// Copyright (c) 2016- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // Additionally, Common/Vulkan/* , including this file, are also licensed // under the public domain. #include "Common/Vulkan/VulkanMemory.h" VulkanPushBuffer::VulkanPushBuffer(VulkanContext *vulkan, size_t size) : device_(vulkan->GetDevice()), buf_(0), offset_(0), size_(size), writePtr_(nullptr) { vulkan->MemoryTypeFromProperties(0xFFFFFFFF, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &memoryTypeIndex_); bool res = AddBuffer(); assert(res); } bool VulkanPushBuffer::AddBuffer() { BufInfo info; VkBufferCreateInfo b = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; b.size = size_; b.flags = 0; b.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT; b.sharingMode = VK_SHARING_MODE_EXCLUSIVE; b.queueFamilyIndexCount = 0; b.pQueueFamilyIndices = nullptr; VkResult res = vkCreateBuffer(device_, &b, nullptr, &info.buffer); if (VK_SUCCESS != res) { return false; } // Okay, that's the buffer. Now let's allocate some memory for it. VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; alloc.memoryTypeIndex = memoryTypeIndex_; alloc.allocationSize = size_; res = vkAllocateMemory(device_, &alloc, nullptr, &info.deviceMemory); if (VK_SUCCESS != res) { return false; } res = vkBindBufferMemory(device_, info.buffer, info.deviceMemory, 0); if (VK_SUCCESS != res) { return false; } buf_ = buffers_.size(); buffers_.resize(buf_ + 1); buffers_[buf_] = info; return true; } void VulkanPushBuffer::NextBuffer(size_t minSize) { // First, unmap the current memory. Unmap(); buf_++; if (buf_ >= buffers_.size() || minSize > size_) { // Before creating the buffer, adjust to the new size_ if necessary. while (size_ < minSize) { size_ <<= 1; } bool res = AddBuffer(); assert(res); if (!res) { // Let's try not to crash at least? buf_ = 0; } } // Now, move to the next buffer and map it. offset_ = 0; Map(); } void VulkanPushBuffer::Defragment(VulkanContext *vulkan) { if (buffers_.size() <= 1) { return; } // Okay, we have more than one. Destroy them all and start over with a larger one. size_t newSize = size_ * buffers_.size(); Destroy(vulkan); size_ = newSize; bool res = AddBuffer(); assert(res); } VulkanDeviceAllocator::VulkanDeviceAllocator(VulkanContext *vulkan, size_t minSlabSize, size_t maxSlabSize) : vulkan_(vulkan), minSlabSize_(minSlabSize), maxSlabSize_(maxSlabSize), memoryTypeIndex_(UNDEFINED_MEMORY_TYPE) { assert((minSlabSize_ & (SLAB_GRAIN_SIZE - 1)) == 0); } VulkanDeviceAllocator::~VulkanDeviceAllocator() { assert(slabs_.empty()); } void VulkanDeviceAllocator::Destroy() { for (Slab &slab : slabs_) { // Did anyone forget to free? assert(slab.allocSizes.empty()); vulkan_->Delete().QueueDeleteDeviceMemory(slab.deviceMemory); } slabs_.clear(); } size_t VulkanDeviceAllocator::Allocate(const VkMemoryRequirements &reqs, VkDeviceMemory *deviceMemory) { uint32_t memoryTypeIndex; bool pass = vulkan_->MemoryTypeFromProperties(reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memoryTypeIndex); assert(pass); if (!pass) { return ALLOCATE_FAILED; } if (memoryTypeIndex_ == UNDEFINED_MEMORY_TYPE) { memoryTypeIndex_ = memoryTypeIndex; } else if (memoryTypeIndex_ != memoryTypeIndex) { assert(memoryTypeIndex_ == memoryTypeIndex); return ALLOCATE_FAILED; } size_t align = reqs.alignment <= SLAB_GRAIN_SIZE ? 1 : (reqs.alignment >> SLAB_GRAIN_SHIFT); size_t blocks = (reqs.size + SLAB_GRAIN_SIZE - 1) >> SLAB_GRAIN_SHIFT; for (Slab &slab : slabs_) { size_t start = slab.nextFree; while (start < slab.usage.size()) { start = (start + align - 1) & ~(align - 1); if (AllocateFromSlab(slab, start, blocks)) { // Allocated? Great, let's return right away. *deviceMemory = slab.deviceMemory; return start << SLAB_GRAIN_SHIFT; } } } // Okay, we couldn't fit it into any existing slabs. We need a new one. if (!AllocateSlab(reqs.size)) { return ALLOCATE_FAILED; } // Guaranteed to be the last one, unless it failed to allocate. Slab &slab = slabs_[slabs_.size() - 1]; size_t start = 0; if (AllocateFromSlab(slab, start, blocks)) { *deviceMemory = slab.deviceMemory; return start << SLAB_GRAIN_SHIFT; } // Somehow... we're out of space. Darn. return ALLOCATE_FAILED; } bool VulkanDeviceAllocator::AllocateFromSlab(Slab &slab, size_t &start, size_t blocks) { bool matched = true; for (size_t i = 0; i < blocks; ++i) { if (slab.usage[start + i]) { // If we just ran into one, there's probably an allocation size. auto it = slab.allocSizes.find(start + i); if (it != slab.allocSizes.end()) { start += i + it->second; } else { // We don't know how big it is, so just skip to the next one. start += i + 1; } return false; } } // Okay, this run is good. Actually mark it. for (size_t i = 0; i < blocks; ++i) { slab.usage[start + i] = 1; } slab.nextFree = start + blocks; if (slab.nextFree >= slab.usage.size()) { slab.nextFree = 0; } // Remember the size so we can free. slab.allocSizes[start] = blocks; return true; } void VulkanDeviceAllocator::Free(VkDeviceMemory deviceMemory, size_t offset) { // First, let's validate. This will allow stack traces to tell us when frees are bad. size_t start = offset >> SLAB_GRAIN_SHIFT; bool found = false; for (Slab &slab : slabs_) { if (slab.deviceMemory != deviceMemory) { continue; } auto it = slab.allocSizes.find(start); if (it == slab.allocSizes.end()) { // Ack, a double free? Crash(); } if (slab.usage[start] != 1) { // This means a double free, while queued to actually free. Crash(); } // Mark it as "free in progress". slab.usage[start] = 2; found = true; break; } // Wrong deviceMemory even? Maybe it was already decimated, but that means a double-free. if (!found) { Crash(); } // Okay, now enqueue. It's valid. FreeInfo *info = new FreeInfo(this, deviceMemory, offset); vulkan_->Delete().QueueCallback(&DispatchFree, info); } void VulkanDeviceAllocator::ExecuteFree(FreeInfo *userdata) { VkDeviceMemory deviceMemory = userdata->deviceMemory; size_t offset = userdata->offset; // Revalidate in case something else got freed and made things inconsistent. size_t start = offset >> SLAB_GRAIN_SHIFT; bool found = false; for (Slab &slab : slabs_) { if (slab.deviceMemory != deviceMemory) { continue; } auto it = slab.allocSizes.find(start); if (it != slab.allocSizes.end()) { size_t size = it->second; for (size_t i = 0; i < size; ++i) { slab.usage[start + i] = 0; } slab.allocSizes.erase(it); } else { // Ack, a double free? Crash(); } found = true; break; } // Wrong deviceMemory even? Maybe it was already decimated, but that means a double-free. if (!found) { Crash(); } delete userdata; } bool VulkanDeviceAllocator::AllocateSlab(size_t minBytes) { if (!slabs_.empty() && minSlabSize_ < maxSlabSize_) { // We're allocating an additional slab, so rachet up its size. minSlabSize_ <<= 1; } VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; alloc.allocationSize = minSlabSize_; alloc.memoryTypeIndex = memoryTypeIndex_; while (alloc.allocationSize < minBytes) { alloc.allocationSize <<= 1; } VkDeviceMemory deviceMemory; VkResult res = vkAllocateMemory(vulkan_->GetDevice(), &alloc, NULL, &deviceMemory); if (res != VK_SUCCESS) { // If it's something else, we used it wrong? assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY || res == VK_ERROR_TOO_MANY_OBJECTS); // Okay, so we ran out of memory. return false; } slabs_.resize(slabs_.size() + 1); Slab &slab = slabs_[slabs_.size() - 1]; slab.deviceMemory = deviceMemory; slab.usage.resize(alloc.allocationSize >> SLAB_GRAIN_SHIFT); return true; } void VulkanDeviceAllocator::Decimate() { bool foundFree = false; for (size_t i = 0; i < slabs_.size(); ++i) { // Go backwards. This way, we keep the largest free slab. // We do this here (instead of the for) since size_t is unsigned. size_t index = slabs_.size() - i - 1; if (!slabs_[index].allocSizes.empty()) { continue; } if (!foundFree) { // Let's allow one free slab, so we have room. foundFree = true; continue; } // Okay, let's free this one up. vulkan_->Delete().QueueDeleteDeviceMemory(slabs_[index].deviceMemory); slabs_.erase(slabs_.begin() + index); // Let's check the next one, which is now in this same slot. --i; } }