// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #if defined(_WIN32) && defined(_DEBUG) #include "Common/CommonWindows.h" #endif #include "base/stringutil.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "Core/Config.h" #include "GPU/Directx9/VertexShaderGeneratorDX9.h" #include "GPU/Common/VertexDecoderCommon.h" #undef WRITE #define WRITE p+=sprintf namespace DX9 { static const char * const boneWeightAttrDecl[9] = { "#ERROR#", "float a_w1:TEXCOORD1;\n", "float2 a_w1:TEXCOORD1;\n", "float3 a_w1:TEXCOORD1;\n", "float4 a_w1:TEXCOORD1;\n", "float4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float2 a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float3 a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float4 a_w2:TEXCOORD2;\n", }; enum DoLightComputation { LIGHT_OFF, LIGHT_SHADE, LIGHT_FULL, }; void GenerateVertexShaderDX9(const ShaderID &id, char *buffer) { char *p = buffer; const u32 vertType = gstate.vertType; bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE) && !isModeThrough; // TODO: Different expression than in shaderIDgen bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); bool doTextureProjection = id.Bit(VS_BIT_DO_TEXTURE_PROJ); GETexMapMode uvGenMode = static_cast(id.Bits(VS_BIT_UVGEN_MODE, 2)); // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE); bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool enableFog = id.Bit(VS_BIT_ENABLE_FOG); bool throughmode = id.Bit(VS_BIT_IS_THROUGH); bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES); bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); bool prescale = g_Config.bPrescaleUV && !throughmode && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); } int texFmtScale = id.Bits(VS_BIT_TEXCOORD_FMTSCALE, 2); WRITE(p, "#pragma warning( disable : 3571 )\n"); if (isModeThrough) { WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH); } else { WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ); // Add all the uniforms we'll need to transform properly. } if (enableFog) { WRITE(p, "float2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF); } if (useHWTransform || !hasColor) WRITE(p, "float4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "float4x3 u_world : register(c%i);\n", CONST_VS_WORLD); WRITE(p, "float4x3 u_view : register(c%i);\n", CONST_VS_VIEW); if (doTextureProjection) WRITE(p, "float4x3 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX); if (enableBones) { #ifdef USE_BONE_ARRAY WRITE(p, "float4x3 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0); #else for (int i = 0; i < numBoneWeights; i++) { WRITE(p, "float4x3 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3); } #endif } if (doTexture) { WRITE(p, "float4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET); } for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "float3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i); } if (doLight[i] == LIGHT_FULL) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "float3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "float3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i); WRITE(p, "float u_lightangle%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE + i); WRITE(p, "float u_lightspotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTSPOTCOEF + i); } WRITE(p, "float3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i); WRITE(p, "float3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i); if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) { WRITE(p, "float3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i); } } } if (enableLighting) { WRITE(p, "float4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT); if ((gstate.materialupdate & 2) == 0 || !hasColor) WRITE(p, "float3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE); // if ((gstate.materialupdate & 4) == 0) WRITE(p, "float4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha WRITE(p, "float3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE); } } if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, "float4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE); } // And the "varyings". if (useHWTransform) { WRITE(p, "struct VS_IN { \n"); if (enableBones) { WRITE(p, "%s", boneWeightAttrDecl[numBoneWeights]); } if (doTexture && hasTexcoord) { WRITE(p, " float2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " float4 color0 : COLOR0;\n"); } if (hasNormal) { WRITE(p, " float3 normal : NORMAL;\n"); } WRITE(p, " float3 position : POSITION;\n"); WRITE(p, "};\n"); } else { WRITE(p, "struct VS_IN {\n"); WRITE(p, " float4 position : POSITION;\n"); if (doTexture && hasTexcoord) { if (doTextureProjection && !throughmode) WRITE(p, " float3 texcoord : TEXCOORD0;\n"); else WRITE(p, " float2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " float4 color0 : COLOR0;\n"); } // only software transform supplies color1 as vertex data if (lmode) { WRITE(p, " float4 color1 : COLOR1;\n"); } WRITE(p, "};\n"); } WRITE(p, "struct VS_OUT {\n"); WRITE(p, " float4 gl_Position : POSITION;\n"); if (doTexture) { if (doTextureProjection) WRITE(p, " float3 v_texcoord: TEXCOORD0;\n"); else WRITE(p, " float2 v_texcoord: TEXCOORD0;\n"); } WRITE(p, " float4 v_color0 : COLOR0;\n"); if (lmode) WRITE(p, " float3 v_color1 : COLOR1;\n"); if (enableFog) { WRITE(p, " float2 v_fogdepth: TEXCOORD1;\n"); } WRITE(p, "};\n"); // Confirmed: Through mode gets through exactly the same in GL and D3D in Phantasy Star: Text is 38023.0 in the test scene. if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. // The Z range in D3D is different but we compensate for that using parameters. WRITE(p, "\nfloat4 depthRoundZVP(float4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = (z * u_depthRange.x + u_depthRange.y);\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - u_depthRange.z) * u_depthRange.w;\n"); WRITE(p, " return float4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } WRITE(p, "VS_OUT main(VS_IN In) {\n"); WRITE(p, " VS_OUT Out = (VS_OUT)0; \n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (doTextureProjection) { if (throughmode) { WRITE(p, " Out.v_texcoord = float3(In.texcoord.x, In.texcoord.y, 1.0);\n"); } else { WRITE(p, " Out.v_texcoord = In.texcoord;\n"); } } else { WRITE(p, " Out.v_texcoord = In.texcoord.xy;\n"); } } if (hasColor) { WRITE(p, " Out.v_color0 = In.color0;\n"); if (lmode) WRITE(p, " Out.v_color1 = In.color1.rgb;\n"); } else { WRITE(p, " Out.v_color0 = In.u_matambientalpha;\n"); if (lmode) WRITE(p, " Out.v_color1 = float3(0.0);\n"); } if (enableFog) { WRITE(p, " Out.v_fogdepth.x = In.position.w;\n"); } if (gstate.isModeThrough()) { WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj_through);\n"); } else { if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " Out.gl_Position = depthRoundZVP(mul(float4(In.position.xyz, 1.0), u_proj));\n"); } else { WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj);\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { // No skinning, just standard T&L. WRITE(p, " float3 worldpos = mul(float4(In.position.xyz, 1.0), u_world);\n"); if (hasNormal) WRITE(p, " float3 worldnormal = normalize( mul(float4(%sIn.normal, 0.0), u_world));\n", flipNormal ? "-" : ""); else WRITE(p, " float3 worldnormal = float3(0.0, 0.0, 1.0);\n"); } else { static const char * const boneWeightAttr[8] = { "a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w", "a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w", }; #if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY) // To loop through the weights, we unfortunately need to put them in a float array. // GLSL ES sucks - no way to directly initialize an array! switch (numBoneWeights) { case 1: WRITE(p, " float w[1]; w[0] = a_w1;\n"); break; case 2: WRITE(p, " float w[2]; w[0] = a_w1.x; w[1] = a_w1.y;\n"); break; case 3: WRITE(p, " float w[3]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z;\n"); break; case 4: WRITE(p, " float w[4]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w;\n"); break; case 5: WRITE(p, " float w[5]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2;\n"); break; case 6: WRITE(p, " float w[6]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y;\n"); break; case 7: WRITE(p, " float w[7]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z;\n"); break; case 8: WRITE(p, " float w[8]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z; w[7] = a_w2.w;\n"); break; } WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n"); if (numBoneWeights > 1) { WRITE(p, " for (int i = 1; i < %i; i++) {\n", numBoneWeights); WRITE(p, " skinMatrix += w[i] * u_bone[i];\n"); WRITE(p, " }\n"); } #else #ifdef USE_BONE_ARRAY if (numBoneWeights == 1) WRITE(p, " float4x3 skinMatrix = a_w1 * u_bone[0]"); else WRITE(p, " float4x3 skinMatrix = a_w1.x * u_bone[0]"); for (int i = 1; i < numBoneWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1"; if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + %s * u_bone[%i]", weightAttr, i); } #else // Uncomment this to screw up bone shaders to check the vertex shader software fallback // WRITE(p, "THIS SHOULD ERROR! #error"); if (numBoneWeights == 1) WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)"); else WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)"); for (int i = 1; i < numBoneWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1"; if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i); } #endif #endif WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " float3 skinnedpos = mul(float4(In.position.xyz, 1.0), skinMatrix);\n"); WRITE(p, " float3 worldpos = mul(float4(skinnedpos, 1.0), u_world);\n"); if (hasNormal) { WRITE(p, " float3 skinnednormal = mul(float4(%sIn.normal, 0.0), skinMatrix);\n", flipNormal ? "-" : ""); } else { WRITE(p, " float3 skinnednormal = mul(float4(0.0, 0.0, %s1.0, 0.0), skinMatrix);\n", flipNormal ? "-" : ""); } WRITE(p, " float3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world));\n"); } WRITE(p, " float4 viewPos = float4(mul(float4(worldpos, 1.0), u_view), 1.0);\n"); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " Out.gl_Position = depthRoundZVP(mul(viewPos, u_proj));\n"); } else { WRITE(p, " Out.gl_Position = mul(viewPos, u_proj);\n"); } // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "In.color0" : "u_matambientalpha"; const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "In.color0.rgb" : "u_matdiffuse"; const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "In.color0.rgb" : "u_matspecular.rgb"; bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (enableLighting) { WRITE(p, " float4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " float3 lightSum1 = 0;\n"); } if (!diffuseIsZero) { WRITE(p, " float3 toLight;\n"); WRITE(p, " float3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = u_lightpos%i;\n", i); } else { WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = comp != GE_LIGHTCOMP_ONLYDIFFUSE; bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE; if (poweredDiffuse) { WRITE(p, " float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i); // TODO: Somehow the NaN check from GLES seems unnecessary here? // If it returned 0, it'd be wrong, so that's strange. } else { WRITE(p, " float dot%i = dot(toLight, worldnormal);\n", i); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i); WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + float3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n"); } else { WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { WRITE(p, " Out.v_color0 = In.color0;\n"); } else { WRITE(p, " Out.v_color0 = u_matambientalpha;\n"); } if (lmode) WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n"); } // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (prescale) { if (hasTexcoord) { WRITE(p, " Out.v_texcoord = In.texcoord * u_uvscaleoffset.xy;\n"); } else { WRITE(p, " Out.v_texcoord = float2(0.0, 0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " Out.v_texcoord = In.texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n"); } else { WRITE(p, " Out.v_texcoord = u_uvscaleoffset.zw;\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "float4(In.position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { if (hasTexcoord) { temp_tc = StringFromFormat("float4(In.texcoord.xy, 0.0, 1.0)"); } else { temp_tc = "float4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "float4(normalize(-In.normal), 1.0)" : "float4(normalize(In.normal), 1.0)"; else temp_tc = "float4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "float4(-In.normal, 1.0)" : "float4(In.normal, 1.0)"; else temp_tc = "float4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " Out.v_texcoord.xyz = mul(%s,u_texmtx) * float3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " Out.v_texcoord.xy = u_uvscaleoffset.xy * float2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 + dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1()); break; default: // ILLEGAL break; } } // Compute fogdepth if (enableFog) WRITE(p, " Out.v_fogdepth.x = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n"); } WRITE(p, " return Out;\n"); WRITE(p, "}\n"); } };