return static_cast<unsigned char>((val >>
// adjusted for RGBA
// - Durante
inline unsigned char getRed (uint32_t val) { return getByte<0>(val); }
inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); }
inline unsigned char getBlue (uint32_t val) { return getByte<2>(val); }
inline unsigned char getAlpha(uint32_t val) { return getByte<3>(val); }
inline unsigned char getRed (uint32_t pix) { return getByte<0>(pix); }
inline unsigned char getGreen(uint32_t pix) { return getByte<1>(pix); }
inline unsigned char getBlue (uint32_t pix) { return getByte<2>(pix); }
inline unsigned char getAlpha(uint32_t pix) { return getByte<3>(pix); }
inline uint32_t makePixel( unsigned char r, unsigned char g, unsigned char b) { return (b << 16) | (g << 8) | r; }
inline uint32_t makePixel(unsigned char a, unsigned char r, unsigned char g, unsigned char b) { return (a << 24) | (b << 16) | (g << 8) | r; }
template <class T> inline
T abs(T value)
template <unsigned int M, unsigned int N> inline
uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
{
static_assert(std::numeric_limits<T>::is_signed, "abs() requires signed types");
return value < 0 ? -value : value;
}
static_assert(0 < M && M < N && N <= 1000, "");
const uint32_t redMask = 0x00ff0000;
const uint32_t greenMask = 0x0000ff00;
const uint32_t blueMask = 0x000000ff;
auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; };
template <unsigned int N, unsigned int M> inline
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M
{
static_assert(N < 256, "possible overflow of (col & redMask) * N");
static_assert(M < 256, "possible overflow of (col & redMask ) * N + (dst & redMask ) * (M - N)");
static_assert(0 < N && N < M, "");
//dst = (redMask & ((col & redMask ) * N + (dst & redMask ) * (M - N)) / M) | //this works because 8 upper bits are free
// (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) |
// (blueMask & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M);
// the upper 8 bits are not free in our case, so we need to do this differently
// could probably be MUCH faster
// - Durante
uint8_t a = (((col ) >> 24) * N + ((dst ) >> 24) * (M - N) ) / M;
uint8_t r = (((col & redMask) >> 16) * N + ((dst & redMask) >> 16) * (M - N) ) / M;
uint8_t g = (((col & greenMask) >> 8) * N + ((dst & greenMask) >> 8) * (M - N) ) / M;
uint8_t b = (((col & blueMask) ) * N + ((dst & blueMask) ) * (M - N) ) / M;
dst = (a << 24) | (r << 16) | (g << 8) | (b << 0);
return makePixel(calcColor(getRed (pixFront), getRed (pixBack)),
calcColor(getGreen(pixFront), getGreen(pixBack)),
calcColor(getBlue (pixFront), getBlue (pixBack)));
}
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
template <unsigned int M, unsigned int N> inline
uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
{
static_assert(0 < M && M < N && N <= 1000, "");
const unsigned int weightFront = getAlpha(pixFront) * M;
const unsigned int weightBack = getAlpha(pixBack) * (N - M);
const unsigned int weightSum = weightFront + weightBack;
if (weightSum == 0)
return 0;
auto calcColor = [=](unsigned char colFront, unsigned char colBack)
{
return static_cast<unsigned char>((colFront * weightFront + colBack * weightBack) / weightSum);
};
return makePixel(static_cast<unsigned char>(weightSum / N),
calcColor(getRed (pixFront), getRed (pixBack)),
calcColor(getGreen(pixFront), getGreen(pixBack)),
calcColor(getBlue (pixFront), getBlue (pixBack)));
}
//inline
//double fastSqrt(double n)
//{
// __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
// {
// fld n
// fsqrt
// }
//}
//
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
//fill block with the given color
@ -148,199 +166,6 @@ template <class T> inline
T square(T value) { return value * value; }
/*
inline
void rgbtoLuv(uint32_t c, double& L, double& u, double& v)
{
//http://www.easyrgb.com/index.php?X=MATH&H=02#text2
double r = getRed (c) / 255.0;
double g = getGreen(c) / 255.0;
double b = getBlue (c) / 255.0;
if ( r > 0.04045 )
r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4);
else
r /= 12.92;
if ( g > 0.04045 )
g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4);
else
g /= 12.92;
if ( b > 0.04045 )
b = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4);
else
b /= 12.92;
r *= 100;
g *= 100;
b *= 100;
double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
//---------------------
double var_U = 4 * x / ( x + 15 * y + 3 * z );
double var_V = 9 * y / ( x + 15 * y + 3 * z );
double var_Y = y / 100;
if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 );
else var_Y = 7.787 * var_Y + 16.0 / 116;
const double ref_X = 95.047; //Observer= 2°, Illuminant= D65
const double ref_Y = 100.000;
const double ref_Z = 108.883;
const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );
const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );
L = ( 116 * var_Y ) - 16;
u = 13 * L * ( var_U - ref_U );
v = 13 * L * ( var_V - ref_V );
}
*/
inline
void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B)
{
//code: http://www.easyrgb.com/index.php?X=MATH
//test: http://www.workwithcolor.com/color-converter-01.htm
//------RGB to XYZ------
double r = getRed (c) / 255.0;
double g = getGreen(c) / 255.0;
double b = getBlue (c) / 255.0;
r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92;
r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92;
r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92;
r *= 100;
g *= 100;
b *= 100;
double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
//------XYZ to Lab------
const double refX = 95.047; //
const double refY = 100.000; //Observer= 2°, Illuminant= D65
const double refZ = 108.883; //
double var_X = x / refX;
double var_Y = y / refY;
double var_Z = z / refZ;
var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29;
var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29;
var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29;
L = static_cast<unsigned char>(116 * var_Y - 16);
A = static_cast< signed char>(500 * (var_X - var_Y));
B = static_cast< signed char>(200 * (var_Y - var_Z));
};
inline
double distLAB(uint32_t pix1, uint32_t pix2)
{
unsigned char L1 = 0; //[0, 100]
signed char a1 = 0; //[-128, 127]
signed char b1 = 0; //[-128, 127]
rgbtoLab(pix1, L1, a1, b1);
unsigned char L2 = 0;
signed char a2 = 0;
signed char b2 = 0;
rgbtoLab(pix2, L2, a2, b2);
//-----------------------------
//http://www.easyrgb.com/index.php?X=DELT
//Delta E/CIE76
return std::sqrt(square(1.0 * L1 - L2) +
square(1.0 * a1 - a2) +
square(1.0 * b1 - b2));
}
/*
inline
void rgbtoHsl(uint32_t c, double& h, double& s, double& l)
{
//http://www.easyrgb.com/index.php?X=MATH&H=18#text18
const int r = getRed (c);
const int g = getGreen(c);
const int b = getBlue (c);
const int varMin = numeric::min(r, g, b);
const int varMax = numeric::max(r, g, b);
const int delMax = varMax - varMin;
l = (varMax + varMin) / 2.0 / 255.0;
if (delMax == 0) //gray, no chroma...
{
h = 0;
s = 0;
}
else
{
s = l < 0.5 ?
delMax / (1.0 * varMax + varMin) :
delMax / (2.0 * 255 - varMax - varMin);
double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax;
double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax;
double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax;
if (r == varMax)
h = delB - delG;
else if (g == varMax)
h = 1 / 3.0 + delR - delB;
else if (b == varMax)
h = 2 / 3.0 + delG - delR;
if (h < 0)
h += 1;
if (h > 1)
h -= 1;
}
}
inline
double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight)
{
double h1 = 0;
double s1 = 0;
double l1 = 0;
rgbtoHsl(pix1, h1, s1, l1);
double h2 = 0;
double s2 = 0;
double l2 = 0;
rgbtoHsl(pix2, h2, s2, l2);
//HSL is in cylindric coordinatates where L represents height, S radius, H angle,
//however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1
assert(0 <= h1 && h1 <= 1);
assert(0 <= h2 && h2 <= 1);
double r1 = l1 < 0.5 ?
l1 * 2 :
2 - l1 * 2;
double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi);
double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi);
double z1 = l1;
double r2 = l2 < 0.5 ?
l2 * 2 :
2 - l2 * 2;
double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi);
double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi);
double z2 = l2;
return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) + square(lightningWeight * (z1 - z2)));
}
*/
inline
double distRGB(uint32_t pix1, uint32_t pix2)
@ -354,19 +179,6 @@ double distRGB(uint32_t pix1, uint32_t pix2)
}
inline
double distNonLinearRGB(uint32_t pix1, uint32_t pix2)
{
//non-linear rgb: http://www.compuphase.com/cmetric.htm
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
const double r_avg = (static_cast<double>(getRed(pix1)) + getRed(pix2)) / 2;
return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff));
}
inline
double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
{
@ -390,13 +202,23 @@ double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
const double c_r = scale_r * (r_diff - y);
//we skip division by 255 to have similar range like other distance functions
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
}
struct DistYCbCrBuffer //30% perf boost compared to distYCbCr()!
{
public:
static double dist(uint32_t pix1, uint32_t pix2)
{
#if defined _MSC_VER && _MSC_VER < 1900
#error function scope static initialization is not yet thread-safe!
#endif
static const DistYCbCrBuffer inst;
return inst.distImpl(pix1, pix2);
}
private:
DistYCbCrBuffer() : buffer(256 * 256 * 256)
{
for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
@ -420,7 +242,7 @@ public:
}
}
double dist(uint32_t pix1, uint32_t pix2) const
double distImpl(uint32_t pix1, uint32_t pix2) const
{
//if (pix1 == pix2) -> 8% perf degradation!
// return 0;
@ -436,45 +258,8 @@ public:
(( b_diff + 255) / 2)];
}
private:
std::vector<float> buffer; //consumes 64 MB memory; using double is 2% faster, but takes 128 MB
std::vector<float> buffer; //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
};
DistYCbCrBuffer *distYCbCrBuffer = nullptr;
inline
double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
//perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6%
//since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property)
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
//http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB
const double w_b = 0.114;
const double w_r = 0.299;
const double w_g = 1 - w_r - w_b;
const double u_max = 0.436;
const double v_max = 0.615;
const double scale_u = u_max / (1 - w_b);
const double scale_v = v_max / (1 - w_r);
double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1]
double u = scale_u * (b_diff - y); //value range: 255 * 2 * u_max * [-1, 1]
double v = scale_v * (r_diff - y); //value range: 255 * 2 * v_max * [-1, 1]
#ifdef _DEBUG
const double eps = 0.5;
assert(abs(y) <= 255 + eps);
assert(abs(u) <= 255 * 2 * u_max + eps);
assert(abs(v) <= 255 * 2 * v_max + eps);
#endif
return std::sqrt(square(luminanceWeight * y) + square(u) + square(v));
}
enum BlendType
@ -526,7 +311,7 @@ BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg)
ker.g == ker.k))
return result;
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
const int weight = 4;
double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g);
@ -626,7 +411,7 @@ input kernel area naming convention:
*/
template <class Scaler, class ColorDistance, RotationDegree rotDeg>
FORCE_INLINE //perf: quite worth it!
void scalePixel(const Kernel_3x3& ker,
void blendPixel(const Kernel_3x3& ker,
uint32_t* target, int trgWidth,
unsigned char blendInfo, //result of preprocessing all four corners of pixel "e"
const xbrz::ScalerCfg& cfg)
@ -641,12 +426,17 @@ void scalePixel(const Kernel_3x3& ker,
#define h get_h<rotDeg>(ker)
#define i get_i<rotDeg>(ker)
#ifdef _DEBUG
if (breakIntoDebugger)
__debugbreak(); //__asm int 3;
#endif
const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo);
if (getBottomR(blend) >= BLEND_NORMAL)
{
auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight) < cfg.equalColorTolerance; };
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
const bool doLineBlend = [&]() -> bool
{
@ -726,7 +516,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
std::fill(preProcBuffer, preProcBuffer + bufferSize, 0);
static_assert(BLEND_NONE == 0, "");
//initialize preprocessing buffer for first row: detect upper left and right corner blending
//initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
//this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
if (yFirst > 0)
{
@ -853,7 +643,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
//blend four corners of current pixel
if (blendingNeeded(blend_xy)) //good 20% perf-improvement
if (blendingNeeded(blend_xy)) //good 5% perf-improvement
{
Kernel_3x3 ker3 = {}; //perf: initialization is negligible
@ -869,10 +659,10 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ker3.h = ker4.j;
ker3.i = ker4.k;
scalePixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg);
blendPixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy, cfg);
blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg);
blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg);
blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg);
}
}
}
@ -880,112 +670,127 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
//------------------------------------------------------------------------------------
struct Scaler2x
template <class ColorGradient>
struct Scaler2x : public ColorGradient
{
static const int scale = 2;
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
template <class OutputMatrix>
static void blendLineShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
}
template <class OutputMatrix>
static void blendLineSteep(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
}
template <class OutputMatrix>
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<1, 0>(), col);
alphaBlend<1, 4>(out.template ref<0, 1>(), col);
alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
alphaGrad<1, 4>(out.template ref<1, 0>(), col);
alphaGrad<1, 4>(out.template ref<0, 1>(), col);
alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
}
template <class OutputMatrix>
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 2>(out.template ref<1, 1>(), col);
alphaGrad<1, 2>(out.template ref<1, 1>(), col);
}
template <class OutputMatrix>
static void blendCorner(uint32_t col, OutputMatrix& out)
{
//model a round corner
alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
}
};
struct Scaler3x
template <class ColorGradient>
struct Scaler3x : public ColorGradient
{
static const int scale = 3;
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
template <class OutputMatrix>
static void blendLineShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
out.template ref<scale - 1, 2>() = col;
}
template <class OutputMatrix>
static void blendLineSteep(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
out.template ref<2, scale - 1>() = col;
}
template <class OutputMatrix>
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<2, 0>(), col);
alphaBlend<1, 4>(out.template ref<0, 2>(), col);
alphaBlend<3, 4>(out.template ref<2, 1>(), col);
alphaBlend<3, 4>(out.template ref<1, 2>(), col);
alphaGrad<1, 4>(out.template ref<2, 0>(), col);
alphaGrad<1, 4>(out.template ref<0, 2>(), col);
alphaGrad<3, 4>(out.template ref<2, 1>(), col);
alphaGrad<3, 4>(out.template ref<1, 2>(), col);
out.template ref<2, 2>() = col;
}
template <class OutputMatrix>
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 8>(out.template ref<1, 2>(), col);
alphaBlend<1, 8>(out.template ref<2, 1>(), col);
alphaBlend<7, 8>(out.template ref<2, 2>(), col);
alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale
alphaGrad<1, 8>(out.template ref<2, 1>(), col);
alphaGrad<7, 8>(out.template ref<2, 2>(), col); //
}
template <class OutputMatrix>
static void blendCorner(uint32_t col, OutputMatrix& out)
{
//model a round corner
alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligible
//alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627
alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
//alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
//alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254
}
};
struct Scaler4x
template <class ColorGradient>
struct Scaler4x : public ColorGradient
{
static const int scale = 4;
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
template <class OutputMatrix>
static void blendLineShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
out.template ref<scale - 1, 2>() = col;
out.template ref<scale - 1, 3>() = col;
@ -994,11 +799,11 @@ struct Scaler4x
template <class OutputMatrix>
static void blendLineSteep(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
out.template ref<2, scale - 1>() = col;
out.template ref<3, scale - 1>() = col;
@ -1007,19 +812,23 @@ struct Scaler4x
template <class OutputMatrix>
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<3, 4>(out.template ref<3, 1>(), col);
alphaBlend<3, 4>(out.template ref<1, 3>(), col);
alphaBlend<1, 4>(out.template ref<3, 0>(), col);
alphaBlend<1, 4>(out.template ref<0, 3>(), col);
alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col;
alphaGrad<3, 4>(out.template ref<3, 1>(), col);
alphaGrad<3, 4>(out.template ref<1, 3>(), col);
alphaGrad<1, 4>(out.template ref<3, 0>(), col);
alphaGrad<1, 4>(out.template ref<0, 3>(), col);
alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
out.template ref<3, 3>() = col;
out.template ref<3, 2>() = col;
out.template ref<2, 3>() = col;
}
template <class OutputMatrix>
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
alphaBlend<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
out.template ref<scale - 1, scale - 1>() = col;
}
@ -1027,26 +836,31 @@ struct Scaler4x
static void blendCorner(uint32_t col, OutputMatrix& out)
{
//model a round corner
alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
}
};
struct Scaler5x
template <class ColorGradient>
struct Scaler5x : public ColorGradient
{
static const int scale = 5;
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
template <class OutputMatrix>
static void blendLineShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaBlend<1, 4>(out.template ref<scale - 3, 4>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
out.template ref<scale - 1, 2>() = col;
out.template ref<scale - 1, 3>() = col;
@ -1057,12 +871,12 @@ struct Scaler5x
template <class OutputMatrix>
static void blendLineSteep(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col);
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
out.template ref<2, scale - 1>() = col;
out.template ref<3, scale - 1>() = col;
@ -1073,34 +887,33 @@ struct Scaler5x
template <class OutputMatrix>
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<2, 3>(out.template ref<3, 3>(), col);
out.template ref<2, scale - 1>() = col;
out.template ref<3, scale - 1>() = col;
out.template ref<4, scale - 1>() = col;
out.template ref<scale - 1, 2>() = col;
out.template ref<scale - 1, 3>() = col;
out.template ref<4, scale - 1>() = col;
alphaBlend<2, 3>(out.template ref<3, 3>(), col);
}
template <class OutputMatrix>
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
{
alphaBlend<1, 8>(out.template ref<scale - 1, scale / 2 >(), col);
alphaBlend<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
alphaBlend<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col);
alphaGrad<1, 8>(out.template ref<scale - 1, scale / 2 >(), col); //conflict with other rotations for this odd scale
alphaGrad<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
alphaGrad<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col); //
alphaBlend<7, 8>(out.template ref<4, 3>(), col);
alphaBlend<7, 8>(out.template ref<3, 4>(), col);
alphaGrad<7, 8>(out.template ref<4, 3>(), col);
alphaGrad<7, 8>(out.template ref<3, 4>(), col);
out.template ref<4, 4>() = col;
}
@ -1109,11 +922,110 @@ struct Scaler5x
static void blendCorner(uint32_t col, OutputMatrix& out)
{
//model a round corner
alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligible
//alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834
alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
//alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
//alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367
}
};
template <class ColorGradient>
struct Scaler6x : public ColorGradient
{
static const int scale = 6;
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
template <class OutputMatrix>
static void blendLineShallow(uint32_t col, OutputMatrix& out)
{
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
alphaGrad<3, 4>(out.template ref<scale - 3, 5>(), col);
out.template ref<scale - 1, 2>() = col;
out.template ref<scale - 1, 3>() = col;
out.template ref<scale - 1, 4>() = col;
out.template ref<scale - 1, 5>() = col;
out.template ref<scale - 2, 4>() = col;
out.template ref<scale - 2, 5>() = col;
}
template <class OutputMatrix>
static void blendLineSteep(uint32_t col, OutputMatrix& out)
{
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col);
out.template ref<2, scale - 1>() = col;
out.template ref<3, scale - 1>() = col;
out.template ref<4, scale - 1>() = col;
out.template ref<5, scale - 1>() = col;
out.template ref<4, scale - 2>() = col;
out.template ref<5, scale - 2>() = col;
}
template <class OutputMatrix>
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
{
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
out.template ref<2, scale - 1>() = col;
out.template ref<3, scale - 1>() = col;
out.template ref<4, scale - 1>() = col;
out.template ref<5, scale - 1>() = col;
out.template ref<4, scale - 2>() = col;
out.template ref<5, scale - 2>() = col;
out.template ref<scale - 1, 2>() = col;
out.template ref<scale - 1, 3>() = col;
}
template <class OutputMatrix>
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
{
alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
alphaGrad<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col);
out.template ref<scale - 2, scale - 1>() = col;
out.template ref<scale - 1, scale - 1>() = col;
out.template ref<scale - 1, scale - 2>() = col;
}
template <class OutputMatrix>
static void blendCorner(uint32_t col, OutputMatrix& out)
{
//model a round corner
alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910
alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243
alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243
alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508
alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508
}
};
@ -1123,7 +1035,7 @@ struct ColorDistanceRGB
{
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
return distYCbCrBuffer->dist(pix1, pix2);
return DistYCbCrBuffer::dist(pix1, pix2);
//if (pix1 == pix2) //about 4% perf boost
// return 0;
@ -1142,18 +1054,37 @@ struct ColorDistanceARGB
1. if a1 = a2, distance should be: a1 * distYCbCr()
2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
3. if a1 = 1, distance should be: 255 * (1 - a2) + a2 * distYCbCr()
3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
*/
const double d = distYCbCrBuffer->dist(pix1, pix2);
if (a1 > a2)
return a2 * d + 255 * (a1 - a2);
else
//return std::min(a1, a2) * DistYCbCrBuffer::dist(pix1, pix2) + 255 * abs(a1 - a2);
//=> following code is 15% faster:
const double d = DistYCbCrBuffer::dist(pix1, pix2);
if (a1 < a2)
return a1 * d + 255 * (a2 - a1);
else
return a2 * d + 255 * (a1 - a2);
//if (pix1 == pix2)
// return 0;
//return std::min(a1, a2) * distYCbCr(pix1, pix2, luminanceWeight) + 255 * abs(a1 - a2);
//alternative? return std::sqrt(a1 * a2 * square(DistYCbCrBuffer::dist(pix1, pix2)) + square(255 * (a1 - a2)));
}
};
struct ColorGradientRGB
{
template <unsigned int M, unsigned int N>
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
{
pixBack = gradientRGB<M, N>(pixFront, pixBack);
}
};
struct ColorGradientARGB
{
template <unsigned int M, unsigned int N>
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
{
pixBack = gradientARGB<M, N>(pixFront, pixBack);
}
};
}
@ -1167,45 +1098,38 @@ void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth
switch (factor)
{
case 2:
return scaleImage<Scaler2x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 3:
return scaleImage<Scaler3x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 4:
return scaleImage<Scaler4x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 5:
return scaleImage<Scaler5x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 6:
return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
}
break;
case ColorFormat::RGB:
switch (factor)
{
case 2:
return scaleImage<Scaler2x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler2x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 3:
return scaleImage<Scaler3x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler3x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 4:
return scaleImage<Scaler4x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler4x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 5:
return scaleImage<Scaler5x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
return scaleImage<Scaler5x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 6:
return scaleImage<Scaler6x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
}
break;
}
assert(false);
}
void xbrz::init()
{
if (distYCbCrBuffer == nullptr)
distYCbCrBuffer = new DistYCbCrBuffer();
}
void xbrz::shutdown()
{
delete distYCbCrBuffer;
distYCbCrBuffer = nullptr;
}
bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
{
switch (colFmt)

View File

@ -42,12 +42,13 @@ http://board.byuu.org/viewtopic.php?f=10&t=2248
- support multithreading
- support 64-bit architectures
- support processing image slices
- support scaling up to 6xBRZ
*/
enum class ColorFormat //from high bits -> low bits, 8 bit per channel
{
ARGB, //including alpha channel, BGRA byte order on little-endian machines
RGB, //8 bit for each red, green, blue, upper 8 bits unused
ARGB, //including alpha channel, BGRA byte order on little-endian machines
};
/*
@ -59,18 +60,14 @@ enum class ColorFormat //from high bits -> low bits, 8 bit per channel
in the target image data if you are using multiple threads for processing each enlarged slice!
THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
- there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process 6 rows at least
- there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process 8-16 rows at least
*/
void scale(size_t factor, //valid range: 2 - 5
void scale(size_t factor, //valid range: 2 - 6
const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ColorFormat colFmt,
const ScalerCfg& cfg = ScalerCfg(),
int yFirst = 0, int yLast = std::numeric_limits<int>::max()); //slice of source image
void init();
void shutdown();
void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight,
uint32_t* trg, int trgWidth, int trgHeight);