// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "Core/Host.h" #include "Core/Config.h" #include "GPU/GPUState.h" #include "GPU/GLES/VertexDecoder.h" #include "GPU/GLES/TransformPipeline.h" #include "GPU/Common/SplineCommon.h" #include "TransformUnit.h" #include "Clipper.h" #include "Lighting.h" static u8 buf[65536 * 48]; // yolo static bool outside_range_flag = false; WorldCoords TransformUnit::ModelToWorld(const ModelCoords& coords) { Mat3x3 world_matrix(gstate.worldMatrix); return WorldCoords(world_matrix * coords) + Vec3(gstate.worldMatrix[9], gstate.worldMatrix[10], gstate.worldMatrix[11]); } WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords& coords) { Mat3x3 world_matrix(gstate.worldMatrix); return WorldCoords(world_matrix * coords); } ViewCoords TransformUnit::WorldToView(const WorldCoords& coords) { Mat3x3 view_matrix(gstate.viewMatrix); return ViewCoords(view_matrix * coords) + Vec3(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]); } ClipCoords TransformUnit::ViewToClip(const ViewCoords& coords) { Vec4 coords4(coords.x, coords.y, coords.z, 1.0f); Mat4x4 projection_matrix(gstate.projMatrix); return ClipCoords(projection_matrix * coords4); } // TODO: This is ugly static inline ScreenCoords ClipToScreenInternal(const ClipCoords& coords, bool set_flag = true) { ScreenCoords ret; // TODO: Check for invalid parameters (x2 < x1, etc) float vpx1 = getFloat24(gstate.viewportx1); float vpx2 = getFloat24(gstate.viewportx2); float vpy1 = getFloat24(gstate.viewporty1); float vpy2 = getFloat24(gstate.viewporty2); float vpz1 = getFloat24(gstate.viewportz1); float vpz2 = getFloat24(gstate.viewportz2); float retx = coords.x * vpx1 / coords.w + vpx2; float rety = coords.y * vpy1 / coords.w + vpy2; float retz = coords.z * vpz1 / coords.w + vpz2; if (gstate.clipEnable & 0x1) { if (retz < 0.f) retz = 0.f; if (retz > 65535.f) retz = 65535.f; } if (set_flag && (retx > 4095.9375f || rety > 4095.9375f || retx < 0 || rety < 0 || retz < 0 || retz > 65535.f)) outside_range_flag = true; // 16 = 0xFFFF / 4095.9375 return ScreenCoords(retx * 16, rety * 16, retz); } ScreenCoords TransformUnit::ClipToScreen(const ClipCoords& coords) { return ClipToScreenInternal(coords, false); } DrawingCoords TransformUnit::ScreenToDrawing(const ScreenCoords& coords) { DrawingCoords ret; // TODO: What to do when offset > coord? ret.x = (((u32)coords.x - gstate.getOffsetX16()) / 16) & 0x3ff; ret.y = (((u32)coords.y - gstate.getOffsetY16()) / 16) & 0x3ff; ret.z = coords.z; return ret; } ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords& coords) { ScreenCoords ret; ret.x = (u32)coords.x * 16 + gstate.getOffsetX16(); ret.y = (u32)coords.y * 16 + gstate.getOffsetY16(); ret.z = coords.z; return ret; } static VertexData ReadVertex(VertexReader& vreader) { VertexData vertex; float pos[3]; // VertexDecoder normally scales z, but we want it unscaled. vreader.ReadPosZ16(pos); if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) { float uv[2]; vreader.ReadUV(uv); vertex.texturecoords = Vec2(uv[0], uv[1]); } if (vreader.hasNormal()) { float normal[3]; vreader.ReadNrm(normal); vertex.normal = Vec3(normal[0], normal[1], normal[2]); if (gstate.areNormalsReversed()) vertex.normal = -vertex.normal; } if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3 tmppos(0.f, 0.f, 0.f); Vec3 tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) { Mat3x3 bone(&gstate.boneMatrix[12*i]); tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) * W[i] + Vec3(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])); if (vreader.hasNormal()) tmpnrm += (bone * vertex.normal) * W[i]; } pos[0] = tmppos.x; pos[1] = tmppos.y; pos[2] = tmppos.z; if (vreader.hasNormal()) vertex.normal = tmpnrm; } if (vreader.hasColor0()) { float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4(col[0]*255, col[1]*255, col[2]*255, col[3]*255); } else { vertex.color0 = Vec4(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA()); } if (vreader.hasColor1()) { float col[3]; vreader.ReadColor1(col); vertex.color1 = Vec3(col[0]*255, col[1]*255, col[2]*255); } else { vertex.color1 = Vec3(0, 0, 0); } if (!gstate.isModeThrough()) { vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]); vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos)); vertex.clippos = ClipCoords(TransformUnit::ViewToClip(TransformUnit::WorldToView(vertex.worldpos))); vertex.screenpos = ClipToScreenInternal(vertex.clippos); if (vreader.hasNormal()) { vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal); // TODO: Isn't there a flag that controls whether to normalize the normal? vertex.worldnormal /= vertex.worldnormal.Length(); } Lighting::Process(vertex, vreader.hasColor0()); } else { vertex.screenpos.x = (u32)pos[0] * 16 + gstate.getOffsetX16(); vertex.screenpos.y = (u32)pos[1] * 16 + gstate.getOffsetY16(); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; } return vertex; } #define START_OPEN_U 1 #define END_OPEN_U 2 #define START_OPEN_V 4 #define END_OPEN_V 8 struct SplinePatch { VertexData points[16]; int type; }; void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) { VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); static u8 buf[65536 * 48]; // yolo u16 index_lower_bound = 0; u16 index_upper_bound = count_u * count_v - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); int num_patches_u = count_u - 3; int num_patches_v = count_v - 3; // TODO: Do something less idiotic to manage this buffer SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v]; for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) { for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) { SplinePatch& patch = patches[patch_u + patch_v * num_patches_u]; for (int point = 0; point < 16; ++point) { int idx = (patch_u + point%4) + (patch_v + point/4) * count_u; if (indices) vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]); else vreader.Goto(idx); patch.points[point] = ReadVertex(vreader); } patch.type = (type_u | (type_v<<2)); if (patch_u != 0) patch.type &= ~START_OPEN_U; if (patch_v != 0) patch.type &= ~START_OPEN_V; if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U; if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V; } } for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) { SplinePatch& patch = patches[patch_idx]; // TODO: Should do actual patch subdivision instead of just drawing the control points! const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1; const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1; const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2; const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2; for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { int point_index = tile_u + tile_v*4; VertexData v0 = patch.points[point_index]; VertexData v1 = patch.points[point_index+1]; VertexData v2 = patch.points[point_index+4]; VertexData v3 = patch.points[point_index+5]; // TODO: Backface culling etc Clipper::ProcessTriangle(v0, v1, v2); Clipper::ProcessTriangle(v2, v1, v0); Clipper::ProcessTriangle(v2, v1, v3); Clipper::ProcessTriangle(v3, v1, v2); } } } delete[] patches; host->GPUNotifyDraw(); } void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead) { // TODO: Cache VertexDecoder objects VertexDecoder vdecoder; vdecoder.SetVertexType(vertex_type); const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT; u8* indices8 = (u8*)indices; u16* indices16 = (u16*)indices; if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(buf, vtxfmt, vertex_type); const int max_vtcs_per_prim = 3; int vtcs_per_prim = 0; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; } VertexData data[max_vtcs_per_prim]; // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: case GE_PRIM_RECTANGLES: { for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) { for (int i = 0; i < vtcs_per_prim; ++i) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]); else vreader.Goto(vtx+i); data[i] = ReadVertex(vreader); if (outside_range_flag) break; } if (outside_range_flag) { outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if (!gstate.getCullMode()) Clipper::ProcessTriangle(data[2], data[1], data[0]); else Clipper::ProcessTriangle(data[0], data[1], data[2]); break; } case GE_PRIM_RECTANGLES: Clipper::ProcessRect(data[0], data[1]); break; case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1]); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0]); break; } } break; } case GE_PRIM_LINE_STRIP: { int skip_count = 1; // Don't draw a line when loading the first vertex for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx & 1] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]); } } break; } case GE_PRIM_TRIANGLE_STRIP: { int skip_count = 2; // Don't draw a triangle when loading the first two vertices for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[vtx % 3] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } case GE_PRIM_TRIANGLE_FAN: { unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices if (indices) vreader.Goto(indices_16bit ? indices16[0] : indices8[0]); else vreader.Goto(0); data[0] = ReadVertex(vreader); for (int vtx = 1; vtx < vertex_count; ++vtx) { if (indices) vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]); else vreader.Goto(vtx); data[2 - (vtx % 2)] = ReadVertex(vreader); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (!gstate.isCullEnabled() || gstate.isModeClear()) { Clipper::ProcessTriangle(data[0], data[1], data[2]); Clipper::ProcessTriangle(data[2], data[1], data[0]); } else if ((!gstate.getCullMode()) ^ (vtx % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0]); } else { Clipper::ProcessTriangle(data[0], data[1], data[2]); } } break; } } host->GPUNotifyDraw(); } // TODO: This probably is not the best interface. bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector &vertices, std::vector &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16 *inds16 = (const u16 *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; default: return false; } } else { indices.clear(); } } else { indices.clear(); } static std::vector temp_buffer; static std::vector simpleVertices; temp_buffer.resize(65536 * 24 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); VertexDecoder vdecoder; vdecoder.SetVertexType(gstate.vertType); TransformDrawEngine::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); vertices.resize(indexUpperBound + 1); for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if (gstate.isModeThrough()) { if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); ScreenCoords screenPos = ClipToScreen(clipPos); DrawingCoords drawPos = ScreenToDrawing(screenPos); if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = 1.0; if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } } } return true; }