// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #pragma once #include template class Vec2 { public: struct { T x,y; }; T* AsArray() { return &x; } Vec2() {} Vec2(const T a[2]) : x(a[0]), y(a[1]) {} Vec2(const T& _x, const T& _y) : x(_x), y(_y) {} template Vec2 Cast() const { return Vec2((T2)x, (T2)y); } static Vec2 AssignToAll(const T& f) { return Vec2(f, f); } void Write(T a[2]) { a[0] = x; a[1] = y; } Vec2 operator +(const Vec2& other) const { return Vec2(x+other.x, y+other.y); } void operator += (const Vec2 &other) { x+=other.x; y+=other.y; } Vec2 operator -(const Vec2& other) const { return Vec2(x-other.x, y-other.y); } void operator -= (const Vec2& other) { x-=other.x; y-=other.y; } Vec2 operator -() const { return Vec2(-x,-y); } Vec2 operator * (const Vec2& other) const { return Vec2(x*other.x, y*other.y); } template Vec2 operator * (const V& f) const { return Vec2(x*f,y*f); } template void operator *= (const V& f) { x*=f; y*=f; } template Vec2 operator / (const V& f) const { return Vec2(x/f,y/f); } template void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec2 WithLength(const float l) const; float Distance2To(Vec2 &other); Vec2 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[1] = 3 (vector.y=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; } // Common aliases: UV (texel coordinates), ST (texture coordinates) T& u() { return x; } T& v() { return y; } T& s() { return x; } T& t() { return y; } const T& u() const { return x; } const T& v() const { return y; } const T& s() const { return x; } const T& t() const { return y; } // swizzlers - create a subvector of specific components Vec2 yx() const { return Vec2(y, x); } Vec2 vu() const { return Vec2(y, x); } Vec2 ts() const { return Vec2(y, x); } }; template Vec2 operator * (const V& f, const Vec2& vec) { return Vec2(f*vec.x,f*vec.y); } typedef Vec2 Vec2f; template class Vec3 { public: struct { T x,y,z; }; T* AsArray() { return &x; } Vec3() {} Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {} Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {} template Vec3 Cast() const { return Vec3((T2)x, (T2)y, (T2)z); } // Only implemented for T=int and T=float static Vec3 FromRGB(unsigned int rgb); unsigned int ToRGB() const; // alpha bits set to zero static Vec3 AssignToAll(const T& f) { return Vec3(f, f, f); } void Write(T a[3]) { a[0] = x; a[1] = y; a[2] = z; } Vec3 operator +(const Vec3 &other) const { return Vec3(x+other.x, y+other.y, z+other.z); } void operator += (const Vec3 &other) { x+=other.x; y+=other.y; z+=other.z; } Vec3 operator -(const Vec3 &other) const { return Vec3(x-other.x, y-other.y, z-other.z); } void operator -= (const Vec3 &other) { x-=other.x; y-=other.y; z-=other.z; } Vec3 operator -() const { return Vec3(-x,-y,-z); } Vec3 operator * (const Vec3 &other) const { return Vec3(x*other.x, y*other.y, z*other.z); } template Vec3 operator * (const V& f) const { return Vec3(x*f,y*f,z*f); } template void operator *= (const V& f) { x*=f; y*=f; z*=f; } template Vec3 operator / (const V& f) const { return Vec3(x/f,y/f,z/f); } template void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y + z*z; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec3 WithLength(const float l) const; float Distance2To(Vec3 &other); Vec3 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[2] = 3 (vector.z=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; z=0; } // Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates) T& u() { return x; } T& v() { return y; } T& w() { return z; } T& r() { return x; } T& g() { return y; } T& b() { return z; } T& s() { return x; } T& t() { return y; } T& q() { return z; } const T& u() const { return x; } const T& v() const { return y; } const T& w() const { return z; } const T& r() const { return x; } const T& g() const { return y; } const T& b() const { return z; } const T& s() const { return x; } const T& t() const { return y; } const T& q() const { return z; } // swizzlers - create a subvector of specific components // e.g. Vec2 uv() { return Vec2(x,y); } // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) Vec2 name() const { return Vec2(a, b); } #define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \ _DEFINE_SWIZZLER2(a, b, a##b); \ _DEFINE_SWIZZLER2(a, b, a2##b2); \ _DEFINE_SWIZZLER2(a, b, a3##b3); \ _DEFINE_SWIZZLER2(a, b, a4##b4); \ _DEFINE_SWIZZLER2(b, a, b##a); \ _DEFINE_SWIZZLER2(b, a, b2##a2); \ _DEFINE_SWIZZLER2(b, a, b3##a3); \ _DEFINE_SWIZZLER2(b, a, b4##a4); DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t); DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q); DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q); #undef DEFINE_SWIZZLER2 #undef _DEFINE_SWIZZLER2 }; template Vec3 operator * (const V& f, const Vec3& vec) { return Vec3(f*vec.x,f*vec.y,f*vec.z); } typedef Vec3 Vec3f; template class Vec4 { public: struct { T x,y,z,w; }; T* AsArray() { return &x; } Vec4() {} Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {} Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {} template Vec4 Cast() const { return Vec4((T2)x, (T2)y, (T2)z, (T2)w); } // Only implemented for T=int and T=float static Vec4 FromRGBA(unsigned int rgba); unsigned int ToRGBA() const; static Vec4 AssignToAll(const T& f) { return Vec4(f, f, f, f); } void Write(T a[4]) { a[0] = x; a[1] = y; a[2] = z; a[3] = w; } Vec4 operator +(const Vec4& other) const { return Vec4(x+other.x, y+other.y, z+other.z, w+other.w); } void operator += (const Vec4& other) { x+=other.x; y+=other.y; z+=other.z; w+=other.w; } Vec4 operator -(const Vec4 &other) const { return Vec4(x-other.x, y-other.y, z-other.z, w-other.w); } void operator -= (const Vec4 &other) { x-=other.x; y-=other.y; z-=other.z; w-=other.w; } Vec4 operator -() const { return Vec4(-x,-y,-z,-w); } Vec4 operator * (const Vec4 &other) const { return Vec4(x*other.x, y*other.y, z*other.z, w*other.w); } template Vec4 operator * (const V& f) const { return Vec4(x*f,y*f,z*f,w*f); } template void operator *= (const V& f) { x*=f; y*=f; z*=f; w*=f; } template Vec4 operator / (const V& f) const { return Vec4(x/f,y/f,z/f,w/f); } template void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y + z*z + w*w; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec4 WithLength(const float l) const; float Distance2To(Vec4 &other); Vec4 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[2] = 3 (vector.z=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; z=0; } // Common alias: RGBA (colors) T& r() { return x; } T& g() { return y; } T& b() { return z; } T& a() { return w; } const T& r() const { return x; } const T& g() const { return y; } const T& b() const { return z; } const T& a() const { return w; } // swizzlers - create a subvector of specific components // e.g. Vec2 uv() { return Vec2(x,y); } // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) Vec2 name() const { return Vec2(a, b); } #define DEFINE_SWIZZLER2(a, b, a2, b2) \ _DEFINE_SWIZZLER2(a, b, a##b); \ _DEFINE_SWIZZLER2(a, b, a2##b2); \ _DEFINE_SWIZZLER2(b, a, b##a); \ _DEFINE_SWIZZLER2(b, a, b2##a2); DEFINE_SWIZZLER2(x, y, r, g); DEFINE_SWIZZLER2(x, z, r, b); DEFINE_SWIZZLER2(x, w, r, a); DEFINE_SWIZZLER2(y, z, g, b); DEFINE_SWIZZLER2(y, w, g, a); DEFINE_SWIZZLER2(z, w, b, a); #undef DEFINE_SWIZZLER2 #undef _DEFINE_SWIZZLER2 #define _DEFINE_SWIZZLER3(a, b, c, name) Vec3 name() const { return Vec3(a, b, c); } #define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \ _DEFINE_SWIZZLER3(a, b, c, a##b##c); \ _DEFINE_SWIZZLER3(a, c, b, a##c##b); \ _DEFINE_SWIZZLER3(b, a, c, b##a##c); \ _DEFINE_SWIZZLER3(b, c, a, b##c##a); \ _DEFINE_SWIZZLER3(c, a, b, c##a##b); \ _DEFINE_SWIZZLER3(c, b, a, c##b##a); \ _DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \ _DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \ _DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \ _DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \ _DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \ _DEFINE_SWIZZLER3(c, b, a, c2##b2##a2); DEFINE_SWIZZLER3(x, y, z, r, g, b); DEFINE_SWIZZLER3(x, y, w, r, g, a); DEFINE_SWIZZLER3(x, z, w, r, b, a); DEFINE_SWIZZLER3(y, z, w, g, b, a); #undef DEFINE_SWIZZLER3 #undef _DEFINE_SWIZZLER3 }; template Vec4 operator * (const V& f, const Vec4& vec) { return Vec4(f*vec.x,f*vec.y,f*vec.z,f*vec.w); } typedef Vec4 Vec4f; template class Mat3x3 { public: // Convention: first three values = first column Mat3x3(const BaseType values[]) { for (unsigned int i = 0; i < 3*3; ++i) { this->values[i] = values[i]; } } Mat3x3(BaseType _00, BaseType _01, BaseType _02, BaseType _10, BaseType _11, BaseType _12, BaseType _20, BaseType _21, BaseType _22) { values[0] = _00; values[1] = _01; values[2] = _02; values[3] = _10; values[4] = _11; values[5] = _12; values[6] = _20; values[7] = _21; values[8] = _22; } template Vec3 operator * (const Vec3& vec) { Vec3 ret; ret.x = values[0]*vec.x + values[3]*vec.y + values[6]*vec.z; ret.y = values[1]*vec.x + values[4]*vec.y + values[7]*vec.z; ret.z = values[2]*vec.x + values[5]*vec.y + values[8]*vec.z; return ret; } Mat3x3 Inverse() { float a = values[0]; float b = values[1]; float c = values[2]; float d = values[3]; float e = values[4]; float f = values[5]; float g = values[6]; float h = values[7]; float i = values[8]; return Mat3x3(e*i-f*h, f*g-d*i, d*h-e*g, c*h-b*i, a*i-c*g, b*g-a*h, b*f-c*e, c*d-a*f, a*e-b*d) / Det(); } BaseType Det() { return values[0]*values[4]*values[8] + values[3]*values[7]*values[2] + values[6]*values[1]*values[5] - values[2]*values[4]*values[6] - values[5]*values[7]*values[0] - values[8]*values[1]*values[3]; } Mat3x3 operator / (const BaseType& val) const { return Mat3x3(values[0]/val, values[1]/val, values[2]/val, values[3]/val, values[4]/val, values[5]/val, values[6]/val, values[7]/val, values[8]/val); } private: BaseType values[3*3]; }; template class Mat4x4 { public: // Convention: first four values in arrow = first column Mat4x4(const BaseType values[]) { for (unsigned int i = 0; i < 4*4; ++i) { this->values[i] = values[i]; } } template Vec4 operator * (const Vec4& vec) { Vec4 ret; ret.x = values[0]*vec.x + values[4]*vec.y + values[8]*vec.z + values[12]*vec.w; ret.y = values[1]*vec.x + values[5]*vec.y + values[9]*vec.z + values[13]*vec.w; ret.z = values[2]*vec.x + values[6]*vec.y + values[10]*vec.z + values[14]*vec.w; ret.w = values[3]*vec.x + values[7]*vec.y + values[11]*vec.z + values[15]*vec.w; return ret; } private: BaseType values[4*4]; }; inline void Vec3ByMatrix43(float vecOut[3], const float v[3], const float m[12]) { vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6] + m[9]; vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7] + m[10]; vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8] + m[11]; } inline void Vec3ByMatrix44(float vecOut[4], const float v[3], const float m[16]) { vecOut[0] = v[0] * m[0] + v[1] * m[4] + v[2] * m[8] + m[9]; vecOut[1] = v[0] * m[1] + v[1] * m[5] + v[2] * m[9] + m[10]; vecOut[2] = v[0] * m[2] + v[1] * m[6] + v[2] * m[10] + m[11]; vecOut[3] = v[0] * m[3] + v[1] * m[7] + v[2] * m[11] + m[15]; } inline void Norm3ByMatrix43(float vecOut[3], const float v[3], const float m[12]) { vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6]; vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7]; vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8]; } inline float Vec3Dot(const float v1[3], const float v2[3]) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } template inline T Dot(const Vec2& a, const Vec2& b) { return a.x*b.x + a.y*b.y; } template inline T Dot(const Vec3& a, const Vec3& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } template inline T Dot(const Vec4& a, const Vec4& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } template inline Vec3 Cross(const Vec3& a, const Vec3& b) { return Vec3(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x); } // linear interpolation via float: 0.0=begin, 1.0=end template inline X Lerp(const X& begin, const X& end, const float t) { return begin*(1.f-t) + end*t; } // linear interpolation via int: 0=begin, base=end template inline X LerpInt(const X& begin, const X& end, const int t) { return (begin*(base-t) + end*t) / base; }