// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "Common/CPUDetect.h" #include "Core/Config.h" #include "Core/Reporting.h" #include "GPU/GPUState.h" #include "GPU/GLES/VertexDecoder.h" // We start out by converting the active matrices into 4x4 which are easier to multiply with // using SSE / NEON and store them here. static float MEMORY_ALIGNED16(bones[16 * 8]); using namespace Gen; static const float MEMORY_ALIGNED16( by127[4] ) = { 1.0f / 127.0f, 1.0f / 127.0f, 1.0f / 127.0f, 1.0f / 127.0f }; static const float MEMORY_ALIGNED16( by128[4] ) = { 1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f }; static const float MEMORY_ALIGNED16( by256[4] ) = { 1.0f / 256, 1.0f / 256, 1.0f / 256, 1.0f / 256 }; static const float MEMORY_ALIGNED16( by32767[4] ) = { 1.0f / 32767.0f, 1.0f / 32767.0f, 1.0f / 32767.0f, 1.0f / 32767.0f, }; static const float MEMORY_ALIGNED16( by32768[4] ) = { 1.0f / 32768.0f, 1.0f / 32768.0f, 1.0f / 32768.0f, 1.0f / 32768.0f, }; static const u32 MEMORY_ALIGNED16( threeMasks[4] ) = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0}; static const u32 MEMORY_ALIGNED16( aOne[4] ) = {0, 0, 0, 0x3F800000}; #ifdef _M_X64 #ifdef _WIN32 static const X64Reg tempReg1 = RAX; static const X64Reg tempReg2 = R9; static const X64Reg tempReg3 = R10; static const X64Reg srcReg = RCX; static const X64Reg dstReg = RDX; static const X64Reg counterReg = R8; #else static const X64Reg tempReg1 = RAX; static const X64Reg tempReg2 = R9; static const X64Reg tempReg3 = R10; static const X64Reg srcReg = RDI; static const X64Reg dstReg = RSI; static const X64Reg counterReg = RDX; #endif #else static const X64Reg tempReg1 = EAX; static const X64Reg tempReg2 = EBX; static const X64Reg tempReg3 = EDX; static const X64Reg srcReg = ESI; static const X64Reg dstReg = EDI; static const X64Reg counterReg = ECX; #endif // XMM0-XMM5 are volatile on Windows X64 // XMM0-XMM7 are arguments (and thus volatile) on System V ABI (other x64 platforms) static const X64Reg fpScaleOffsetReg = XMM0; static const X64Reg fpScratchReg = XMM1; static const X64Reg fpScratchReg2 = XMM2; static const X64Reg fpScratchReg3 = XMM3; static const X64Reg fpScratchReg4 = XMM4; // We're gonna keep the current skinning matrix in 4 XMM regs. Fortunately we easily // have space for that now. // To debug, just comment them out one at a time until it works. We fall back // on the interpreter if the compiler fails. static const JitLookup jitLookup[] = { {&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8}, {&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16}, {&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat}, {&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin}, {&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin}, {&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin}, {&VertexDecoder::Step_TcU8, &VertexDecoderJitCache::Jit_TcU8}, {&VertexDecoder::Step_TcU16, &VertexDecoderJitCache::Jit_TcU16}, {&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat}, {&VertexDecoder::Step_TcU16Double, &VertexDecoderJitCache::Jit_TcU16Double}, {&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale}, {&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale}, {&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale}, {&VertexDecoder::Step_TcU16Through, &VertexDecoderJitCache::Jit_TcU16Through}, {&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough}, {&VertexDecoder::Step_TcU16ThroughDouble, &VertexDecoderJitCache::Jit_TcU16ThroughDouble}, {&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8}, {&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16}, {&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat}, {&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin}, {&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin}, {&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin}, {&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888}, {&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444}, {&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565}, {&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551}, {&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through}, {&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through}, {&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloat}, {&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8}, {&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16}, {&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat}, {&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin}, {&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin}, {&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin}, {&VertexDecoder::Step_NormalS8Morph, &VertexDecoderJitCache::Jit_NormalS8Morph}, {&VertexDecoder::Step_NormalS16Morph, &VertexDecoderJitCache::Jit_NormalS16Morph}, {&VertexDecoder::Step_NormalFloatMorph, &VertexDecoderJitCache::Jit_NormalFloatMorph}, {&VertexDecoder::Step_PosS8Morph, &VertexDecoderJitCache::Jit_PosS8Morph}, {&VertexDecoder::Step_PosS16Morph, &VertexDecoderJitCache::Jit_PosS16Morph}, {&VertexDecoder::Step_PosFloatMorph, &VertexDecoderJitCache::Jit_PosFloatMorph}, {&VertexDecoder::Step_Color8888Morph, &VertexDecoderJitCache::Jit_Color8888Morph}, {&VertexDecoder::Step_Color4444Morph, &VertexDecoderJitCache::Jit_Color4444Morph}, {&VertexDecoder::Step_Color565Morph, &VertexDecoderJitCache::Jit_Color565Morph}, {&VertexDecoder::Step_Color5551Morph, &VertexDecoderJitCache::Jit_Color5551Morph}, }; // TODO: This should probably be global... #ifdef _M_X64 #define PTRBITS 64 #else #define PTRBITS 32 #endif JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec) { dec_ = &dec; const u8 *start = this->GetCodePtr(); #ifdef _M_IX86 // Store register values PUSH(ESI); PUSH(EDI); PUSH(EBX); PUSH(EBP); // Read parameters int offset = 4; MOV(32, R(srcReg), MDisp(ESP, 16 + offset + 0)); MOV(32, R(dstReg), MDisp(ESP, 16 + offset + 4)); MOV(32, R(counterReg), MDisp(ESP, 16 + offset + 8)); #endif // Save XMM4/XMM5 which apparently can be problematic? // Actually, if they are, it must be a compiler bug because they SHOULD be ok. // So I won't bother. SUB(PTRBITS, R(ESP), Imm8(64)); MOVUPS(MDisp(ESP, 0), XMM4); MOVUPS(MDisp(ESP, 16), XMM5); MOVUPS(MDisp(ESP, 32), XMM6); MOVUPS(MDisp(ESP, 48), XMM7); bool prescaleStep = false; // Look for prescaled texcoord steps for (int i = 0; i < dec.numSteps_; i++) { if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale || dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale || dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) { prescaleStep = true; } } // Add code to convert matrices to 4x4. // Later we might want to do this when the matrices are loaded instead. // This is mostly proof of concept. int boneCount = 0; if (dec.weighttype && g_Config.bSoftwareSkinning) { for (int i = 0; i < 8; i++) { MOVUPS(XMM0, M((gstate.boneMatrix + 12 * i))); MOVUPS(XMM1, M((gstate.boneMatrix + 12 * i + 3))); MOVUPS(XMM2, M((gstate.boneMatrix + 12 * i + 3 * 2))); MOVUPS(XMM3, M((gstate.boneMatrix + 12 * i + 3 * 3))); ANDPS(XMM0, M(&threeMasks)); ANDPS(XMM1, M(&threeMasks)); ANDPS(XMM2, M(&threeMasks)); ANDPS(XMM3, M(&threeMasks)); ORPS(XMM3, M(&aOne)); MOVAPS(M((bones + 16 * i)), XMM0); MOVAPS(M((bones + 16 * i + 4)), XMM1); MOVAPS(M((bones + 16 * i + 8)), XMM2); MOVAPS(M((bones + 16 * i + 12)), XMM3); } } // Keep the scale/offset in a few fp registers if we need it. if (prescaleStep) { #ifdef _M_X64 MOV(64, R(tempReg1), Imm64((u64)(&gstate_c.uv))); #else MOV(32, R(tempReg1), Imm32((u32)(&gstate_c.uv))); #endif MOVSS(fpScaleOffsetReg, MDisp(tempReg1, 0)); MOVSS(fpScratchReg, MDisp(tempReg1, 4)); UNPCKLPS(fpScaleOffsetReg, R(fpScratchReg)); if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) { MULPS(fpScaleOffsetReg, M(&by128)); } else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) { MULPS(fpScaleOffsetReg, M(&by32768)); } MOVSS(fpScratchReg, MDisp(tempReg1, 8)); MOVSS(fpScratchReg2, MDisp(tempReg1, 12)); UNPCKLPS(fpScratchReg, R(fpScratchReg2)); UNPCKLPD(fpScaleOffsetReg, R(fpScratchReg)); } // Let's not bother with a proper stack frame. We just grab the arguments and go. JumpTarget loopStart = GetCodePtr(); for (int i = 0; i < dec.numSteps_; i++) { if (!CompileStep(dec, i)) { // Reset the code ptr and return zero to indicate that we failed. SetCodePtr(const_cast(start)); return 0; } } ADD(PTRBITS, R(srcReg), Imm32(dec.VertexSize())); ADD(PTRBITS, R(dstReg), Imm32(dec.decFmt.stride)); SUB(32, R(counterReg), Imm8(1)); J_CC(CC_NZ, loopStart, true); MOVUPS(XMM4, MDisp(ESP, 0)); MOVUPS(XMM5, MDisp(ESP, 16)); MOVUPS(XMM6, MDisp(ESP, 32)); MOVUPS(XMM7, MDisp(ESP, 48)); ADD(PTRBITS, R(ESP), Imm8(64)); #ifdef _M_IX86 // Restore register values POP(EBP); POP(EBX); POP(EDI); POP(ESI); #endif RET(); return (JittedVertexDecoder)start; } void VertexDecoderJitCache::Jit_WeightsU8() { switch (dec_->nweights) { case 1: MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->weightoff)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); return; case 2: MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); return; case 3: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); AND(32, R(tempReg1), Imm32(0x00FFFFFF)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); return; case 4: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); return; case 8: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->weightoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.w1off), R(tempReg2)); return; } // Basic implementation - a byte at a time. TODO: Optimize int j; for (j = 0; j < dec_->nweights; j++) { MOV(8, R(tempReg1), MDisp(srcReg, dec_->weightoff + j)); MOV(8, MDisp(dstReg, dec_->decFmt.w0off + j), R(tempReg1)); } while (j & 3) { MOV(8, MDisp(dstReg, dec_->decFmt.w0off + j), Imm8(0)); j++; } } void VertexDecoderJitCache::Jit_WeightsU16() { switch (dec_->nweights) { case 1: MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), Imm32(0)); return; case 2: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), Imm32(0)); return; case 3: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->weightoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), R(tempReg2)); return; case 4: MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->weightoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), R(tempReg2)); return; } // Basic implementation - a short at a time. TODO: Optimize int j; for (j = 0; j < dec_->nweights; j++) { MOV(16, R(tempReg1), MDisp(srcReg, dec_->weightoff + j * 2)); MOV(16, MDisp(dstReg, dec_->decFmt.w0off + j * 2), R(tempReg1)); } while (j & 3) { MOV(16, MDisp(dstReg, dec_->decFmt.w0off + j * 2), Imm16(0)); j++; } } void VertexDecoderJitCache::Jit_WeightsFloat() { int j; for (j = 0; j < dec_->nweights; j++) { MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff + j * 4)); MOV(32, MDisp(dstReg, dec_->decFmt.w0off + j * 4), R(tempReg1)); } while (j & 3) { // Zero additional weights rounding up to 4. MOV(32, MDisp(dstReg, dec_->decFmt.w0off + j * 4), Imm32(0)); j++; } } void VertexDecoderJitCache::Jit_WeightsU8Skin() { MOV(PTRBITS, R(tempReg2), ImmPtr(&bones)); for (int j = 0; j < dec_->nweights; j++) { MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->weightoff + j)); CVTSI2SS(XMM1, R(tempReg1)); MULSS(XMM1, M(&by128)); SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0)); if (j == 0) { MOVAPS(XMM4, MDisp(tempReg2, 0)); MOVAPS(XMM5, MDisp(tempReg2, 16)); MOVAPS(XMM6, MDisp(tempReg2, 32)); MOVAPS(XMM7, MDisp(tempReg2, 48)); MULPS(XMM4, R(XMM1)); MULPS(XMM5, R(XMM1)); MULPS(XMM6, R(XMM1)); MULPS(XMM7, R(XMM1)); } else { MOVAPS(XMM2, MDisp(tempReg2, 0)); MOVAPS(XMM3, MDisp(tempReg2, 16)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM4, R(XMM2)); ADDPS(XMM5, R(XMM3)); MOVAPS(XMM2, MDisp(tempReg2, 32)); MOVAPS(XMM3, MDisp(tempReg2, 48)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM6, R(XMM2)); ADDPS(XMM7, R(XMM3)); } ADD(PTRBITS, R(tempReg2), Imm8(4 * 16)); } } void VertexDecoderJitCache::Jit_WeightsU16Skin() { MOV(PTRBITS, R(tempReg2), ImmPtr(&bones)); for (int j = 0; j < dec_->nweights; j++) { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff + j * 2)); CVTSI2SS(XMM1, R(tempReg1)); MULSS(XMM1, M(&by32768)); SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0)); if (j == 0) { MOVAPS(XMM4, MDisp(tempReg2, 0)); MOVAPS(XMM5, MDisp(tempReg2, 16)); MOVAPS(XMM6, MDisp(tempReg2, 32)); MOVAPS(XMM7, MDisp(tempReg2, 48)); MULPS(XMM4, R(XMM1)); MULPS(XMM5, R(XMM1)); MULPS(XMM6, R(XMM1)); MULPS(XMM7, R(XMM1)); } else { MOVAPS(XMM2, MDisp(tempReg2, 0)); MOVAPS(XMM3, MDisp(tempReg2, 16)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM4, R(XMM2)); ADDPS(XMM5, R(XMM3)); MOVAPS(XMM2, MDisp(tempReg2, 32)); MOVAPS(XMM3, MDisp(tempReg2, 48)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM6, R(XMM2)); ADDPS(XMM7, R(XMM3)); } ADD(PTRBITS, R(tempReg2), Imm8(4 * 16)); } } void VertexDecoderJitCache::Jit_WeightsFloatSkin() { MOV(PTRBITS, R(tempReg2), ImmPtr(&bones)); for (int j = 0; j < dec_->nweights; j++) { MOVSS(XMM1, MDisp(srcReg, dec_->weightoff + j * 4)); SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0)); if (j == 0) { MOVAPS(XMM4, MDisp(tempReg2, 0)); MOVAPS(XMM5, MDisp(tempReg2, 16)); MOVAPS(XMM6, MDisp(tempReg2, 32)); MOVAPS(XMM7, MDisp(tempReg2, 48)); MULPS(XMM4, R(XMM1)); MULPS(XMM5, R(XMM1)); MULPS(XMM6, R(XMM1)); MULPS(XMM7, R(XMM1)); } else { MOVAPS(XMM2, MDisp(tempReg2, 0)); MOVAPS(XMM3, MDisp(tempReg2, 16)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM4, R(XMM2)); ADDPS(XMM5, R(XMM3)); MOVAPS(XMM2, MDisp(tempReg2, 32)); MOVAPS(XMM3, MDisp(tempReg2, 48)); MULPS(XMM2, R(XMM1)); MULPS(XMM3, R(XMM1)); ADDPS(XMM6, R(XMM2)); ADDPS(XMM7, R(XMM3)); } ADD(PTRBITS, R(tempReg2), Imm8(4 * 16)); } } // Fill last two bytes with zeroes to align to 4 bytes. MOVZX does it for us, handy. void VertexDecoderJitCache::Jit_TcU8() { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->tcoff)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); } void VertexDecoderJitCache::Jit_TcU16() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); } void VertexDecoderJitCache::Jit_TcU16Double() { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->tcoff)); MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->tcoff + 2)); SHL(16, R(tempReg1), Imm8(1)); // 16 to get a wall to shift into SHL(32, R(tempReg2), Imm8(17)); OR(32, R(tempReg1), R(tempReg2)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); } void VertexDecoderJitCache::Jit_TcFloat() { #ifdef _M_X64 MOV(64, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(64, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); #else MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->tcoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff + 4), R(tempReg2)); #endif } void VertexDecoderJitCache::Jit_TcU8Prescale() { // TODO: The first five instructions could be done in 1 or 2 in SSE4 MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->tcoff)); MOVZX(32, 8, tempReg2, MDisp(srcReg, dec_->tcoff + 1)); CVTSI2SS(fpScratchReg, R(tempReg1)); CVTSI2SS(fpScratchReg2, R(tempReg2)); UNPCKLPS(fpScratchReg, R(fpScratchReg2)); MULPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); ADDPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg); } void VertexDecoderJitCache::Jit_TcU16Prescale() { PXOR(fpScratchReg2, R(fpScratchReg2)); MOVD_xmm(fpScratchReg, MDisp(srcReg, dec_->tcoff)); PUNPCKLWD(fpScratchReg, R(fpScratchReg2)); CVTDQ2PS(fpScratchReg, R(fpScratchReg)); MULPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); ADDPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg); } void VertexDecoderJitCache::Jit_TcFloatPrescale() { MOVQ_xmm(fpScratchReg, MDisp(srcReg, dec_->tcoff)); MULPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); ADDPS(fpScratchReg, R(fpScaleOffsetReg)); SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2)); MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg); } void VertexDecoderJitCache::Jit_TcU16Through() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); } void VertexDecoderJitCache::Jit_TcU16ThroughDouble() { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->tcoff)); MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->tcoff + 2)); SHL(16, R(tempReg1), Imm8(1)); // 16 to get a wall to shift into SHL(32, R(tempReg2), Imm8(17)); OR(32, R(tempReg1), R(tempReg2)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); } void VertexDecoderJitCache::Jit_TcFloatThrough() { #ifdef _M_X64 MOV(64, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(64, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); #else MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->tcoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.uvoff + 4), R(tempReg2)); #endif } void VertexDecoderJitCache::Jit_Color8888() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->coloff)); MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg1)); CMP(32, R(tempReg1), Imm32(0xFF000000)); FixupBranch skip = J_CC(CC_AE, false); MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); SetJumpTarget(skip); } static const u32 MEMORY_ALIGNED16(nibbles[4]) = { 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, }; static const u32 MEMORY_ALIGNED16(color4444mask[4]) = { 0xf00ff00f, 0xf00ff00f, 0xf00ff00f, 0xf00ff00f, }; void VertexDecoderJitCache::Jit_Color4444() { // Needs benchmarking. A bit wasteful by only using 1 SSE lane. #if 0 MOVD_xmm(fpScratchReg, MDisp(srcReg, dec_->coloff)); PUNPCKLBW(fpScratchReg, R(fpScratchReg)); PAND(fpScratchReg, M(color4444mask)); MOVSS(fpScratchReg2, R(fpScratchReg)); MOVSS(fpScratchReg3, R(fpScratchReg)); PSRLW(fpScratchReg2, 4); PSLLW(fpScratchReg3, 4); POR(fpScratchReg, R(fpScratchReg2)); POR(fpScratchReg, R(fpScratchReg3)); MOVD_xmm(MDisp(dstReg, dec_->decFmt.c0off), fpScratchReg); return; #elif 0 // Alternate approach MOVD_xmm(XMM3, MDisp(srcReg, dec_->coloff)); MOVAPS(XMM2, R(XMM3)); MOVAPS(XMM1, M(nibbles)); PSLLD(XMM2, 4); PAND(XMM3, R(XMM1)); PAND(XMM2, R(XMM1)); PSRLD(XMM2, 4); PXOR(XMM1, R(XMM1)); PUNPCKLBW(XMM2, R(XMM1)); PUNPCKLBW(XMM3, R(XMM1)); PSLLD(XMM2, 4); POR(XMM3, R(XMM2)); MOVAPS(XMM2, R(XMM3)); PSLLD(XMM2, 4); POR(XMM3, R(XMM2)); MOVD_xmm(MDisp(dstReg, dec_->decFmt.c0off), XMM3); return; #endif MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->coloff)); // Pick out A and B, and space them out by a nibble. MOV(32, R(tempReg2), R(tempReg1)); MOV(32, R(tempReg3), R(tempReg1)); AND(32, R(tempReg2), Imm32(0x0000F000)); AND(32, R(tempReg3), Imm32(0x00000F00)); SHL(32, R(tempReg2), Imm8(4)); OR(32, R(tempReg2), R(tempReg3)); // Now grab R and G. MOV(32, R(tempReg3), R(tempReg1)); AND(32, R(tempReg1), Imm32(0x0000000F)); AND(32, R(tempReg3), Imm32(0x000000F0)); // Currently: 000A0B00, so let's shift once so G is spaced out. SHL(32, R(tempReg2), Imm8(4)); OR(32, R(tempReg2), R(tempReg3)); // Now: 00A0B0G0, so shift it once more to add R at the bottom. SHL(32, R(tempReg2), Imm8(4)); OR(32, R(tempReg2), R(tempReg1)); // Now we just need to duplicate the nibbles. MOV(32, R(tempReg3), R(tempReg2)); SHL(32, R(tempReg3), Imm8(4)); OR(32, R(tempReg2), R(tempReg3)); MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg2)); CMP(32, R(tempReg2), Imm32(0xFF000000)); FixupBranch skip = J_CC(CC_AE, false); MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); SetJumpTarget(skip); } void VertexDecoderJitCache::Jit_Color565() { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->coloff)); MOV(32, R(tempReg2), R(tempReg1)); AND(32, R(tempReg2), Imm32(0x0000001F)); // B (we do R and B at the same time, they're both 5.) MOV(32, R(tempReg3), R(tempReg1)); AND(32, R(tempReg3), Imm32(0x0000F800)); SHL(32, R(tempReg3), Imm8(5)); OR(32, R(tempReg2), R(tempReg3)); // Expand 5 -> 8. At this point we have 00BB00RR. MOV(32, R(tempReg3), R(tempReg2)); SHL(32, R(tempReg2), Imm8(3)); SHR(32, R(tempReg3), Imm8(2)); OR(32, R(tempReg2), R(tempReg3)); AND(32, R(tempReg2), Imm32(0x00FF00FF)); // Now's as good a time to put in A as any. OR(32, R(tempReg2), Imm32(0xFF000000)); // Last, we need to align, extract, and expand G. // 3 to align to G, and then 2 to expand to 8. SHL(32, R(tempReg1), Imm8(3 + 2)); AND(32, R(tempReg1), Imm32(0x0000FC00)); MOV(32, R(tempReg3), R(tempReg1)); // 2 to account for tempReg1 being preshifted, 4 for expansion. SHR(32, R(tempReg3), Imm8(2 + 4)); OR(32, R(tempReg1), R(tempReg3)); AND(32, R(tempReg1), Imm32(0x0000FF00)); OR(32, R(tempReg2), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg2)); // Never has alpha, no need to update fullAlphaArg. } void VertexDecoderJitCache::Jit_Color5551() { MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->coloff)); MOV(32, R(tempReg2), R(tempReg1)); MOV(32, R(tempReg3), R(tempReg1)); AND(32, R(tempReg2), Imm32(0x0000001F)); AND(32, R(tempReg3), Imm32(0x000003E0)); SHL(32, R(tempReg3), Imm8(3)); OR(32, R(tempReg2), R(tempReg3)); MOV(32, R(tempReg3), R(tempReg1)); AND(32, R(tempReg3), Imm32(0x00007C00)); SHL(32, R(tempReg3), Imm8(6)); OR(32, R(tempReg2), R(tempReg3)); // Expand 5 -> 8. After this is just A. MOV(32, R(tempReg3), R(tempReg2)); SHL(32, R(tempReg2), Imm8(3)); SHR(32, R(tempReg3), Imm8(2)); // Chop off the bits that were shifted out. AND(32, R(tempReg3), Imm32(0x00070707)); OR(32, R(tempReg2), R(tempReg3)); // For A, we shift it to a single bit, and then subtract and XOR. // That's probably the simplest way to expand it... SHR(32, R(tempReg1), Imm8(15)); // If it was 0, it's now -1, otherwise it's 0. Easy. SUB(32, R(tempReg1), Imm8(1)); XOR(32, R(tempReg1), Imm32(0xFF000000)); AND(32, R(tempReg1), Imm32(0xFF000000)); OR(32, R(tempReg2), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg2)); CMP(32, R(tempReg2), Imm32(0xFF000000)); FixupBranch skip = J_CC(CC_AE, false); MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); SetJumpTarget(skip); } void VertexDecoderJitCache::Jit_Color8888Morph() { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); PXOR(fpScratchReg4, R(fpScratchReg4)); bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg2; MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff)); if (cpu_info.bSSE4_1) { PMOVZXBD(reg, R(reg)); } else { PUNPCKLBW(reg, R(fpScratchReg4)); PUNPCKLWD(reg, R(fpScratchReg4)); } CVTDQ2PS(reg, R(reg)); // And now the weight. MOVSS(fpScratchReg3, MDisp(tempReg1, n * sizeof(float))); SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg3)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg2)); } else { first = false; } } Jit_WriteMorphColor(dec_->decFmt.c0off); } static const float MEMORY_ALIGNED16(byColor4444[4]) = { 255.0f / 15.0f, 255.0f / 15.0f, 255.0f / 15.0f, 255.0f / 15.0f, }; void VertexDecoderJitCache::Jit_Color4444Morph() { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); PXOR(fpScratchReg4, R(fpScratchReg4)); MOVDQA(XMM5, M(color4444mask)); MOVAPS(XMM6, M(byColor4444)); bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg2; MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff)); PUNPCKLBW(reg, R(reg)); PAND(reg, R(XMM5)); MOVSS(fpScratchReg3, R(reg)); PSLLW(fpScratchReg3, 4); POR(reg, R(fpScratchReg3)); PSRLW(reg, 4); if (cpu_info.bSSE4_1) { PMOVZXBD(reg, R(reg)); } else { PUNPCKLBW(reg, R(fpScratchReg4)); PUNPCKLWD(reg, R(fpScratchReg4)); } CVTDQ2PS(reg, R(reg)); MULPS(reg, R(XMM6)); // And now the weight. MOVSS(fpScratchReg3, MDisp(tempReg1, n * sizeof(float))); SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg3)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg2)); } else { first = false; } } Jit_WriteMorphColor(dec_->decFmt.c0off); } // The mask is intentionally in reverse order (but skips A.) static const u32 MEMORY_ALIGNED16(color565Mask[4]) = { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000, }; static const float MEMORY_ALIGNED16(byColor565[4]) = { 255.0f / 31.0f, 255.0f / 63.0f, 255.0f / 31.0f, 255.0f / 1.0f, }; void VertexDecoderJitCache::Jit_Color565Morph() { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); MOV(32, R(tempReg2), Imm32(1)); MOVDQA(XMM5, M(color565Mask)); MOVAPS(XMM6, M(byColor565)); bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg3; MOVD_xmm(fpScratchReg2, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff)); // Spread it out into each lane. We end up with it reversed (R high, A low.) // Below, we shift out each lane from low to high and reverse them. PSHUFD(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0)); PAND(fpScratchReg2, R(XMM5)); // Alpha handled in Jit_WriteMorphColor. // Blue first. MOVSS(reg, R(fpScratchReg2)); PSRLD(reg, 6); PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 0, 0, 0)); // Green, let's shift it into the right lane first. PSRLDQ(fpScratchReg2, 4); MOVSS(reg, R(fpScratchReg2)); PSRLD(reg, 5); PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 2, 0, 0)); // Last one, red. PSRLDQ(fpScratchReg2, 4); MOVSS(reg, R(fpScratchReg2)); CVTDQ2PS(reg, R(reg)); MULPS(reg, R(XMM6)); // And now the weight. MOVSS(fpScratchReg2, MDisp(tempReg1, n * sizeof(float))); SHUFPS(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg2)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg3)); } else { first = false; } } Jit_WriteMorphColor(dec_->decFmt.c0off, false); } // The mask is intentionally in reverse order. static const u32 MEMORY_ALIGNED16(color5551Mask[4]) = { 0x00008000, 0x00007c00, 0x000003e0, 0x0000001f, }; static const float MEMORY_ALIGNED16(byColor5551[4]) = { 255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 1.0f, }; void VertexDecoderJitCache::Jit_Color5551Morph() { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); MOVDQA(XMM5, M(color5551Mask)); MOVAPS(XMM6, M(byColor5551)); bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg3; MOVD_xmm(fpScratchReg2, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff)); // Spread it out into each lane. PSHUFD(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0)); PAND(fpScratchReg2, R(XMM5)); // Alpha first. MOVSS(reg, R(fpScratchReg2)); PSRLD(reg, 5); PSHUFD(reg, R(reg), _MM_SHUFFLE(0, 0, 0, 0)); // Blue, let's shift it into the right lane first. PSRLDQ(fpScratchReg2, 4); MOVSS(reg, R(fpScratchReg2)); PSRLD(reg, 5); PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 0, 0, 0)); // Green. PSRLDQ(fpScratchReg2, 4); MOVSS(reg, R(fpScratchReg2)); PSRLD(reg, 5); PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 2, 0, 0)); // Last one, red. PSRLDQ(fpScratchReg2, 4); MOVSS(reg, R(fpScratchReg2)); CVTDQ2PS(reg, R(reg)); MULPS(reg, R(XMM6)); // And now the weight. MOVSS(fpScratchReg2, MDisp(tempReg1, n * sizeof(float))); SHUFPS(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg2)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg3)); } else { first = false; } } Jit_WriteMorphColor(dec_->decFmt.c0off); } void VertexDecoderJitCache::Jit_WriteMorphColor(int outOff, bool checkAlpha) { // Pack back into a u32, with saturation. CVTPS2DQ(fpScratchReg, R(fpScratchReg)); PACKSSDW(fpScratchReg, R(fpScratchReg)); PACKUSWB(fpScratchReg, R(fpScratchReg)); MOVD_xmm(R(tempReg1), fpScratchReg); // TODO: May be a faster way to do this without the MOVD. if (checkAlpha) { CMP(32, R(tempReg1), Imm32(0xFF000000)); FixupBranch skip = J_CC(CC_AE, false); MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); SetJumpTarget(skip); } else { // Force alpha to full if we're not checking it. OR(32, R(tempReg1), Imm32(0xFF000000)); } MOV(32, MDisp(dstReg, outOff), R(tempReg1)); } // Copy 3 bytes and then a zero. Might as well copy four. void VertexDecoderJitCache::Jit_NormalS8() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff)); AND(32, R(tempReg1), Imm32(0x00FFFFFF)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1)); } // Copy 6 bytes and then 2 zeroes. void VertexDecoderJitCache::Jit_NormalS16() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff)); MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->nrmoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 4), R(tempReg2)); } void VertexDecoderJitCache::Jit_NormalFloat() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->nrmoff + 4)); MOV(32, R(tempReg3), MDisp(srcReg, dec_->nrmoff + 8)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 4), R(tempReg2)); MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 8), R(tempReg3)); } // This could be a bit shorter with AVX 3-operand instructions and FMA. void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) { MOVAPS(XMM1, R(XMM3)); MOVAPS(XMM2, R(XMM3)); SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0)); SHUFPS(XMM2, R(XMM2), _MM_SHUFFLE(1, 1, 1, 1)); SHUFPS(XMM3, R(XMM3), _MM_SHUFFLE(2, 2, 2, 2)); MULPS(XMM1, R(XMM4)); MULPS(XMM2, R(XMM5)); MULPS(XMM3, R(XMM6)); ADDPS(XMM1, R(XMM2)); ADDPS(XMM1, R(XMM3)); if (pos) { ADDPS(XMM1, R(XMM7)); } MOVUPS(MDisp(dstReg, outOff), XMM1); } void VertexDecoderJitCache::Jit_NormalS8Skin() { XORPS(XMM3, R(XMM3)); MOVD_xmm(XMM1, MDisp(srcReg, dec_->nrmoff)); if (cpu_info.bSSE4_1) { PMOVSXBD(XMM1, R(XMM1)); } else { PUNPCKLBW(XMM1, R(XMM3)); PUNPCKLWD(XMM1, R(XMM3)); PSLLD(XMM1, 24); PSRAD(XMM1, 24); } CVTDQ2PS(XMM3, R(XMM1)); MULPS(XMM3, M(&by128)); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } // Copy 6 bytes and then 2 zeroes. void VertexDecoderJitCache::Jit_NormalS16Skin() { XORPS(XMM3, R(XMM3)); MOVQ_xmm(XMM1, MDisp(srcReg, dec_->nrmoff)); if (cpu_info.bSSE4_1) { PMOVSXWD(XMM1, R(XMM1)); } else { PSLLD(XMM1, 16); PSRAD(XMM1, 16); } CVTDQ2PS(XMM3, R(XMM1)); MULPS(XMM3, M(&by32768)); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } void VertexDecoderJitCache::Jit_NormalFloatSkin() { MOVUPS(XMM3, MDisp(srcReg, dec_->nrmoff)); Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false); } // Through expands into floats, always. Might want to look at changing this. void VertexDecoderJitCache::Jit_PosS8Through() { DEBUG_LOG_REPORT_ONCE(vertexS8Through, G3D, "Using S8 positions in throughmode"); // TODO: SIMD for (int i = 0; i < 3; i++) { MOVSX(32, 8, tempReg1, MDisp(srcReg, dec_->posoff + i)); CVTSI2SS(fpScratchReg, R(tempReg1)); MOVSS(MDisp(dstReg, dec_->decFmt.posoff + i * 4), fpScratchReg); } } // Through expands into floats, always. Might want to look at changing this. void VertexDecoderJitCache::Jit_PosS16Through() { MOVSX(32, 16, tempReg1, MDisp(srcReg, dec_->posoff)); MOVSX(32, 16, tempReg2, MDisp(srcReg, dec_->posoff + 2)); MOVZX(32, 16, tempReg3, MDisp(srcReg, dec_->posoff + 4)); // NOTE: MOVZX CVTSI2SS(fpScratchReg, R(tempReg1)); MOVSS(MDisp(dstReg, dec_->decFmt.posoff), fpScratchReg); CVTSI2SS(fpScratchReg, R(tempReg2)); MOVSS(MDisp(dstReg, dec_->decFmt.posoff + 4), fpScratchReg); CVTSI2SS(fpScratchReg, R(tempReg3)); MOVSS(MDisp(dstReg, dec_->decFmt.posoff + 8), fpScratchReg); } // Copy 3 bytes and then a zero. Might as well copy four. void VertexDecoderJitCache::Jit_PosS8() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->posoff)); AND(32, R(tempReg1), Imm32(0x00FFFFFF)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1)); } // Copy 6 bytes and then 2 zeroes. void VertexDecoderJitCache::Jit_PosS16() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->posoff)); MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->posoff + 4)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 4), R(tempReg2)); } // Just copy 12 bytes. void VertexDecoderJitCache::Jit_PosFloat() { MOV(32, R(tempReg1), MDisp(srcReg, dec_->posoff)); MOV(32, R(tempReg2), MDisp(srcReg, dec_->posoff + 4)); MOV(32, R(tempReg3), MDisp(srcReg, dec_->posoff + 8)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 4), R(tempReg2)); MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 8), R(tempReg3)); } void VertexDecoderJitCache::Jit_PosS8Skin() { XORPS(XMM3, R(XMM3)); MOVD_xmm(XMM1, MDisp(srcReg, dec_->posoff)); if (cpu_info.bSSE4_1) { PMOVSXBD(XMM1, R(XMM1)); } else { PUNPCKLBW(XMM1, R(XMM3)); PUNPCKLWD(XMM1, R(XMM3)); PSLLD(XMM1, 24); PSRAD(XMM1, 24); } CVTDQ2PS(XMM3, R(XMM1)); MULPS(XMM3, M(&by128)); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } void VertexDecoderJitCache::Jit_PosS16Skin() { XORPS(XMM3, R(XMM3)); MOVQ_xmm(XMM1, MDisp(srcReg, dec_->posoff)); if (cpu_info.bSSE4_1) { PMOVSXWD(XMM1, R(XMM1)); } else { PUNPCKLWD(XMM1, R(XMM3)); PSLLD(XMM1, 16); PSRAD(XMM1, 16); } CVTDQ2PS(XMM3, R(XMM1)); MULPS(XMM3, M(&by32768)); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } // Just copy 12 bytes. void VertexDecoderJitCache::Jit_PosFloatSkin() { MOVUPS(XMM3, MDisp(srcReg, dec_->posoff)); Jit_WriteMatrixMul(dec_->decFmt.posoff, true); } void VertexDecoderJitCache::Jit_AnyS8Morph(int srcoff, int dstoff) { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); PXOR(fpScratchReg4, R(fpScratchReg4)); MOVAPS(XMM5, M(by127)); // Sum into fpScratchReg. bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg2; // Okay, first convert to floats. MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff)); if (cpu_info.bSSE4_1) { PMOVSXBD(reg, R(reg)); } else { PUNPCKLBW(reg, R(fpScratchReg4)); PUNPCKLWD(reg, R(fpScratchReg4)); PSLLD(reg, 24); PSRAD(reg, 24); } CVTDQ2PS(reg, R(reg)); // Now, It's time to multiply by the weight and 1.0f/127.0f. MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n)); MULSS(fpScratchReg3, R(XMM5)); SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg3)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg2)); } else { first = false; } } // TODO: Is it okay that we're over-writing by 4 bytes? Probably... MOVUPS(MDisp(dstReg, dstoff), fpScratchReg); } void VertexDecoderJitCache::Jit_AnyS16Morph(int srcoff, int dstoff) { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); PXOR(fpScratchReg4, R(fpScratchReg4)); MOVAPS(XMM5, M(by32767)); // Sum into fpScratchReg. bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg2; // Okay, first convert to floats. MOVQ_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff)); if (cpu_info.bSSE4_1) { PMOVSXWD(reg, R(reg)); } else { PUNPCKLWD(reg, R(fpScratchReg4)); PSLLD(reg, 16); PSRAD(reg, 16); } CVTDQ2PS(reg, R(reg)); // Now, It's time to multiply by the weight and 1.0f/32767.0f. MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n)); MULSS(fpScratchReg3, R(XMM5)); SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg3)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg2)); } else { first = false; } } // TODO: Is it okay that we're over-writing by 4 bytes? Probably... MOVUPS(MDisp(dstReg, dstoff), fpScratchReg); } void VertexDecoderJitCache::Jit_AnyFloatMorph(int srcoff, int dstoff) { MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0])); // Sum into fpScratchReg. bool first = true; for (int n = 0; n < dec_->morphcount; ++n) { const X64Reg reg = first ? fpScratchReg : fpScratchReg2; MOVUPS(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff)); MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n)); SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0)); MULPS(reg, R(fpScratchReg3)); if (!first) { ADDPS(fpScratchReg, R(fpScratchReg2)); } else { first = false; } } // TODO: Is it okay that we're over-writing by 4 bytes? Probably... MOVUPS(MDisp(dstReg, dstoff), fpScratchReg); } void VertexDecoderJitCache::Jit_PosS8Morph() { Jit_AnyS8Morph(dec_->posoff, dec_->decFmt.posoff); } void VertexDecoderJitCache::Jit_PosS16Morph() { Jit_AnyS16Morph(dec_->posoff, dec_->decFmt.posoff); } void VertexDecoderJitCache::Jit_PosFloatMorph() { Jit_AnyFloatMorph(dec_->posoff, dec_->decFmt.posoff); } void VertexDecoderJitCache::Jit_NormalS8Morph() { Jit_AnyS8Morph(dec_->nrmoff, dec_->decFmt.nrmoff); } void VertexDecoderJitCache::Jit_NormalS16Morph() { Jit_AnyS16Morph(dec_->nrmoff, dec_->decFmt.nrmoff); } void VertexDecoderJitCache::Jit_NormalFloatMorph() { Jit_AnyFloatMorph(dec_->nrmoff, dec_->decFmt.nrmoff); } bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) { // See if we find a matching JIT function for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) { if (dec.steps_[step] == jitLookup[i].func) { ((*this).*jitLookup[i].jitFunc)(); return true; } } return false; }