// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #ifndef _POINTERWRAP_H_ #define _POINTERWRAP_H_ // Extremely simple serialization framework. // (mis)-features: // + Super fast // + Very simple // + Same code is used for serialization and deserializaition (in most cases) // - Zero backwards/forwards compatibility // - Serialization code for anything complex has to be manually written. #include #include #include #include #include #include #ifndef __SYMBIAN32__ #if defined(IOS) || defined(MACGNUSTD) #include #else #include #endif #endif #include "Common.h" #include "FileUtil.h" #include "../ext/snappy/snappy-c.h" #if defined(IOS) || defined(MACGNUSTD) namespace std { using tr1::is_pointer; } #endif #ifdef __SYMBIAN32__ namespace std { template struct bool_constant { typedef bool_constant type; static const bool value = bool_value; }; template const bool bool_constant::value; template struct is_pointer : public bool_constant {}; template struct is_pointer : public bool_constant {}; } #endif template struct LinkedListItem : public T { LinkedListItem *next; }; // Wrapper class class PointerWrap { // This makes it a compile error if you forget to define DoState() on non-POD. // Which also can be a problem, for example struct tm is non-POD on linux, for whatever reason... #ifdef _MSC_VER template::value, bool isPointer = std::is_pointer::value> #else template::value> #endif struct DoHelper { static void DoArray(PointerWrap *p, T *x, int count) { for (int i = 0; i < count; ++i) p->Do(x[i]); } static void Do(PointerWrap *p, T &x) { p->DoClass(x); } }; template struct DoHelper { static void DoArray(PointerWrap *p, T *x, int count) { p->DoVoid((void *)x, sizeof(T) * count); } static void Do(PointerWrap *p, T &x) { p->DoVoid((void *)&x, sizeof(x)); } }; public: enum Mode { MODE_READ = 1, // load MODE_WRITE, // save MODE_MEASURE, // calculate size MODE_VERIFY, // compare }; enum Error { ERROR_NONE = 0, ERROR_WARNING = 1, ERROR_FAILURE = 2, }; u8 **ptr; Mode mode; Error error; public: PointerWrap(u8 **ptr_, Mode mode_) : ptr(ptr_), mode(mode_), error(ERROR_NONE) {} PointerWrap(unsigned char **ptr_, int mode_) : ptr((u8**)ptr_), mode((Mode)mode_), error(ERROR_NONE) {} void SetMode(Mode mode_) {mode = mode_;} Mode GetMode() const {return mode;} u8 **GetPPtr() {return ptr;} void SetError(Error error_) { if (error < error_) error = error_; if (error > ERROR_WARNING) mode = PointerWrap::MODE_MEASURE; } void DoVoid(void *data, int size) { switch (mode) { case MODE_READ: memcpy(data, *ptr, size); break; case MODE_WRITE: memcpy(*ptr, data, size); break; case MODE_MEASURE: break; // MODE_MEASURE - don't need to do anything case MODE_VERIFY: for(int i = 0; i < size; i++) _dbg_assert_msg_(COMMON, ((u8*)data)[i] == (*ptr)[i], "Savestate verification failure: %d (0x%X) (at %p) != %d (0x%X) (at %p).\n", ((u8*)data)[i], ((u8*)data)[i], &((u8*)data)[i], (*ptr)[i], (*ptr)[i], &(*ptr)[i]); break; default: break; // throw an error? } (*ptr) += size; } template void Do(std::map &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMap(x, dv); } template void Do(std::map &x) { T dv; DoMap(x, dv); } template void DoMap(std::map &x, T &default_val) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number > 0) { K first = 0; Do(first); T second = default_val; Do(second); x[first] = second; --number; } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename std::map::iterator itr = x.begin(); while (number > 0) { Do(itr->first); Do(itr->second); --number; ++itr; } } break; } } template void Do(std::multimap &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMultimap(x, dv); } template void Do(std::multimap &x) { T dv; DoMultimap(x, dv); } template void DoMultimap(std::multimap &x, T &default_val) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number > 0) { K first; Do(first); T second = default_val; Do(second); x.insert(std::make_pair(first, second)); --number; } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename std::multimap::iterator itr = x.begin(); while (number > 0) { Do(itr->first); Do(itr->second); --number; ++itr; } } break; } } // Store vectors. template void Do(std::vector &x) { T *dv = NULL; DoVector(x, dv); } template void Do(std::vector &x) { T dv; DoVector(x, dv); } template void DoPOD(std::vector &x) { T dv; DoVectorPOD(x, dv); } template void Do(std::vector &x, T &default_val) { DoVector(x, default_val); } template void DoVector(std::vector &x, T &default_val) { u32 vec_size = (u32)x.size(); Do(vec_size); x.resize(vec_size, default_val); if (vec_size > 0) DoArray(&x[0], vec_size); } template void DoVectorPOD(std::vector &x, T &default_val) { u32 vec_size = (u32)x.size(); Do(vec_size); x.resize(vec_size, default_val); if (vec_size > 0) DoArray(&x[0], vec_size); } // Store deques. template void Do(std::deque &x) { T *dv = NULL; DoDeque(x, dv); } template void Do(std::deque &x) { T dv; DoDeque(x, dv); } template void DoDeque(std::deque &x, T &default_val) { u32 deq_size = (u32)x.size(); Do(deq_size); x.resize(deq_size, default_val); u32 i; for(i = 0; i < deq_size; i++) Do(x[i]); } // Store STL lists. template void Do(std::list &x) { T *dv = NULL; Do(x, dv); } template void Do(std::list &x) { T dv; DoList(x, dv); } template void Do(std::list &x, T &default_val) { DoList(x, default_val); } template void DoList(std::list &x, T &default_val) { u32 list_size = (u32)x.size(); Do(list_size); x.resize(list_size, default_val); typename std::list::iterator itr, end; for (itr = x.begin(), end = x.end(); itr != end; ++itr) Do(*itr); } // Store STL sets. template void Do(std::set &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (*it != NULL) delete *it; } } DoSet(x); } template void Do(std::set &x) { DoSet(x); } template void DoSet(std::set &x) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number-- > 0) { T it; Do(it); x.insert(it); } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename std::set::iterator itr = x.begin(); while (number-- > 0) Do(*itr++); } break; default: ERROR_LOG(COMMON, "Savestate error: invalid mode %d.", mode); } } // Store strings. void Do(std::string &x) { int stringLen = (int)x.length() + 1; Do(stringLen); switch (mode) { case MODE_READ: x = (char*)*ptr; break; case MODE_WRITE: memcpy(*ptr, x.c_str(), stringLen); break; case MODE_MEASURE: break; case MODE_VERIFY: _dbg_assert_msg_(COMMON, !strcmp(x.c_str(), (char*)*ptr), "Savestate verification failure: \"%s\" != \"%s\" (at %p).\n", x.c_str(), (char*)*ptr, ptr); break; } (*ptr) += stringLen; } void Do(std::wstring &x) { int stringLen = sizeof(wchar_t)*((int)x.length() + 1); Do(stringLen); switch (mode) { case MODE_READ: x = (wchar_t*)*ptr; break; case MODE_WRITE: memcpy(*ptr, x.c_str(), stringLen); break; case MODE_MEASURE: break; case MODE_VERIFY: _dbg_assert_msg_(COMMON, x == (wchar_t*)*ptr, "Savestate verification failure: \"%ls\" != \"%ls\" (at %p).\n", x.c_str(), (wchar_t*)*ptr, ptr); break; } (*ptr) += stringLen; } template void DoClass(T &x) { x.DoState(*this); } template void DoClass(T *&x) { if (mode == MODE_READ) { if (x != NULL) delete x; x = new T(); } x->DoState(*this); } template void DoArray(T *x, int count) { DoHelper::DoArray(this, x, count); } template void Do(T &x) { DoHelper::Do(this, x); } template void DoPOD(T &x) { DoHelper::Do(this, x); } template void DoPointer(T* &x, T*const base) { // pointers can be more than 2^31 apart, but you're using this function wrong if you need that much range s32 offset = x - base; Do(offset); if (mode == MODE_READ) x = base + offset; } template* (*TNew)(), void (*TFree)(LinkedListItem*), void (*TDo)(PointerWrap&, T*)> void DoLinkedList(LinkedListItem*& list_start, LinkedListItem** list_end=0) { LinkedListItem* list_cur = list_start; LinkedListItem* prev = 0; while (true) { u8 shouldExist = (list_cur ? 1 : 0); Do(shouldExist); if (shouldExist == 1) { LinkedListItem* cur = list_cur ? list_cur : TNew(); TDo(*this, (T*)cur); if (!list_cur) { if (mode == MODE_READ) { cur->next = 0; list_cur = cur; if (prev) prev->next = cur; else list_start = cur; } else { TFree(cur); continue; } } } else { if (mode == MODE_READ) { if (prev) prev->next = 0; if (list_end) *list_end = prev; if (list_cur) { if (list_start == list_cur) list_start = 0; do { LinkedListItem* next = list_cur->next; TFree(list_cur); list_cur = next; } while (list_cur); } } break; } prev = list_cur; list_cur = list_cur->next; } } void DoMarker(const char* prevName, u32 arbitraryNumber=0x42) { u32 cookie = arbitraryNumber; Do(cookie); if(mode == PointerWrap::MODE_READ && cookie != arbitraryNumber) { PanicAlertT("Error: After \"%s\", found %d (0x%X) instead of save marker %d (0x%X). Aborting savestate load...", prevName, cookie, cookie, arbitraryNumber, arbitraryNumber); SetError(ERROR_FAILURE); } } }; class CChunkFileReader { public: // Load file template template static bool Load(const std::string& _rFilename, int _Revision, T& _class, std::string* _failureReason) { INFO_LOG(COMMON, "ChunkReader: Loading %s" , _rFilename.c_str()); _failureReason->clear(); _failureReason->append("LoadStateWrongVersion"); if (!File::Exists(_rFilename)) { _failureReason->clear(); _failureReason->append("LoadStateDoesntExist"); ERROR_LOG(COMMON, "ChunkReader: File doesn't exist"); return false; } // Check file size const u64 fileSize = File::GetSize(_rFilename); static const u64 headerSize = sizeof(SChunkHeader); if (fileSize < headerSize) { ERROR_LOG(COMMON,"ChunkReader: File too small"); return false; } File::IOFile pFile(_rFilename, "rb"); if (!pFile) { ERROR_LOG(COMMON,"ChunkReader: Can't open file for reading"); return false; } // read the header SChunkHeader header; if (!pFile.ReadArray(&header, 1)) { ERROR_LOG(COMMON,"ChunkReader: Bad header size"); return false; } // Check revision if (header.Revision != _Revision) { ERROR_LOG(COMMON,"ChunkReader: Wrong file revision, got %d expected %d", header.Revision, _Revision); return false; } // get size const int sz = (int)(fileSize - headerSize); if (header.ExpectedSize != sz) { ERROR_LOG(COMMON,"ChunkReader: Bad file size, got %d expected %d", sz, header.ExpectedSize); return false; } // read the state u8* buffer = new u8[sz]; if (!pFile.ReadBytes(buffer, sz)) { ERROR_LOG(COMMON,"ChunkReader: Error reading file"); return false; } u8 *ptr = buffer; u8 *buf = buffer; if (header.Compress) { u8 *uncomp_buffer = new u8[header.UncompressedSize]; size_t uncomp_size = header.UncompressedSize; snappy_uncompress((const char *)buffer, sz, (char *)uncomp_buffer, &uncomp_size); if ((int)uncomp_size != header.UncompressedSize) { ERROR_LOG(COMMON,"Size mismatch: file: %i calc: %i", (int)header.UncompressedSize, (int)uncomp_size); } ptr = uncomp_buffer; buf = uncomp_buffer; delete [] buffer; } PointerWrap p(&ptr, PointerWrap::MODE_READ); _class.DoState(p); delete[] buf; INFO_LOG(COMMON, "ChunkReader: Done loading %s" , _rFilename.c_str()); return p.error != p.ERROR_FAILURE; } // Save file template template static bool Save(const std::string& _rFilename, int _Revision, T& _class) { INFO_LOG(COMMON, "ChunkReader: Writing %s" , _rFilename.c_str()); File::IOFile pFile(_rFilename, "wb"); if (!pFile) { ERROR_LOG(COMMON,"ChunkReader: Error opening file for write"); return false; } bool compress = true; // Get data u8 *ptr = 0; PointerWrap p(&ptr, PointerWrap::MODE_MEASURE); _class.DoState(p); size_t const sz = (size_t)ptr; u8 * buffer = new u8[sz]; ptr = &buffer[0]; p.SetMode(PointerWrap::MODE_WRITE); _class.DoState(p); // Create header SChunkHeader header; header.Compress = compress ? 1 : 0; header.Revision = _Revision; header.ExpectedSize = (int)sz; header.UncompressedSize = (int)sz; // Write to file if (compress) { size_t comp_len = snappy_max_compressed_length(sz); u8 *compressed_buffer = new u8[comp_len]; snappy_compress((const char *)buffer, sz, (char *)compressed_buffer, &comp_len); delete [] buffer; header.ExpectedSize = (int)comp_len; if (!pFile.WriteArray(&header, 1)) { ERROR_LOG(COMMON,"ChunkReader: Failed writing header"); return false; } if (!pFile.WriteBytes(&compressed_buffer[0], comp_len)) { ERROR_LOG(COMMON,"ChunkReader: Failed writing compressed data"); return false; } else { INFO_LOG(COMMON, "Savestate: Compressed %i bytes into %i", (int)sz, (int)comp_len); } delete [] compressed_buffer; } else { if (!pFile.WriteArray(&header, 1)) { ERROR_LOG(COMMON,"ChunkReader: Failed writing header"); return false; } if (!pFile.WriteBytes(&buffer[0], sz)) { ERROR_LOG(COMMON,"ChunkReader: Failed writing data"); return false; } delete [] buffer; } INFO_LOG(COMMON,"ChunkReader: Done writing %s", _rFilename.c_str()); return p.error != p.ERROR_FAILURE; } template static bool Verify(T& _class) { u8 *ptr = 0; // Step 1: Measure the space required. PointerWrap p(&ptr, PointerWrap::MODE_MEASURE); _class.DoState(p); size_t const sz = (size_t)ptr; std::vector buffer(sz); // Step 2: Dump the state. ptr = &buffer[0]; p.SetMode(PointerWrap::MODE_WRITE); _class.DoState(p); // Step 3: Verify the state. ptr = &buffer[0]; p.SetMode(PointerWrap::MODE_VERIFY); _class.DoState(p); return true; } private: struct SChunkHeader { int Revision; int Compress; int ExpectedSize; int UncompressedSize; }; }; #endif // _POINTERWRAP_H_