// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "Core/CPU.h" #include "Core/Reporting.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSVFPUUtils.h" #include #define V(i) (currentMIPS->v[i]) #define VI(i) (currentMIPS->vi[i]) void GetVectorRegs(u8 regs[4], VectorSize N, int vectorReg) { int mtx = (vectorReg >> 2) & 7; int col = vectorReg & 3; int row = 0; int length = 0; int transpose = (vectorReg>>5) & 1; switch (N) { case V_Single: transpose = 0; row=(vectorReg>>5)&3; length = 1; break; case V_Pair: row=(vectorReg>>5)&2; length = 2; break; case V_Triple: row=(vectorReg>>6)&1; length = 3; break; case V_Quad: row=(vectorReg>>5)&2; length = 4; break; } for (int i = 0; i < length; i++) { int index = mtx * 4; if (transpose) index += ((row+i)&3) + col*32; else index += col + ((row+i)&3)*32; regs[i] = index; } } void GetMatrixRegs(u8 regs[16], MatrixSize N, int matrixReg) { int mtx = (matrixReg >> 2) & 7; int col = matrixReg & 3; int row = 0; int side = 0; switch (N) { case M_2x2: row = (matrixReg>>5)&2; side = 2; break; case M_3x3: row = (matrixReg>>6)&1; side = 3; break; case M_4x4: row = (matrixReg>>5)&2; side = 4; break; } int transpose = (matrixReg>>5) & 1; for (int i = 0; i < side; i++) { for (int j = 0; j < side; j++) { int index = mtx * 4; if (transpose) index += ((row+i)&3) + ((col+j)&3)*32; else index += ((col+j)&3) + ((row+i)&3)*32; regs[j*4 + i] = index; } } } void ReadVector(float *rd, VectorSize size, int reg) { const int mtx = (reg >> 2) & 7; const int col = reg & 3; int row = 0; int length = 0; int transpose = (reg>>5) & 1; switch (size) { case V_Single: transpose = 0; row=(reg>>5)&3; length = 1; break; case V_Pair: row=(reg>>5)&2; length = 2; break; case V_Triple: row=(reg>>6)&1; length = 3; break; case V_Quad: row=(reg>>5)&2; length = 4; break; } u32 *rdu = (u32 *)rd; if (transpose) { const int base = mtx * 4 + col * 32; for (int i = 0; i < length; i++) rdu[i] = VI(base + ((row+i)&3)); } else { const int base = mtx * 4 + col; for (int i = 0; i < length; i++) rdu[i] = VI(base + ((row+i)&3)*32); } } void WriteVector(const float *rd, VectorSize size, int reg) { const int mtx = (reg>>2)&7; const int col = reg & 3; int row = 0; int length = 0; int transpose = (reg>>5)&1; switch (size) { case V_Single: transpose = 0; row=(reg>>5)&3; length = 1; break; case V_Pair: row=(reg>>5)&2; length = 2; break; case V_Triple: row=(reg>>6)&1; length = 3; break; case V_Quad: row=(reg>>5)&2; length = 4; break; } u32 *rdu = (u32 *)rd; if (currentMIPS->VfpuWriteMask() == 0) { if (transpose) { const int base = mtx * 4 + col * 32; for (int i = 0; i < length; i++) VI(base + ((row+i)&3)) = rdu[i]; } else { const int base = mtx * 4 + col; for (int i = 0; i < length; i++) VI(base + ((row+i)&3)*32) = rdu[i]; } } else { for (int i = 0; i < length; i++) { if (!currentMIPS->VfpuWriteMask(i)) { int index = mtx * 4; if (transpose) index += ((row+i)&3) + col*32; else index += col + ((row+i)&3)*32; VI(index) = rdu[i]; } } } } void ReadMatrix(float *rd, MatrixSize size, int reg) { int mtx = (reg >> 2) & 7; int col = reg & 3; int row = 0; int side = 0; switch (size) { case M_2x2: row = (reg>>5)&2; side = 2; break; case M_3x3: row = (reg>>6)&1; side = 3; break; case M_4x4: row = (reg>>5)&2; side = 4; break; } int transpose = (reg>>5) & 1; for (int i = 0; i < side; i++) { for (int j = 0; j < side; j++) { int index = mtx * 4; if (transpose) index += ((row+i)&3) + ((col+j)&3)*32; else index += ((col+j)&3) + ((row+i)&3)*32; rd[j*4 + i] = V(index); } } } void WriteMatrix(const float *rd, MatrixSize size, int reg) { int mtx = (reg>>2)&7; int col = reg&3; int row = 0; int side = 0; switch (size) { case M_2x2: row = (reg>>5)&2; side = 2; break; case M_3x3: row = (reg>>6)&1; side = 3; break; case M_4x4: row = (reg>>5)&2; side = 4; break; } int transpose = (reg>>5)&1; if (currentMIPS->VfpuWriteMask() != 0) { ERROR_LOG_REPORT(CPU, "Write mask used with vfpu matrix instruction."); } for (int i=0; iVfpuWriteMask(i)) { int index = mtx * 4; if (transpose) index += ((row+i)&3) + ((col+j)&3)*32; else index += ((col+j)&3) + ((row+i)&3)*32; V(index) = rd[j*4+i]; } } } } int GetNumVectorElements(VectorSize sz) { switch (sz) { case V_Single: return 1; case V_Pair: return 2; case V_Triple: return 3; case V_Quad: return 4; default: return 0; } } VectorSize GetHalfVectorSize(VectorSize sz) { switch (sz) { case V_Pair: return V_Single; case V_Quad: return V_Pair; default: return V_Single; } } VectorSize GetVecSize(MIPSOpcode op) { int a = (op>>7)&1; int b = (op>>15)&1; a += (b<<1); switch (a) { case 0: return V_Single; case 1: return V_Pair; case 2: return V_Triple; case 3: return V_Quad; default: return V_Quad; } } MatrixSize GetMtxSize(MIPSOpcode op) { int a = (op>>7)&1; int b = (op>>15)&1; a += (b<<1); switch (a) { case 0: ERROR_LOG_REPORT(CPU, "Unexpected matrix size 1x1."); return M_2x2; case 1: return M_2x2; case 2: return M_3x3; case 3: return M_4x4; default: return M_4x4; } } int GetMatrixSide(MatrixSize sz) { switch (sz) { case M_2x2: return 2; case M_3x3: return 3; case M_4x4: return 4; default: return 0; } } const char *GetVectorNotation(int reg, VectorSize size) { static char hej[4][16]; static int yo=0;yo++;yo&=3; int mtx = (reg>>2)&7; int col = reg&3; int row = 0; int transpose = (reg>>5)&1; char c; switch (size) { case V_Single: transpose=0; c='S'; row=(reg>>5)&3; break; case V_Pair: c='C'; row=(reg>>5)&2; break; case V_Triple: c='C'; row=(reg>>6)&1; break; case V_Quad: c='C'; row=(reg>>5)&2; break; default: c='?'; break; } if (transpose && c == 'C') c='R'; if (transpose) sprintf(hej[yo],"%c%i%i%i",c,mtx,row,col); else sprintf(hej[yo],"%c%i%i%i",c,mtx,col,row); return hej[yo]; } const char *GetMatrixNotation(int reg, MatrixSize size) { static char hej[4][16]; static int yo=0;yo++;yo&=3; int mtx = (reg>>2)&7; int col = reg&3; int row = 0; int transpose = (reg>>5)&1; char c; switch (size) { case M_2x2: c='M'; row=(reg>>5)&2; break; case M_3x3: c='M'; row=(reg>>6)&1; break; case M_4x4: c='M'; row=(reg>>5)&2; break; default: c='?'; break; } if (transpose && c=='M') c='E'; sprintf(hej[yo],"%c%i%i%i",c,mtx,col,row); return hej[yo]; } float Float16ToFloat32(unsigned short l) { union float2int { unsigned int i; float f; } float2int; unsigned short float16 = l; unsigned int sign = (float16 >> VFPU_SH_FLOAT16_SIGN) & VFPU_MASK_FLOAT16_SIGN; int exponent = (float16 >> VFPU_SH_FLOAT16_EXP) & VFPU_MASK_FLOAT16_EXP; unsigned int fraction = float16 & VFPU_MASK_FLOAT16_FRAC; float signf = (sign == 1) ? -1.0f : 1.0f; float f; if (exponent == VFPU_FLOAT16_EXP_MAX) { if (fraction == 0) f = std::numeric_limits::infinity(); //(*info->fprintf_func) (info->stream, "%cInf", signchar); else f = std::numeric_limits::quiet_NaN(); //(*info->fprintf_func) (info->stream, "%cNaN", signchar); } else if (exponent == 0 && fraction == 0) { f = 0.0f * signf; } else { if (exponent == 0) { do { fraction <<= 1; exponent--; } while (!(fraction & (VFPU_MASK_FLOAT16_FRAC + 1))); fraction &= VFPU_MASK_FLOAT16_FRAC; } /* Convert to 32-bit single-precision IEEE754. */ float2int.i = sign << 31; float2int.i |= (exponent + 112) << 23; float2int.i |= fraction << 13; f=float2int.f; } return f; }