// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #pragma once #include "Common/CommonTypes.h" #include "Common/Thunk.h" #include "Core/MIPS/x86/Asm.h" #if defined(ARM) #error DO NOT BUILD X86 JIT ON ARM #endif #include "Common/x64Emitter.h" #include "Core/MIPS/JitCommon/JitBlockCache.h" #include "Core/MIPS/JitCommon/JitState.h" #include "Core/MIPS/x86/JitSafeMem.h" #include "Core/MIPS/x86/RegCache.h" #include "Core/MIPS/x86/RegCacheFPU.h" class PointerWrap; namespace MIPSComp { // This is called when Jit hits a breakpoint. Returns 1 when hit. u32 JitBreakpoint(); struct JitOptions { JitOptions(); bool enableBlocklink; bool immBranches; bool continueBranches; bool continueJumps; int continueMaxInstructions; bool enableVFPUSIMD; }; // TODO: Hmm, humongous. struct RegCacheState { GPRRegCacheState gpr; FPURegCacheState fpr; }; class Jit : public Gen::XCodeBlock { public: Jit(MIPSState *mips); virtual ~Jit(); void DoState(PointerWrap &p); static void DoDummyState(PointerWrap &p); // Compiled ops should ignore delay slots // the compiler will take care of them by itself // OR NOT void Comp_Generic(MIPSOpcode op); void RunLoopUntil(u64 globalticks); void Compile(u32 em_address); // Compiles a block at current MIPS PC const u8 *DoJit(u32 em_address, JitBlock *b); bool DescribeCodePtr(const u8 *ptr, std::string &name); void Comp_RunBlock(MIPSOpcode op); void Comp_ReplacementFunc(MIPSOpcode op); // Ops void Comp_ITypeMem(MIPSOpcode op); void Comp_Cache(MIPSOpcode op); void Comp_RelBranch(MIPSOpcode op); void Comp_RelBranchRI(MIPSOpcode op); void Comp_FPUBranch(MIPSOpcode op); void Comp_FPULS(MIPSOpcode op); void Comp_FPUComp(MIPSOpcode op); void Comp_Jump(MIPSOpcode op); void Comp_JumpReg(MIPSOpcode op); void Comp_Syscall(MIPSOpcode op); void Comp_Break(MIPSOpcode op); void Comp_IType(MIPSOpcode op); void Comp_RType2(MIPSOpcode op); void Comp_RType3(MIPSOpcode op); void Comp_ShiftType(MIPSOpcode op); void Comp_Allegrex(MIPSOpcode op); void Comp_Allegrex2(MIPSOpcode op); void Comp_VBranch(MIPSOpcode op); void Comp_MulDivType(MIPSOpcode op); void Comp_Special3(MIPSOpcode op); void Comp_FPU3op(MIPSOpcode op); void Comp_FPU2op(MIPSOpcode op); void Comp_mxc1(MIPSOpcode op); void Comp_SV(MIPSOpcode op); void Comp_SVQ(MIPSOpcode op); void Comp_VPFX(MIPSOpcode op); void Comp_VVectorInit(MIPSOpcode op); void Comp_VMatrixInit(MIPSOpcode op); void Comp_VDot(MIPSOpcode op); void Comp_VecDo3(MIPSOpcode op); void Comp_VV2Op(MIPSOpcode op); void Comp_Mftv(MIPSOpcode op); void Comp_Vmfvc(MIPSOpcode op); void Comp_Vmtvc(MIPSOpcode op); void Comp_Vmmov(MIPSOpcode op); void Comp_VScl(MIPSOpcode op); void Comp_Vmmul(MIPSOpcode op); void Comp_Vmscl(MIPSOpcode op); void Comp_Vtfm(MIPSOpcode op); void Comp_VHdp(MIPSOpcode op); void Comp_VCrs(MIPSOpcode op); void Comp_VDet(MIPSOpcode op); void Comp_Vi2x(MIPSOpcode op); void Comp_Vx2i(MIPSOpcode op); void Comp_Vf2i(MIPSOpcode op); void Comp_Vi2f(MIPSOpcode op); void Comp_Vh2f(MIPSOpcode op); void Comp_Vcst(MIPSOpcode op); void Comp_Vhoriz(MIPSOpcode op); void Comp_VRot(MIPSOpcode op); void Comp_VIdt(MIPSOpcode op); void Comp_Vcmp(MIPSOpcode op); void Comp_Vcmov(MIPSOpcode op); void Comp_Viim(MIPSOpcode op); void Comp_Vfim(MIPSOpcode op); void Comp_VCrossQuat(MIPSOpcode op); void Comp_Vsgn(MIPSOpcode op); void Comp_Vocp(MIPSOpcode op); void Comp_ColorConv(MIPSOpcode op); void Comp_Vbfy(MIPSOpcode op); void Comp_DoNothing(MIPSOpcode op); int Replace_fabsf(); int Replace_dl_write_matrix(); void ApplyPrefixST(u8 *vregs, u32 prefix, VectorSize sz); void ApplyPrefixD(const u8 *vregs, VectorSize sz); void GetVectorRegsPrefixS(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixSFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); ApplyPrefixST(regs, js.prefixS, sz); } void GetVectorRegsPrefixT(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixTFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); ApplyPrefixST(regs, js.prefixT, sz); } void GetVectorRegsPrefixD(u8 *regs, VectorSize sz, int vectorReg); void EatPrefix() { js.EatPrefix(); } void RestoreRoundingMode(bool force = false, XEmitter *emitter = NULL); void ApplyRoundingMode(bool force = false, XEmitter *emitter = NULL); void UpdateRoundingMode(XEmitter *emitter = NULL); JitBlockCache *GetBlockCache() { return &blocks; } AsmRoutineManager &Asm() { return asm_; } void ClearCache(); void InvalidateCache(); inline void InvalidateCacheAt(u32 em_address, int length = 4) { if (blocks.RangeMayHaveEmuHacks(em_address, em_address + length)) { blocks.InvalidateICache(em_address, length); } } private: void GetStateAndFlushAll(RegCacheState &state); void RestoreState(const RegCacheState state); void FlushAll(); void FlushPrefixV(); void WriteDowncount(int offset = 0); bool ReplaceJalTo(u32 dest); // See CompileDelaySlotFlags for flags. void CompileDelaySlot(int flags, RegCacheState *state = NULL); void CompileDelaySlot(int flags, RegCacheState &state) { CompileDelaySlot(flags, &state); } void EatInstruction(MIPSOpcode op); void AddContinuedBlock(u32 dest); void WriteExit(u32 destination, int exit_num); void WriteExitDestInReg(X64Reg reg); void WriteExitDestInEAX() { WriteExitDestInReg(EAX); } // void WriteRfiExitDestInEAX(); void WriteSyscallExit(); bool CheckJitBreakpoint(u32 addr, int downcountOffset); // Utility compilation functions void BranchFPFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely); void BranchVFPUFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely); void BranchRSZeroComp(MIPSOpcode op, Gen::CCFlags cc, bool andLink, bool likely); void BranchRSRTComp(MIPSOpcode op, Gen::CCFlags cc, bool likely); void BranchLog(MIPSOpcode op); void BranchLogExit(MIPSOpcode op, u32 dest, bool useEAX); // Utilities to reduce duplicated code void CompImmLogic(MIPSOpcode op, void (XEmitter::*arith)(int, const OpArg &, const OpArg &)); void CompTriArith(MIPSOpcode op, void (XEmitter::*arith)(int, const OpArg &, const OpArg &), u32 (*doImm)(const u32, const u32), bool invertResult = false); void CompShiftImm(MIPSOpcode op, void (XEmitter::*shift)(int, OpArg, OpArg), u32 (*doImm)(const u32, const u32)); void CompShiftVar(MIPSOpcode op, void (XEmitter::*shift)(int, OpArg, OpArg), u32 (*doImm)(const u32, const u32)); void CompITypeMemRead(MIPSOpcode op, u32 bits, void (XEmitter::*mov)(int, int, X64Reg, OpArg), const void *safeFunc); template void CompITypeMemRead(MIPSOpcode op, u32 bits, void (XEmitter::*mov)(int, int, X64Reg, OpArg), T (*safeFunc)(u32 addr)) { CompITypeMemRead(op, bits, mov, (const void *)safeFunc); } void CompITypeMemWrite(MIPSOpcode op, u32 bits, const void *safeFunc); template void CompITypeMemWrite(MIPSOpcode op, u32 bits, void (*safeFunc)(T val, u32 addr)) { CompITypeMemWrite(op, bits, (const void *)safeFunc); } void CompITypeMemUnpairedLR(MIPSOpcode op, bool isStore); void CompITypeMemUnpairedLRInner(MIPSOpcode op, X64Reg shiftReg); void CompBranchExits(CCFlags cc, u32 targetAddr, u32 notTakenAddr, bool delaySlotIsNice, bool likely, bool andLink); void CompBranchExit(bool taken, u32 targetAddr, u32 notTakenAddr, bool delaySlotIsNice, bool likely, bool andLink); static CCFlags FlipCCFlag(CCFlags flag); static CCFlags SwapCCFlag(CCFlags flag); void CompFPTriArith(MIPSOpcode op, void (XEmitter::*arith)(X64Reg reg, OpArg), bool orderMatters); void CompFPComp(int lhs, int rhs, u8 compare, bool allowNaN = false); void CompVrotShuffle(u8 *dregs, int imm, int n, bool negSin); void CallProtectedFunction(const void *func, const OpArg &arg1); void CallProtectedFunction(const void *func, const OpArg &arg1, const OpArg &arg2); void CallProtectedFunction(const void *func, const u32 arg1, const u32 arg2, const u32 arg3); void CallProtectedFunction(const void *func, const OpArg &arg1, const u32 arg2, const u32 arg3); template void CallProtectedFunction(Tr (*func)(T1), const OpArg &arg1) { CallProtectedFunction((const void *)func, arg1); } template void CallProtectedFunction(Tr (*func)(T1, T2), const OpArg &arg1, const OpArg &arg2) { CallProtectedFunction((const void *)func, arg1, arg2); } template void CallProtectedFunction(Tr (*func)(T1, T2, T3), const u32 arg1, const u32 arg2, const u32 arg3) { CallProtectedFunction((const void *)func, arg1, arg2, arg3); } template void CallProtectedFunction(Tr (*func)(T1, T2, T3), const OpArg &arg1, const u32 arg2, const u32 arg3) { CallProtectedFunction((const void *)func, arg1, arg2, arg3); } bool PredictTakeBranch(u32 targetAddr, bool likely); bool CanContinueBranch(u32 targetAddr) { if (!jo.continueBranches || js.numInstructions >= jo.continueMaxInstructions) { return false; } // Need at least 2 exits left over. if (js.nextExit >= MAX_JIT_BLOCK_EXITS - 2) { return false; } // Sometimes we predict wrong and get into impossible conditions where games have jumps to 0. if (!targetAddr) { return false; } return true; } bool CanContinueJump(u32 targetAddr) { if (!jo.continueJumps || js.numInstructions >= jo.continueMaxInstructions) { return false; } if (!targetAddr) { return false; } return true; } bool CanContinueImmBranch(u32 targetAddr) { if (!jo.immBranches || js.numInstructions >= jo.continueMaxInstructions) { return false; } return true; } JitBlockCache blocks; JitOptions jo; JitState js; GPRRegCache gpr; FPURegCache fpr; AsmRoutineManager asm_; ThunkManager thunks; JitSafeMemFuncs safeMemFuncs; MIPSState *mips_; friend class JitSafeMem; friend class JitSafeMemFuncs; }; typedef void (Jit::*MIPSCompileFunc)(MIPSOpcode opcode); typedef int (Jit::*MIPSReplaceFunc)(); } // namespace MIPSComp