// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ext/xxhash.h" #include "Common/CPUDetect.h" #include "GPU/Common/TextureDecoder.h" // NEON is in a separate file so that it can be compiled with a runtime check. #include "GPU/Common/TextureDecoderNEON.h" // TODO: Move some common things into here. #ifdef _M_SSE #include #if _M_SSE >= 0x401 #include #endif u32 QuickTexHashSSE2(const void *checkp, u32 size) { u32 check = 0; if (((intptr_t)checkp & 0xf) == 0 && (size & 0x3f) == 0) { __m128i cursor = _mm_set1_epi32(0); __m128i cursor2 = _mm_set_epi16(0x0001U, 0x0083U, 0x4309U, 0x4d9bU, 0xb651U, 0x4b73U, 0x9bd9U, 0xc00bU); __m128i update = _mm_set1_epi16(0x2455U); const __m128i *p = (const __m128i *)checkp; for (u32 i = 0; i < size / 16; i += 4) { __m128i chunk = _mm_mullo_epi16(_mm_load_si128(&p[i]), cursor2); cursor = _mm_add_epi32(cursor, chunk); cursor = _mm_xor_si128(cursor, _mm_load_si128(&p[i + 1])); cursor = _mm_add_epi32(cursor, _mm_load_si128(&p[i + 2])); chunk = _mm_mullo_epi16(_mm_load_si128(&p[i + 3]), cursor2); cursor = _mm_xor_si128(cursor, chunk); cursor2 = _mm_add_epi16(cursor2, update); } cursor = _mm_add_epi32(cursor, cursor2); // Add the four parts into the low i32. cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8)); cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4)); check = _mm_cvtsi128_si32(cursor); } else { const u32 *p = (const u32 *)checkp; for (u32 i = 0; i < size / 8; ++i) { check += *p++; check ^= *p++; } } return check; } #endif static u32 QuickTexHashBasic(const void *checkp, u32 size) { #if defined(ARM) && defined(__GNUC__) __builtin_prefetch(checkp, 0, 0); u32 check; asm volatile ( // Let's change size to the end address. "add %1, %1, %2\n" "mov r6, #0\n" ".align 2\n" // If we have zero sized input, we'll return garbage. Oh well, shouldn't happen. "QuickTexHashBasic_next:\n" "ldmia %2!, {r2-r5}\n" "add r6, r6, r2\n" "eor r6, r6, r3\n" "cmp %2, %1\n" "add r6, r6, r4\n" "eor r6, r6, r5\n" "blo QuickTexHashBasic_next\n" ".align 2\n" "QuickTexHashBasic_done:\n" "mov %0, r6\n" : "=r"(check) : "r"(size), "r"(checkp) : "r2", "r3", "r4", "r5", "r6" ); #else u32 check = 0; const u32 size_u32 = size / 4; const u32 *p = (const u32 *)checkp; for (u32 i = 0; i < size_u32; i += 4) { check += p[i + 0]; check ^= p[i + 1]; check += p[i + 2]; check ^= p[i + 3]; } #endif return check; } void DoUnswizzleTex16Basic(const u8 *texptr, u32 *ydestp, int bxc, int byc, u32 pitch, u32 rowWidth) { #ifdef _M_SSE const __m128i *src = (const __m128i *)texptr; for (int by = 0; by < byc; by++) { __m128i *xdest = (__m128i *)ydestp; for (int bx = 0; bx < bxc; bx++) { __m128i *dest = xdest; for (int n = 0; n < 2; n++) { // Textures are always 16-byte aligned so this is fine. __m128i temp1 = _mm_load_si128(src); __m128i temp2 = _mm_load_si128(src + 1); __m128i temp3 = _mm_load_si128(src + 2); __m128i temp4 = _mm_load_si128(src + 3); _mm_store_si128(dest, temp1); dest += pitch >> 2; _mm_store_si128(dest, temp2); dest += pitch >> 2; _mm_store_si128(dest, temp3); dest += pitch >> 2; _mm_store_si128(dest, temp4); dest += pitch >> 2; src += 4; } xdest ++; } ydestp += (rowWidth * 8) / 4; } #else const u32 *src = (const u32 *)texptr; for (int by = 0; by < byc; by++) { u32 *xdest = ydestp; for (int bx = 0; bx < bxc; bx++) { u32 *dest = xdest; for (int n = 0; n < 8; n++) { memcpy(dest, src, 16); dest += pitch; src += 4; } xdest += 4; } ydestp += (rowWidth * 8) / 4; } #endif } #ifndef _M_SSE QuickTexHashFunc DoQuickTexHash = &QuickTexHashBasic; UnswizzleTex16Func DoUnswizzleTex16 = &DoUnswizzleTex16Basic; ReliableHashFunc DoReliableHash = &XXH32; #endif // This has to be done after CPUDetect has done its magic. void SetupTextureDecoder() { #ifdef ARMV7 if (cpu_info.bNEON) { DoQuickTexHash = &QuickTexHashNEON; DoUnswizzleTex16 = &DoUnswizzleTex16NEON; #ifndef IOS // Not sure if this is safe on iOS, it's had issues with xxhash. DoReliableHash = &ReliableHashNEON; #endif } #endif } static inline u32 makecol(int r, int g, int b, int a) { return (a << 24) | (r << 16) | (g << 8) | b; } // This could probably be done faster by decoding two or four blocks at a time with SSE/NEON. void DecodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha) { // S3TC Decoder // Needs more speed and debugging. u16 c1 = (src->color1); u16 c2 = (src->color2); int red1 = Convert5To8(c1 & 0x1F); int red2 = Convert5To8(c2 & 0x1F); int green1 = Convert6To8((c1 >> 5) & 0x3F); int green2 = Convert6To8((c2 >> 5) & 0x3F); int blue1 = Convert5To8((c1 >> 11) & 0x1F); int blue2 = Convert5To8((c2 >> 11) & 0x1F); u32 colors[4]; colors[0] = makecol(red1, green1, blue1, 255); colors[1] = makecol(red2, green2, blue2, 255); if (c1 > c2 || ignore1bitAlpha) { int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3); int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3); int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3); colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255); colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255); } else { colors[2] = makecol((red1 + red2 + 1) / 2, // Average (green1 + green2 + 1) / 2, (blue1 + blue2 + 1) / 2, 255); colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent } for (int y = 0; y < 4; y++) { int val = src->lines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors[val & 3]; val >>= 2; } dst += pitch; } } void DecodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch) { DecodeDXT1Block(dst, &src->color, pitch, true); for (int y = 0; y < 4; y++) { u32 line = src->alphaLines[y]; for (int x = 0; x < 4; x++) { const u8 a4 = line & 0xF; dst[x] = (dst[x] & 0xFFFFFF) | (a4 << 24) | (a4 << 28); line >>= 4; } dst += pitch; } } static inline u8 lerp8(const DXT5Block *src, int n) { float d = n / 7.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } static inline u8 lerp6(const DXT5Block *src, int n) { float d = n / 5.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } // The alpha channel is not 100% correct void DecodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch) { DecodeDXT1Block(dst, &src->color, pitch, true); u8 alpha[8]; alpha[0] = src->alpha1; alpha[1] = src->alpha2; if (alpha[0] > alpha[1]) { alpha[2] = lerp8(src, 1); alpha[3] = lerp8(src, 2); alpha[4] = lerp8(src, 3); alpha[5] = lerp8(src, 4); alpha[6] = lerp8(src, 5); alpha[7] = lerp8(src, 6); } else { alpha[2] = lerp6(src, 1); alpha[3] = lerp6(src, 2); alpha[4] = lerp6(src, 3); alpha[5] = lerp6(src, 4); alpha[6] = 0; alpha[7] = 255; } u64 data = ((u64)(u16)src->alphadata1 << 32) | (u32)src->alphadata2; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24); data >>= 3; } dst += pitch; } } void ConvertBGRA8888ToRGBA8888(u32 *dst, const u32 *src, const u32 numPixels) { #ifdef _M_SSE const __m128i maskGA = _mm_set1_epi32(0xFF00FF00); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = numPixels / 4; if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; ++i) { __m128i c = _mm_load_si128(&srcp[i]); __m128i rb = _mm_andnot_si128(maskGA, c); c = _mm_and_si128(c, maskGA); __m128i b = _mm_srli_epi32(rb, 16); __m128i r = _mm_slli_epi32(rb, 16); c = _mm_or_si128(_mm_or_si128(c, r), b); _mm_store_si128(&dstp[i], c); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { const u32 c = src[i]; dst[i] = ((c >> 16) & 0x000000FF) | ((c >> 0) & 0xFF00FF00) | ((c << 16) & 0x00FF0000); } } inline u16 RGBA8888toRGBA5551(u32 px) { return ((px >> 3) & 0x001F) | ((px >> 6) & 0x03E0) | ((px >> 9) & 0x7C00) | ((px >> 16) & 0x8000); } void ConvertRGBA8888ToRGBA5551(u16 *dst, const u32 *src, const u32 numPixels) { #if _M_SSE >= 0x401 const __m128i maskAG = _mm_set1_epi32(0x8000F800); const __m128i maskRB = _mm_set1_epi32(0x00F800F8); const __m128i mask = _mm_set1_epi32(0x0000FFFF); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = (numPixels / 4) & ~1; // SSE 4.1 required for _mm_packus_epi32. if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; i += 2) { __m128i c1 = _mm_load_si128(&srcp[i + 0]); __m128i c2 = _mm_load_si128(&srcp[i + 1]); __m128i ag, rb; ag = _mm_and_si128(c1, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c1, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9)); c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask); ag = _mm_and_si128(c2, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c2, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9)); c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask); _mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2)); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { dst[i] = RGBA8888toRGBA5551(src[i]); } } inline u16 BGRA8888toRGBA5551(u32 px) { return ((px >> 19) & 0x001F) | ((px >> 6) & 0x03E0) | ((px << 7) & 0x7C00) | ((px >> 16) & 0x8000); } void ConvertBGRA8888ToRGBA5551(u16 *dst, const u32 *src, const u32 numPixels) { #if _M_SSE >= 0x401 const __m128i maskAG = _mm_set1_epi32(0x8000F800); const __m128i maskRB = _mm_set1_epi32(0x00F800F8); const __m128i mask = _mm_set1_epi32(0x0000FFFF); const __m128i *srcp = (const __m128i *)src; __m128i *dstp = (__m128i *)dst; u32 sseChunks = (numPixels / 4) & ~1; // SSE 4.1 required for _mm_packus_epi32. if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) { sseChunks = 0; } for (u32 i = 0; i < sseChunks; i += 2) { __m128i c1 = _mm_load_si128(&srcp[i + 0]); __m128i c2 = _mm_load_si128(&srcp[i + 1]); __m128i ag, rb; ag = _mm_and_si128(c1, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c1, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7)); c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask); ag = _mm_and_si128(c2, maskAG); ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6)); rb = _mm_and_si128(c2, maskRB); rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7)); c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask); _mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2)); } // The remainder starts right after those done via SSE. u32 i = sseChunks * 4; #else u32 i = 0; #endif for (; i < numPixels; i++) { dst[i] = BGRA8888toRGBA5551(src[i]); } }