// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #pragma once #include class Vec3 { public: union { float v[3]; struct { float x,y,z; }; }; Vec3(unsigned int rgb) { x = (rgb & 0xFF) * (1.0f/255.0f); y = ((rgb >> 8) & 0xFF) * (1.0f/255.0f); z = ((rgb >> 16) & 0xFF) * (1.0f/255.0f); } Vec3(const float a[3]) { v[0] = a[0]; v[1] = a[1]; v[2] = a[2]; } Vec3(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {} Vec3() {} explicit Vec3(float f) : x(f), y(f), z(f) {} void Write(float a[3]) { a[0] = x; a[1] = y; a[2] = z; } Vec3 operator +(const Vec3 &other) const { return Vec3(x+other.x, y+other.y, z+other.z); } void operator += (const Vec3 &other) { x+=other.x; y+=other.y; z+=other.z; } Vec3 operator -(const Vec3 &other) const { return Vec3(x-other.x, y-other.y, z-other.z); } void operator -= (const Vec3 &other) { x-=other.x; y-=other.y; z-=other.z; } Vec3 operator -() const { return Vec3(-x,-y,-z); } float operator *(const Vec3 &other) const { return x*other.x + y*other.y + z*other.z; } Vec3 Mul(const Vec3 &other) const { return Vec3(x*other.x, y*other.y, z*other.z); } Vec3 operator * (const float f) const { return Vec3(x*f,y*f,z*f); } void operator *= (const float f) { x*=f; y*=f; z*=f; } Vec3 operator / (const float f) const { float invf = (1.0f/f); return Vec3(x*invf,y*invf,z*invf); } void operator /= (const float f) { *this = *this / f; } Vec3 operator %(const Vec3 &v) const { return Vec3(y*v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x); } float Length2() const { return x*x + y*y + z*z; } float Length() const { return sqrtf(Length2()); } void SetLength(const float l) { (*this) *= l / Length(); } Vec3 WithLength(const float l) const { return (*this) * l / Length(); } float Distance2To(Vec3 &other) { return Vec3(other-(*this)).Length2(); } Vec3 Normalized() const { return (*this) / Length(); } float Normalize() { //returns the previous length, is often useful float len = Length(); (*this) = (*this)/len; return len; } float &operator [] (int i) //allow vector[2] = 3 (vector.z=3) { return *((&x) + i); } float operator [] (const int i) const { return *((&x) + i); } Vec3 Lerp(const Vec3 &other, const float t) const { return (*this)*(1-t) + other*t; } void SetZero() { x=0;y=0;z=0; } }; inline void Vec3ByMatrix43(float vecOut[3], const float v[3], const float m[12]) { vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6] + m[9]; vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7] + m[10]; vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8] + m[11]; } inline void Norm3ByMatrix43(float vecOut[3], const float v[3], const float m[12]) { vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6]; vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7]; vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8]; } inline float Vec3Dot(const float v1[3], const float v2[3]) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; }