// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "Core/MemMap.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/Config.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/x86/Jit.h" #include "Core/MIPS/x86/RegCache.h" #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM16 (signed short)(op & 0xFFFF) #define _IMM26 (op & 0x03FFFFFF) // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. // #define CONDITIONAL_DISABLE { Comp_Generic(op); return; } #define CONDITIONAL_DISABLE ; #define DISABLE { Comp_Generic(op); return; } namespace MIPSComp { using namespace Gen; void Jit::CompITypeMemRead(MIPSOpcode op, u32 bits, void (XEmitter::*mov)(int, int, X64Reg, OpArg), const void *safeFunc) { CONDITIONAL_DISABLE; int offset = _IMM16; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; gpr.Lock(rt, rs); gpr.MapReg(rt, rt == rs, true); JitSafeMem safe(this, rs, offset); OpArg src; if (safe.PrepareRead(src, bits / 8)) (this->*mov)(32, bits, gpr.RX(rt), src); if (safe.PrepareSlowRead(safeFunc)) (this->*mov)(32, bits, gpr.RX(rt), R(EAX)); safe.Finish(); gpr.UnlockAll(); } static OpArg DowncastImm(OpArg in, int bits) { if (!in.IsImm()) return in; if (in.GetImmBits() > bits) { in.SetImmBits(bits); return in; } return in; } void Jit::CompITypeMemWrite(MIPSOpcode op, u32 bits, const void *safeFunc) { CONDITIONAL_DISABLE; int offset = _IMM16; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; gpr.Lock(rt, rs); if (rt == MIPS_REG_ZERO || gpr.R(rt).IsImm()) { // NOTICE_LOG(JIT, "%d-bit Imm at %08x : %08x", bits, js.blockStart, (u32)gpr.R(rt).GetImmValue()); } else { gpr.MapReg(rt, true, false); } #ifdef _M_IX86 // We use EDX so we can have DL for 8-bit ops. const bool needSwap = bits == 8 && !gpr.R(rt).IsSimpleReg(EDX) && !gpr.R(rt).IsSimpleReg(ECX); if (needSwap) gpr.FlushLockX(EDX); #else const bool needSwap = false; #endif JitSafeMem safe(this, rs, offset); OpArg dest; if (safe.PrepareWrite(dest, bits / 8)) { if (needSwap) { MOV(32, R(EDX), gpr.R(rt)); MOV(bits, dest, R(EDX)); } else { if (rt == MIPS_REG_ZERO) { switch (bits) { case 8: MOV(8, dest, Imm8(0)); break; case 16: MOV(16, dest, Imm16(0)); break; case 32: MOV(32, dest, Imm32(0)); break; } } else { // The downcast is needed so we don't try to generate a 8-bit write with a 32-bit imm // (that might have been generated from an li instruction) which is illegal. MOV(bits, dest, DowncastImm(gpr.R(rt), bits)); } } } if (safe.PrepareSlowWrite()) safe.DoSlowWrite(safeFunc, gpr.R(rt)); safe.Finish(); if (needSwap) gpr.UnlockAllX(); gpr.UnlockAll(); } void Jit::CompITypeMemUnpairedLR(MIPSOpcode op, bool isStore) { CONDITIONAL_DISABLE; int o = op>>26; int offset = _IMM16; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; X64Reg shiftReg = ECX; gpr.FlushLockX(ECX, EDX); #ifdef _M_X64 // On x64, we need ECX for CL, but it's also the first arg and gets lost. Annoying. gpr.FlushLockX(R9); shiftReg = R9; #endif gpr.Lock(rt, rs); gpr.MapReg(rt, true, !isStore); // Grab the offset from alignment for shifting (<< 3 for bytes -> bits.) MOV(32, R(shiftReg), gpr.R(rs)); ADD(32, R(shiftReg), Imm32(offset)); AND(32, R(shiftReg), Imm32(3)); SHL(32, R(shiftReg), Imm8(3)); { JitSafeMem safe(this, rs, offset, ~3); safe.SetFar(); OpArg src; if (safe.PrepareRead(src, 4)) { if (!src.IsSimpleReg(EAX)) MOV(32, R(EAX), src); CompITypeMemUnpairedLRInner(op, shiftReg); } if (safe.PrepareSlowRead(safeMemFuncs.readU32)) CompITypeMemUnpairedLRInner(op, shiftReg); safe.Finish(); } // For store ops, write EDX back to memory. if (isStore) { JitSafeMem safe(this, rs, offset, ~3); OpArg dest; if (safe.PrepareWrite(dest, 4)) MOV(32, dest, R(EDX)); if (safe.PrepareSlowWrite()) safe.DoSlowWrite(safeMemFuncs.writeU32, R(EDX)); safe.Finish(); } gpr.UnlockAll(); gpr.UnlockAllX(); } void Jit::CompITypeMemUnpairedLRInner(MIPSOpcode op, X64Reg shiftReg) { CONDITIONAL_DISABLE; int o = op>>26; MIPSGPReg rt = _RT; // Make sure we have the shift for the target in ECX. if (shiftReg != ECX) MOV(32, R(ECX), R(shiftReg)); // Now use that shift (left on target, right on source.) switch (o) { case 34: //lwl MOV(32, R(EDX), Imm32(0x00ffffff)); SHR(32, R(EDX), R(CL)); AND(32, gpr.R(rt), R(EDX)); break; case 38: //lwr SHR(32, R(EAX), R(CL)); break; case 42: //swl MOV(32, R(EDX), Imm32(0xffffff00)); SHL(32, R(EDX), R(CL)); AND(32, R(EAX), R(EDX)); break; case 46: //swr MOV(32, R(EDX), gpr.R(rt)); SHL(32, R(EDX), R(CL)); // EDX is already the target value to write, but may be overwritten below. Save it. PUSH(EDX); break; default: _dbg_assert_msg_(JIT, 0, "Unsupported left/right load/store instruction."); } // Flip ECX around from 3 bytes / 24 bits. if (shiftReg == ECX) { MOV(32, R(EDX), Imm32(24)); SUB(32, R(EDX), R(ECX)); MOV(32, R(ECX), R(EDX)); } else { MOV(32, R(ECX), Imm32(24)); SUB(32, R(ECX), R(shiftReg)); } // Use the flipped shift (left on source, right on target) and write target. switch (o) { case 34: //lwl SHL(32, R(EAX), R(CL)); OR(32, gpr.R(rt), R(EAX)); break; case 38: //lwr MOV(32, R(EDX), Imm32(0xffffff00)); SHL(32, R(EDX), R(CL)); AND(32, gpr.R(rt), R(EDX)); OR(32, gpr.R(rt), R(EAX)); break; case 42: //swl MOV(32, R(EDX), gpr.R(rt)); SHR(32, R(EDX), R(CL)); OR(32, R(EDX), R(EAX)); break; case 46: //swr MOV(32, R(EDX), Imm32(0x00ffffff)); SHR(32, R(EDX), R(CL)); AND(32, R(EAX), R(EDX)); // This is the target value we saved earlier. POP(EDX); OR(32, R(EDX), R(EAX)); break; default: _dbg_assert_msg_(JIT, 0, "Unsupported left/right load/store instruction."); } } void Jit::Comp_ITypeMem(MIPSOpcode op) { CONDITIONAL_DISABLE; int offset = _IMM16; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; int o = op>>26; if (((op >> 29) & 1) == 0 && rt == MIPS_REG_ZERO) { // Don't load anything into $zr return; } switch (o) { case 37: //R(rt) = ReadMem16(addr); break; //lhu CompITypeMemRead(op, 16, &XEmitter::MOVZX, safeMemFuncs.readU16); break; case 36: //R(rt) = ReadMem8 (addr); break; //lbu CompITypeMemRead(op, 8, &XEmitter::MOVZX, safeMemFuncs.readU8); break; case 35: //R(rt) = ReadMem32(addr); break; //lw CompITypeMemRead(op, 32, &XEmitter::MOVZX, safeMemFuncs.readU32); break; case 32: //R(rt) = (u32)(s32)(s8) ReadMem8 (addr); break; //lb CompITypeMemRead(op, 8, &XEmitter::MOVSX, safeMemFuncs.readU8); break; case 33: //R(rt) = (u32)(s32)(s16)ReadMem16(addr); break; //lh CompITypeMemRead(op, 16, &XEmitter::MOVSX, safeMemFuncs.readU16); break; case 40: //WriteMem8 (addr, R(rt)); break; //sb CompITypeMemWrite(op, 8, safeMemFuncs.writeU8); break; case 41: //WriteMem16(addr, R(rt)); break; //sh CompITypeMemWrite(op, 16, safeMemFuncs.writeU16); break; case 43: //WriteMem32(addr, R(rt)); break; //sw CompITypeMemWrite(op, 32, safeMemFuncs.writeU32); break; case 34: //lwl { MIPSOpcode nextOp = GetOffsetInstruction(1); // Looking for lwr rd, offset-3(rs) which makes a pair. u32 desiredOp = ((op & 0xFFFF0000) + (4 << 26)) + (offset - 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // nextOp has the correct address. CompITypeMemRead(nextOp, 32, &XEmitter::MOVZX, safeMemFuncs.readU32); } else CompITypeMemUnpairedLR(op, false); } break; case 38: //lwr { MIPSOpcode nextOp = GetOffsetInstruction(1); // Looking for lwl rd, offset+3(rs) which makes a pair. u32 desiredOp = ((op & 0xFFFF0000) - (4 << 26)) + (offset + 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // op has the correct address. CompITypeMemRead(op, 32, &XEmitter::MOVZX, safeMemFuncs.readU32); } else CompITypeMemUnpairedLR(op, false); } break; case 42: //swl { MIPSOpcode nextOp = GetOffsetInstruction(1); // Looking for swr rd, offset-3(rs) which makes a pair. u32 desiredOp = ((op & 0xFFFF0000) + (4 << 26)) + (offset - 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // nextOp has the correct address. CompITypeMemWrite(nextOp, 32, safeMemFuncs.writeU32); } else CompITypeMemUnpairedLR(op, true); } break; case 46: //swr { MIPSOpcode nextOp = GetOffsetInstruction(1); // Looking for swl rd, offset+3(rs) which makes a pair. u32 desiredOp = ((op & 0xFFFF0000) - (4 << 26)) + (offset + 3); if (!js.inDelaySlot && nextOp == desiredOp) { EatInstruction(nextOp); // op has the correct address. CompITypeMemWrite(op, 32, safeMemFuncs.writeU32); } else CompITypeMemUnpairedLR(op, true); } break; default: Comp_Generic(op); return ; } } void Jit::Comp_Cache(MIPSOpcode op) { DISABLE; } }