// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // TODO: Test and maybe fix: https://code.google.com/p/jpcsp/source/detail?r=3082# #include #include #include #include "math/math_util.h" #include "Core/Core.h" #include "Core/Reporting.h" #include "Core/MemMap.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSInt.h" #include "Core/MIPS/MIPSTables.h" #include "Core/MIPS/MIPSVFPUUtils.h" #define R(i) (currentMIPS->r[i]) #define V(i) (currentMIPS->v[voffset[i]]) #define VI(i) (currentMIPS->vi[voffset[i]]) #define FI(i) (currentMIPS->fi[i]) #define FsI(i) (currentMIPS->fs[i]) #define PC (currentMIPS->pc) #define _RS ((op>>21) & 0x1F) #define _RT ((op>>16) & 0x1F) #define _RD ((op>>11) & 0x1F) #define _FS ((op>>11) & 0x1F) #define _FT ((op>>16) & 0x1F) #define _FD ((op>>6 ) & 0x1F) #define _POS ((op>>6 ) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define HI currentMIPS->hi #define LO currentMIPS->lo #ifndef M_LOG2E #define M_E 2.71828182845904523536f #define M_LOG2E 1.44269504088896340736f #define M_LOG10E 0.434294481903251827651f #define M_LN2 0.693147180559945309417f #define M_LN10 2.30258509299404568402f #undef M_PI #define M_PI 3.14159265358979323846f #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923f #endif #define M_PI_4 0.785398163397448309616f #define M_1_PI 0.318309886183790671538f #define M_2_PI 0.636619772367581343076f #define M_2_SQRTPI 1.12837916709551257390f #define M_SQRT2 1.41421356237309504880f #define M_SQRT1_2 0.707106781186547524401f #endif union FloatBits { float f[4]; u32 u[4]; int i[4]; }; // Preserves NaN in first param, takes sign of equal second param. // Technically, std::max may do this but it's undefined. inline float nanmax(float f, float cst) { return f <= cst ? cst : f; } // Preserves NaN in first param, takes sign of equal second param. inline float nanmin(float f, float cst) { return f >= cst ? cst : f; } // Preserves NaN in first param, takes sign of equal value in others. inline float nanclamp(float f, float lower, float upper) { return nanmin(nanmax(f, lower), upper); } void ApplyPrefixST(float *r, u32 data, VectorSize size) { // Possible optimization shortcut: if (data == 0xe4) return; int n = GetNumVectorElements(size); float origV[4]; static const float constantArray[8] = {0.f, 1.f, 2.f, 0.5f, 3.f, 1.f/3.f, 0.25f, 1.f/6.f}; for (int i = 0; i < n; i++) { origV[i] = r[i]; } for (int i = 0; i < n; i++) { int regnum = (data >> (i*2)) & 3; int abs = (data >> (8+i)) & 1; int negate = (data >> (16+i)) & 1; int constants = (data >> (12+i)) & 1; if (!constants) { // Prefix may say "z, z, z, z" but if this is a pair, we force to x. // TODO: But some ops seem to use const 0 instead? if (regnum >= n) { ERROR_LOG_REPORT(CPU, "Invalid VFPU swizzle: %08x: %i / %d at PC = %08x (%s)", data, regnum, n, currentMIPS->pc, MIPSDisasmAt(currentMIPS->pc)); //for (int i = 0; i < 12; i++) { // ERROR_LOG(CPU, " vfpuCtrl[%i] = %08x", i, currentMIPS->vfpuCtrl[i]); //} regnum = 0; } r[i] = origV[regnum]; if (abs) r[i] = fabs(r[i]); } else { r[i] = constantArray[regnum + (abs<<2)]; } if (negate) r[i] = -r[i]; } } inline void ApplySwizzleS(float *v, VectorSize size) { ApplyPrefixST(v, currentMIPS->vfpuCtrl[VFPU_CTRL_SPREFIX], size); } inline void ApplySwizzleT(float *v, VectorSize size) { ApplyPrefixST(v, currentMIPS->vfpuCtrl[VFPU_CTRL_TPREFIX], size); } void ApplyPrefixD(float *v, VectorSize size, bool onlyWriteMask = false) { u32 data = currentMIPS->vfpuCtrl[VFPU_CTRL_DPREFIX]; if (!data || onlyWriteMask) return; int n = GetNumVectorElements(size); for (int i = 0; i < n; i++) { int sat = (data >> (i * 2)) & 3; if (sat == 1) { if (v[i] > 1.0f) v[i] = 1.0f; // This includes -0.0f -> +0.0f. if (v[i] <= 0.0f) v[i] = 0.0f; } else if (sat == 3) { if (v[i] > 1.0f) v[i] = 1.0f; if (v[i] < -1.0f) v[i] = -1.0f; } } } void EatPrefixes() { currentMIPS->vfpuCtrl[VFPU_CTRL_SPREFIX] = 0xe4; // passthru currentMIPS->vfpuCtrl[VFPU_CTRL_TPREFIX] = 0xe4; // passthru currentMIPS->vfpuCtrl[VFPU_CTRL_DPREFIX] = 0; } namespace MIPSInt { void Int_VPFX(MIPSOpcode op) { int data = op & 0xFFFFF; int regnum = (op >> 24) & 3; currentMIPS->vfpuCtrl[VFPU_CTRL_SPREFIX + regnum] = data; PC += 4; } void Int_SVQ(MIPSOpcode op) { int imm = (signed short)(op&0xFFFC); int rs = _RS; int vt = (((op >> 16) & 0x1f)) | ((op&1) << 5); u32 addr = R(rs) + imm; switch (op >> 26) { case 53: //lvl.q/lvr.q { if (addr & 0x3) { _dbg_assert_msg_(CPU, 0, "Misaligned lvX.q"); } float d[4]; ReadVector(d, V_Quad, vt); int offset = (addr >> 2) & 3; if ((op & 2) == 0) { // It's an LVL for (int i = 0; i < offset + 1; i++) { d[3 - i] = Memory::Read_Float(addr - 4 * i); } } else { // It's an LVR for (int i = 0; i < (3 - offset) + 1; i++) { d[i] = Memory::Read_Float(addr + 4 * i); } } WriteVector(d, V_Quad, vt); } break; case 54: //lv.q if (addr & 0xF) { _dbg_assert_msg_(CPU, 0, "Misaligned lv.q"); } #ifndef COMMON_BIG_ENDIAN WriteVector((const float*)Memory::GetPointer(addr), V_Quad, vt); #else float lvqd[4]; lvqd[0] = Memory::Read_Float(addr); lvqd[1] = Memory::Read_Float(addr + 4); lvqd[2] = Memory::Read_Float(addr + 8); lvqd[3] = Memory::Read_Float(addr + 12); WriteVector(lvqd, V_Quad, vt); #endif break; case 61: // svl.q/svr.q { if (addr & 0x3) { _dbg_assert_msg_(CPU, 0, "Misaligned svX.q"); } float d[4]; ReadVector(d, V_Quad, vt); int offset = (addr >> 2) & 3; if ((op&2) == 0) { // It's an SVL for (int i = 0; i < offset + 1; i++) { Memory::Write_Float(d[3 - i], addr - i * 4); } } else { // It's an SVR for (int i = 0; i < (3 - offset) + 1; i++) { Memory::Write_Float(d[i], addr + 4 * i); } } break; } case 62: //sv.q if (addr & 0xF) { _dbg_assert_msg_(CPU, 0, "Misaligned sv.q"); } #ifndef COMMON_BIG_ENDIAN ReadVector(reinterpret_cast(Memory::GetPointer(addr)), V_Quad, vt); #else float svqd[4]; ReadVector(svqd, V_Quad, vt); Memory::Write_Float(svqd[0], addr); Memory::Write_Float(svqd[1], addr + 4); Memory::Write_Float(svqd[2], addr + 8); Memory::Write_Float(svqd[3], addr + 12); #endif break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret VQ instruction that can't be interpreted"); break; } PC += 4; } void Int_VMatrixInit(MIPSOpcode op) { static const float idt[16] = { 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1, }; static const float zero[16] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, }; static const float one[16] = { 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, }; int vd = _VD; MatrixSize sz = GetMtxSize(op); const float *m; switch ((op >> 16) & 0xF) { case 3: m=idt; break; //identity // vmidt case 6: m=zero; break; // vmzero case 7: m=one; break; // vmone default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); PC += 4; EatPrefixes(); return; } WriteMatrix(m, sz, vd); PC += 4; EatPrefixes(); } void Int_VVectorInit(MIPSOpcode op) { int vd = _VD; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); static const float ones[4] = {1,1,1,1}; static const float zeros[4] = {0,0,0,0}; const float *v; switch ((op >> 16) & 0xF) { case 6: v=zeros; break; //vzero case 7: v=ones; break; //vone default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); PC += 4; EatPrefixes(); return; } float o[4]; for (int i = 0; i < n; i++) o[i] = v[i]; ApplyPrefixD(o, sz); WriteVector(o, sz, vd); EatPrefixes(); PC += 4; } void Int_Viim(MIPSOpcode op) { int vt = _VT; s32 imm = (s16)(op&0xFFFF); u16 uimm16 = (op&0xFFFF); //V(vt) = (float)imm; float f[1]; int type = (op >> 23) & 7; if (type == 6) f[0] = (float)imm; // viim else if (type == 7) f[0] = Float16ToFloat32((u16)uimm16); // vfim else _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); ApplyPrefixD(f, V_Single); V(vt) = f[0]; PC += 4; EatPrefixes(); } void Int_Vidt(MIPSOpcode op) { int vd = _VD; VectorSize sz = GetVecSize(op); float f[4]; switch (sz) { case V_Pair: f[0] = (vd&1)==0 ? 1.0f : 0.0f; f[1] = (vd&1)==1 ? 1.0f : 0.0f; break; case V_Quad: f[0] = (vd&3)==0 ? 1.0f : 0.0f; f[1] = (vd&3)==1 ? 1.0f : 0.0f; f[2] = (vd&3)==2 ? 1.0f : 0.0f; f[3] = (vd&3)==3 ? 1.0f : 0.0f; break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } ApplyPrefixD(f, sz); WriteVector(f, sz, vd); PC += 4; EatPrefixes(); } // The test really needs some work. void Int_Vmmul(MIPSOpcode op) { float s[16]; float t[16]; float d[16]; int vd = _VD; int vs = _VS; int vt = _VT; MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); ReadMatrix(s, sz, vs); ReadMatrix(t, sz, vt); for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { float sum = 0.0f; for (int c = 0; c < n; c++) { sum += s[b*4 + c] * t[a*4 + c]; } d[a*4 + b] = sum; } } WriteMatrix(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vmscl(MIPSOpcode op) { float d[16]; float s[16]; float t[1]; int vd = _VD; int vs = _VS; int vt = _VT; MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); ReadMatrix(s, sz, vs); ReadVector(t, V_Single, vt); for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { d[a*4 + b] = s[a*4 + b] * t[0]; } } WriteMatrix(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vmmov(MIPSOpcode op) { float s[16]; int vd = _VD; int vs = _VS; MatrixSize sz = GetMtxSize(op); ReadMatrix(s, sz, vs); // This is just for matrices. No prefixes. WriteMatrix(s, sz, vd); PC += 4; EatPrefixes(); } void Int_Vflush(MIPSOpcode op) { // DEBUG_LOG(CPU,"vflush"); PC += 4; } void Int_VV2Op(MIPSOpcode op) { float s[4], d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { switch ((op >> 16) & 0x1f) { case 0: d[i] = s[i]; break; //vmov case 1: d[i] = fabsf(s[i]); break; //vabs case 2: d[i] = -s[i]; break; //vneg // vsat0 changes -0.0 to +0.0, both retain NAN. case 4: if (s[i] <= 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0 case 5: if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1 case 16: d[i] = 1.0f / s[i]; break; //vrcp case 17: d[i] = 1.0f / sqrtf(s[i]); break; //vrsq case 18: { d[i] = vfpu_sin(s[i]); } break; //vsin case 19: { d[i] = vfpu_cos(s[i]); } break; //vcos case 20: d[i] = powf(2.0f, s[i]); break; //vexp2 case 21: d[i] = logf(s[i])/log(2.0f); break; //vlog2 case 22: d[i] = fabsf(sqrtf(s[i])); break; //vsqrt case 23: d[i] = asinf(s[i]) / M_PI_2; break; //vasin case 24: d[i] = -1.0f / s[i]; break; // vnrcp case 26: { d[i] = -vfpu_sin(s[i]); } break; // vnsin case 28: d[i] = 1.0f / powf(2.0, s[i]); break; // vrexp2 default: _dbg_assert_msg_(CPU,0,"Trying to interpret VV2Op instruction that can't be interpreted"); break; } } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vocp(MIPSOpcode op) { float s[4], d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); for (int i = 0; i < GetNumVectorElements(sz); i++) { // Always positive NaN. d[i] = my_isnan(s[i]) ? fabsf(s[i]) : 1.0f - s[i]; } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsocp(MIPSOpcode op) { float s[4], d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); int n = GetNumVectorElements(sz); float x = s[0]; d[0] = nanclamp(1.0f - x, 0.0f, 1.0f); d[1] = nanclamp(x, 0.0f, 1.0f); VectorSize outSize = V_Pair; if (n > 1) { float y = s[1]; d[2] = nanclamp(1.0f - y, 0.0f, 1.0f); d[3] = nanclamp(y, 0.0f, 1.0f); outSize = V_Quad; } WriteVector(d, outSize, vd); PC += 4; EatPrefixes(); } void Int_Vsgn(MIPSOpcode op) { float s[4], d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { // To handle NaNs correctly, we do this with integer hackery u32 val; memcpy(&val, &s[i], sizeof(u32)); if (val == 0 || val == 0x80000000) d[i] = 0.0f; else if ((val >> 31) == 0) d[i] = 1.0f; else d[i] = -1.0f; } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } inline int round_vfpu_n(double param) { // return floorf(param); return (int)round_ieee_754(param); } void Int_Vf2i(MIPSOpcode op) { float s[4]; int d[4]; int vd = _VD; int vs = _VS; int imm = (op >> 16) & 0x1f; float mult = (float)(1UL << imm); VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); //TODO: and the mask to kill everything but swizzle for (int i = 0; i < GetNumVectorElements(sz); i++) { if (my_isnan(s[i])) { d[i] = 0x7FFFFFFF; continue; } double sv = s[i] * mult; // (float)0x7fffffff == (float)0x80000000 // Cap/floor it to 0x7fffffff / 0x80000000 if (sv > (double)0x7fffffff) { d[i] = 0x7fffffff; } else if (sv <= (double)(int)0x80000000) { d[i] = 0x80000000; } else { switch ((op >> 21) & 0x1f) { case 16: d[i] = (int)round_vfpu_n(sv); break; //(floor(sv + 0.5f)); break; //n case 17: d[i] = s[i]>=0 ? (int)floor(sv) : (int)ceil(sv); break; //z case 18: d[i] = (int)ceil(sv); break; //u case 19: d[i] = (int)floor(sv); break; //d default: d[i] = 0x7FFFFFFF; break; } } } ApplyPrefixD(reinterpret_cast(d), sz, true); WriteVector(reinterpret_cast(d), sz, vd); PC += 4; EatPrefixes(); } void Int_Vi2f(MIPSOpcode op) { int s[4]; float d[4]; int vd = _VD; int vs = _VS; int imm = (op >> 16) & 0x1f; float mult = 1.0f/(float)(1UL << imm); VectorSize sz = GetVecSize(op); ReadVector(reinterpret_cast(s), sz, vs); ApplySwizzleS(reinterpret_cast(s), sz); //TODO: and the mask to kill everything but swizzle for (int i = 0; i < GetNumVectorElements(sz); i++) { d[i] = (float)s[i] * mult; } ApplyPrefixD(d, sz); //TODO: and the mask to kill everything but mask WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vh2f(MIPSOpcode op) { u32 s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(reinterpret_cast(s), sz, vs); ApplySwizzleS(reinterpret_cast(s), sz); VectorSize outsize = V_Pair; switch (sz) { case V_Single: outsize = V_Pair; d[0] = ExpandHalf(s[0] & 0xFFFF); d[1] = ExpandHalf(s[0] >> 16); break; case V_Pair: outsize = V_Quad; d[0] = ExpandHalf(s[0] & 0xFFFF); d[1] = ExpandHalf(s[0] >> 16); d[2] = ExpandHalf(s[1] & 0xFFFF); d[3] = ExpandHalf(s[1] >> 16); break; default: _dbg_assert_msg_(CPU, 0, "Trying to interpret Int_Vh2f instruction that can't be interpreted"); memset(d, 0, sizeof(d)); break; } ApplyPrefixD(d, outsize); WriteVector(d, outsize, vd); PC += 4; EatPrefixes(); } void Int_Vf2h(MIPSOpcode op) { float s[4]; u32 d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); VectorSize outsize = V_Single; switch (sz) { case V_Pair: outsize = V_Single; d[0] = ShrinkToHalf(s[0]) | ((u32)ShrinkToHalf(s[1]) << 16); break; case V_Quad: outsize = V_Pair; d[0] = ShrinkToHalf(s[0]) | ((u32)ShrinkToHalf(s[1]) << 16); d[1] = ShrinkToHalf(s[2]) | ((u32)ShrinkToHalf(s[3]) << 16); break; default: _dbg_assert_msg_(CPU, 0, "Trying to interpret Int_Vf2h instruction that can't be interpreted"); break; } ApplyPrefixD(reinterpret_cast(d), outsize); WriteVector(reinterpret_cast(d), outsize, vd); PC += 4; EatPrefixes(); } void Int_Vx2i(MIPSOpcode op) { u32 s[4]; u32 d[4] = {0}; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); VectorSize oz = sz; ReadVector(reinterpret_cast(s), sz, vs); // ForbidVPFXS switch ((op >> 16) & 3) { case 0: // vuc2i // Quad is the only option. // This operation is weird. This particular way of working matches hw but does not // seem quite sane. // I guess it's used for fixed-point math, and fills more bits to facilitate // conversion between 8-bit and 16-bit values. But then why not do it in vc2i? { u32 value = s[0]; u32 value2 = value / 2; for (int i = 0; i < 4; i++) { d[i] = (u32)((value & 0xFF) * 0x01010101) >> 1; value >>= 8; } oz = V_Quad; } break; case 1: // vc2i // Quad is the only option { u32 value = s[0]; d[0] = (value & 0xFF) << 24; d[1] = (value & 0xFF00) << 16; d[2] = (value & 0xFF0000) << 8; d[3] = (value & 0xFF000000); oz = V_Quad; } break; case 2: // vus2i oz = V_Pair; switch (sz) { case V_Pair: oz = V_Quad; // Intentional fallthrough. case V_Single: for (int i = 0; i < GetNumVectorElements(sz); i++) { u32 value = s[i]; d[i * 2] = (value & 0xFFFF) << 15; d[i * 2 + 1] = (value & 0xFFFF0000) >> 1; } break; default: ERROR_LOG_REPORT(CPU, "vus2i with more than 2 elements."); break; } break; case 3: // vs2i oz = V_Pair; switch (sz) { case V_Pair: oz = V_Quad; // Intentional fallthrough. case V_Single: for (int i = 0; i < GetNumVectorElements(sz); i++) { u32 value = s[i]; d[i * 2] = (value & 0xFFFF) << 16; d[i * 2 + 1] = value & 0xFFFF0000; } break; default: ERROR_LOG_REPORT(CPU, "vs2i with more than 2 elements."); break; } break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } ApplyPrefixD(reinterpret_cast(d),oz, true); // Only write mask WriteVector(reinterpret_cast(d),oz,vd); PC += 4; EatPrefixes(); } void Int_Vi2x(MIPSOpcode op) { int s[4]; u32 d[2] = {0}; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); VectorSize oz; ReadVector(reinterpret_cast(s), sz, vs); ApplySwizzleS(reinterpret_cast(s), sz); //TODO: and the mask to kill everything but swizzle switch ((op >> 16)&3) { case 0: //vi2uc { for (int i = 0; i < 4; i++) { int v = s[i]; if (v < 0) v = 0; v >>= 23; d[0] |= ((u32)v & 0xFF) << (i * 8); } oz = V_Single; } break; case 1: //vi2c { for (int i = 0; i < 4; i++) { u32 v = s[i]; d[0] |= (v >> 24) << (i * 8); } oz = V_Single; } break; case 2: //vi2us { for (int i = 0; i < GetNumVectorElements(sz) / 2; i++) { int low = s[i * 2]; int high = s[i * 2 + 1]; if (low < 0) low = 0; if (high < 0) high = 0; low >>= 15; high >>= 15; d[i] = low | (high << 16); } switch (sz) { case V_Quad: oz = V_Pair; break; case V_Pair: oz = V_Single; break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); oz = V_Single; break; } } break; case 3: //vi2s { for (int i = 0; i < GetNumVectorElements(sz) / 2; i++) { u32 low = s[i * 2]; u32 high = s[i * 2 + 1]; low >>= 16; high >>= 16; d[i] = low | (high << 16); } switch (sz) { case V_Quad: oz = V_Pair; break; case V_Pair: oz = V_Single; break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); oz = V_Single; break; } } break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); oz = V_Single; break; } ApplyPrefixD(reinterpret_cast(d),oz); WriteVector(reinterpret_cast(d),oz,vd); PC += 4; EatPrefixes(); } void Int_ColorConv(MIPSOpcode op) { int vd = _VD; int vs = _VS; u32 s[4]; VectorSize sz = V_Quad; ReadVector(reinterpret_cast(s), sz, vs); u16 colors[4]; for (int i = 0; i < 4; i++) { u32 in = s[i]; u16 col = 0; switch ((op >> 16) & 3) { case 1: // 4444 { int a = ((in >> 24) & 0xFF) >> 4; int b = ((in >> 16) & 0xFF) >> 4; int g = ((in >> 8) & 0xFF) >> 4; int r = ((in) & 0xFF) >> 4; col = (a << 12) | (b << 8) | (g << 4 ) | (r); break; } case 2: // 5551 { int a = ((in >> 24) & 0xFF) >> 7; int b = ((in >> 16) & 0xFF) >> 3; int g = ((in >> 8) & 0xFF) >> 3; int r = ((in) & 0xFF) >> 3; col = (a << 15) | (b << 10) | (g << 5) | (r); break; } case 3: // 565 { int b = ((in >> 16) & 0xFF) >> 3; int g = ((in >> 8) & 0xFF) >> 2; int r = ((in) & 0xFF) >> 3; col = (b << 11) | (g << 5) | (r); break; } } colors[i] = col; } u32 ov[2] = {(u32)colors[0] | (colors[1] << 16), (u32)colors[2] | (colors[3] << 16)}; WriteVector((const float *)ov, V_Pair, vd); PC += 4; EatPrefixes(); } void Int_VDot(MIPSOpcode op) { float s[4], t[4]; float d; int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); float sum = 0.0f; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { sum += s[i]*t[i]; } d = sum; ApplyPrefixD(&d,V_Single); WriteVector(&d, V_Single, vd); PC += 4; EatPrefixes(); } void Int_VHdp(MIPSOpcode op) { float s[4], t[4]; float d; int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); float sum = 0.0f; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { sum += (i == n - 1) ? t[i] : s[i]*t[i]; } d = my_isnan(sum) ? fabsf(sum) : sum; ApplyPrefixD(&d,V_Single); WriteVector(&d, V_Single, vd); PC += 4; EatPrefixes(); } void Int_Vbfy(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); int n = GetNumVectorElements(sz); if (op & 0x10000) { // vbfy2 d[0] = s[0] + s[2]; d[1] = s[1] + s[3]; d[2] = s[0] - s[2]; d[3] = s[1] - s[3]; } else { d[0] = s[0] + s[1]; d[1] = s[0] - s[1]; if (n == 4) { d[2] = s[2] + s[3]; d[3] = s[2] - s[3]; } } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsrt1(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float x = s[0]; float y = s[1]; float z = s[2]; float w = s[3]; d[0] = std::min(x, y); d[1] = std::max(x, y); d[2] = std::min(z, w); d[3] = std::max(z, w); ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsrt2(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float x = s[0]; float y = s[1]; float z = s[2]; float w = s[3]; d[0] = std::min(x, w); d[1] = std::min(y, z); d[2] = std::max(y, z); d[3] = std::max(x, w); ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsrt3(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float x = s[0]; float y = s[1]; float z = s[2]; float w = s[3]; d[0] = std::max(x, y); d[1] = std::min(x, y); d[2] = std::max(z, w); d[3] = std::min(z, w); ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsrt4(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float x = s[0]; float y = s[1]; float z = s[2]; float w = s[3]; d[0] = std::max(x, w); d[1] = std::max(y, z); d[2] = std::min(y, z); d[3] = std::min(x, w); ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vcrs(MIPSOpcode op) { //half a cross product float s[4], t[4]; float d[4]; int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); if (sz != V_Triple) _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); ReadVector(s, sz, vs); ReadVector(t, sz, vt); // no swizzles allowed d[0] = s[1] * t[2]; d[1] = s[2] * t[0]; d[2] = s[0] * t[1]; ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vdet(MIPSOpcode op) { float s[4], t[4]; float d[4]; int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); if (sz != V_Pair) _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); // TODO: The swizzle on t behaves oddly with constants, but sign changes seem to work. // Also, seems to round in a non-standard way (sometimes toward zero, not always.) d[0] = s[0] * t[1] - s[1] * t[0]; ApplyPrefixD(d, sz); WriteVector(d, V_Single, vd); PC += 4; EatPrefixes(); } void Int_Vfad(MIPSOpcode op) { float s[4]; float d; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float sum = 0.0f; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { sum += s[i]; } d = sum; ApplyPrefixD(&d,V_Single); V(vd) = d; PC += 4; EatPrefixes(); } void Int_Vavg(MIPSOpcode op) { float s[4]; float d; int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float sum = 0.0f; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { sum += s[i]; } d = sum / n; ApplyPrefixD(&d, V_Single); V(vd) = d; PC += 4; EatPrefixes(); } void Int_VScl(MIPSOpcode op) { float s[4]; float d[4]; int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); ReadVector(s, sz, vs); ApplySwizzleS(s, sz); float scale = V(vt); if (currentMIPS->vfpuCtrl[VFPU_CTRL_TPREFIX] != 0xE4) { // WARN_LOG(CPU, "Broken T prefix used with VScl: %08x / %08x", currentMIPS->vfpuCtrl[VFPU_CTRL_TPREFIX], op); ApplySwizzleT(&scale, V_Single); } int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { d[i] = s[i] * scale; } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vrnds(MIPSOpcode op) { int vd = _VD; int seed = VI(vd); currentMIPS->rng.Init(seed); PC += 4; EatPrefixes(); } void Int_VrndX(MIPSOpcode op) { FloatBits d; int vd = _VD; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { switch ((op >> 16) & 0x1f) { case 1: d.u[i] = currentMIPS->rng.R32(); break; // vrndi case 2: d.f[i] = 1.0f + ((float)currentMIPS->rng.R32() / 0xFFFFFFFF); break; // vrndf1 TODO: make more accurate case 3: d.f[i] = 2.0f + 2 * ((float)currentMIPS->rng.R32() / 0xFFFFFFFF); break; // vrndf2 TODO: make more accurate default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); } } ApplyPrefixD(d.f, sz); WriteVector(d.f, sz, vd); PC += 4; EatPrefixes(); } // Generates one line of a rotation matrix around one of the three axes void Int_Vrot(MIPSOpcode op) { int vd = _VD; int vs = _VS; int imm = (op >> 16) & 0x1f; VectorSize sz = GetVecSize(op); bool negSin = (imm & 0x10) ? true : false; float sine, cosine; vfpu_sincos(V(vs), sine, cosine); if (negSin) sine = -sine; float d[4] = {0}; if (((imm >> 2) & 3) == (imm & 3)) { for (int i = 0; i < 4; i++) d[i] = sine; } d[(imm >> 2) & 3] = sine; d[imm & 3] = cosine; WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vtfm(MIPSOpcode op) { int vd = _VD; int vs = _VS; int vt = _VT; int ins = (op >> 23) & 7; VectorSize sz = GetVecSize(op); MatrixSize msz = GetMtxSize(op); int n = GetNumVectorElements(sz); bool homogenous = false; if (n == ins) { n++; sz = (VectorSize)((int)(sz) + 1); msz = (MatrixSize)((int)(msz) + 1); homogenous = true; } float s[16]; ReadMatrix(s, msz, vs); float t[4]; ReadVector(t, sz, vt); float d[4]; if (homogenous) { for (int i = 0; i < n; i++) { d[i] = 0.0f; for (int k = 0; k < n; k++) { d[i] += (k == n-1) ? s[i*4+k] : (s[i*4+k] * t[k]); } } } else if (n == ins + 1) { for (int i = 0; i < n; i++) { d[i] = 0.0f; for (int k = 0; k < n; k++) { d[i] += s[i*4+k] * t[k]; } } } else { Reporting::ReportMessage("Trying to interpret instruction that can't be interpreted (BADVTFM)"); _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted (BADVTFM)"); memset(d, 0, sizeof(d)); } WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_SV(MIPSOpcode op) { s32 imm = (signed short)(op&0xFFFC); int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5); int rs = _RS; u32 addr = R(rs) + imm; switch (op >> 26) { case 50: //lv.s VI(vt) = Memory::Read_U32(addr); break; case 58: //sv.s Memory::Write_U32(VI(vt), addr); break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } PC += 4; } void Int_Mftv(MIPSOpcode op) { int imm = op & 0xFF; int rt = _RT; switch ((op >> 21) & 0x1f) { case 3: //mfv / mfvc // rt = 0, imm = 255 appears to be used as a CPU interlock by some games. if (rt != 0) { if (imm < 128) { R(rt) = VI(imm); } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc R(rt) = currentMIPS->vfpuCtrl[imm - 128]; } else { //ERROR - maybe need to make this value too an "interlock" value? _dbg_assert_msg_(CPU,0,"mfv - invalid register"); } } break; case 7: //mtv if (imm < 128) { VI(imm) = R(rt); } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc currentMIPS->vfpuCtrl[imm - 128] = R(rt); } else { //ERROR _dbg_assert_msg_(CPU,0,"mtv - invalid register"); } break; default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } PC += 4; } void Int_Vmfvc(MIPSOpcode op) { int vs = _VS; int imm = op & 0xFF; if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) { VI(vs) = currentMIPS->vfpuCtrl[imm - 128]; } PC += 4; } void Int_Vmtvc(MIPSOpcode op) { int vs = _VS; int imm = op & 0xFF; if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) { currentMIPS->vfpuCtrl[imm - 128] = VI(vs); } PC += 4; } void Int_Vcst(MIPSOpcode op) { int conNum = (op >> 16) & 0x1f; int vd = _VD; VectorSize sz = GetVecSize(op); float c = cst_constants[conNum]; float temp[4] = {c,c,c,c}; ApplyPrefixD(temp, sz); WriteVector(temp, sz, vd); PC += 4; EatPrefixes(); } void Int_Vcmp(MIPSOpcode op) { int vs = _VS; int vt = _VT; int cond = op & 0xf; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); float s[4]; float t[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); int cc = 0; int or_val = 0; int and_val = 1; int affected_bits = (1 << 4) | (1 << 5); // 4 and 5 for (int i = 0; i < n; i++) { int c; // These set c to 0 or 1, nothing else. switch (cond) { case VC_FL: c = 0; break; case VC_EQ: c = s[i] == t[i]; break; case VC_LT: c = s[i] < t[i]; break; case VC_LE: c = s[i] <= t[i]; break; case VC_TR: c = 1; break; case VC_NE: c = s[i] != t[i]; break; case VC_GE: c = s[i] >= t[i]; break; case VC_GT: c = s[i] > t[i]; break; case VC_EZ: c = s[i] == 0.0f || s[i] == -0.0f; break; case VC_EN: c = my_isnan(s[i]); break; case VC_EI: c = my_isinf(s[i]); break; case VC_ES: c = my_isnanorinf(s[i]); break; // Tekken Dark Resurrection case VC_NZ: c = s[i] != 0; break; case VC_NN: c = !my_isnan(s[i]); break; case VC_NI: c = !my_isinf(s[i]); break; case VC_NS: c = !(my_isnanorinf(s[i])); break; // How about t[i] ? default: _dbg_assert_msg_(CPU,0,"Unsupported vcmp condition code %d", cond); PC += 4; EatPrefixes(); return; } cc |= (c<vfpuCtrl[VFPU_CTRL_CC] = (currentMIPS->vfpuCtrl[VFPU_CTRL_CC] & ~affected_bits) | ((cc | (or_val << 4) | (and_val << 5)) & affected_bits); PC += 4; EatPrefixes(); } void Int_Vminmax(MIPSOpcode op) { int vt = _VT; int vs = _VS; int vd = _VD; int cond = op&15; VectorSize sz = GetVecSize(op); int numElements = GetNumVectorElements(sz); FloatBits s; FloatBits t; FloatBits d; ReadVector(s.f, sz, vs); ApplySwizzleS(s.f, sz); ReadVector(t.f, sz, vt); ApplySwizzleT(t.f, sz); // If both are zero, take t's sign. // Otherwise: -NAN < -INF < real < INF < NAN (higher mantissa is farther from 0.) switch ((op >> 23) & 3) { case 2: // vmin for (int i = 0; i < numElements; i++) { if (my_isnanorinf(s.f[i]) || my_isnanorinf(t.f[i])) { // If both are negative, we flip the comparison (not two's compliment.) if (s.i[i] < 0 && t.i[i] < 0) { // If at least one side is NAN, we take the highest mantissa bits. d.i[i] = std::max(t.i[i], s.i[i]); } else { // Otherwise, we take the lowest value (negative or lowest mantissa.) d.i[i] = std::min(t.i[i], s.i[i]); } } else { d.f[i] = std::min(t.f[i], s.f[i]); } } break; case 3: // vmax for (int i = 0; i < numElements; i++) { // This is the same logic as vmin, just reversed. if (my_isnanorinf(s.f[i]) || my_isnanorinf(t.f[i])) { if (s.i[i] < 0 && t.i[i] < 0) { d.i[i] = std::min(t.i[i], s.i[i]); } else { d.i[i] = std::max(t.i[i], s.i[i]); } } else { d.f[i] = std::max(t.f[i], s.f[i]); } } break; default: _dbg_assert_msg_(CPU,0,"unknown min/max op %d", cond); PC += 4; EatPrefixes(); return; } ApplyPrefixD(d.f, sz); WriteVector(d.f, sz, vd); PC += 4; EatPrefixes(); } // This doesn't quite pass all the tests :/ void Int_Vscmp(MIPSOpcode op) { int vt = _VT; int vs = _VS; int vd = _VD; VectorSize sz = GetVecSize(op); float s[4]; float t[4]; float d[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); int n = GetNumVectorElements(sz); for (int i = 0; i < n ; i++) { float a = s[i] - t[i]; d[i] = (float) ((0.0 < a) - (a < 0.0)); } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsge(MIPSOpcode op) { int vt = _VT; int vs = _VS; int vd = _VD; int cond = op&15; VectorSize sz = GetVecSize(op); int numElements = GetNumVectorElements(sz); float s[4]; float t[4]; float d[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { if ( my_isnan(s[i]) || my_isnan(t[i]) ) d[i] = 0.0f; else d[i] = s[i] >= t[i] ? 1.0f : 0.0f; } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vslt(MIPSOpcode op) { int vt = _VT; int vs = _VS; int vd = _VD; int cond = op&15; VectorSize sz = GetVecSize(op); int numElements = GetNumVectorElements(sz); float s[4]; float t[4]; float d[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { if ( my_isnan(s[i]) || my_isnan(t[i]) ) d[i] = 0.0f; else d[i] = s[i] < t[i] ? 1.0f : 0.0f; } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vcmov(MIPSOpcode op) { int vs = _VS; int vd = _VD; int tf = (op >> 19) & 1; int imm3 = (op >> 16) & 7; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); float s[4]; float d[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(d, sz, vd); //Yes! int CC = currentMIPS->vfpuCtrl[VFPU_CTRL_CC]; if (imm3 < 6) { if (((CC >> imm3) & 1) == !tf) { for (int i = 0; i < n; i++) d[i] = s[i]; } } else if (imm3 == 6) { for (int i = 0; i < n; i++) { if (((CC >> i) & 1) == !tf) d[i] = s[i]; } } else { ERROR_LOG_REPORT(CPU, "Bad Imm3 in cmov: %d", imm3); } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_VecDo3(MIPSOpcode op) { int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); float s[4]; float t[4]; float d[4]; ReadVector(s, sz, vs); ApplySwizzleS(s, sz); ReadVector(t, sz, vt); ApplySwizzleT(t, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { switch(op >> 26) { case 24: //VFPU0 switch ((op >> 23)&7) { case 0: d[i] = s[i] + t[i]; break; //vadd case 1: d[i] = s[i] - t[i]; break; //vsub case 7: d[i] = s[i] / t[i]; break; //vdiv default: goto bad; } break; case 25: //VFPU1 switch ((op >> 23)&7) { case 0: d[i] = s[i] * t[i]; break; //vmul default: goto bad; } break; default: bad: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } } ApplyPrefixD(d, sz); WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_CrossQuat(MIPSOpcode op) { int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); float s[4]; float t[4]; float d[4]; ReadVector(s, sz, vs); ReadVector(t, sz, vt); switch (sz) { case V_Triple: // vcrsp.t d[0] = s[1]*t[2] - s[2]*t[1]; d[1] = s[2]*t[0] - s[0]*t[2]; d[2] = s[0]*t[1] - s[1]*t[0]; break; case V_Quad: // vqmul.q d[0] = s[0]*t[3] + s[1]*t[2] - s[2]*t[1] + s[3]*t[0]; d[1] = -s[0]*t[2] + s[1]*t[3] + s[2]*t[0] + s[3]*t[1]; d[2] = s[0]*t[1] - s[1]*t[0] + s[2]*t[3] + s[3]*t[2]; d[3] = -s[0]*t[0] - s[1]*t[1] - s[2]*t[2] + s[3]*t[3]; break; default: Reporting::ReportMessage("CrossQuat instruction with wrong size"); _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } WriteVector(d, sz, vd); PC += 4; EatPrefixes(); } void Int_Vlgb(MIPSOpcode op) { // S & D valid Reporting::ReportMessage("vlgb not implemented"); if (!PSP_CoreParameter().headLess) { _dbg_assert_msg_(CPU,0,"vlgb not implemented"); } PC += 4; EatPrefixes(); } // There has to be a concise way of expressing this in terms of // bit manipulation on the raw floats. void Int_Vwbn(MIPSOpcode op) { int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); FloatBits d; FloatBits s; u8 exp = (u8)((op >> 16) & 0xFF); ReadVector(s.f, sz, vs); // TODO: Test swizzle, t? ApplySwizzleS(s.f, sz); if (sz != V_Single) { ERROR_LOG_REPORT(CPU, "vwbn not implemented for size %d", GetNumVectorElements(sz)); } for (int i = 0; i < GetNumVectorElements(sz); ++i) { u32 sigbit = s.u[i] & 0x80000000; u32 prevExp = (s.u[i] & 0x7F800000) >> 23; u32 mantissa = (s.u[i] & 0x007FFFFF) | 0x00800000; if (prevExp != 0xFF && prevExp != 0) { if (exp > prevExp) { s8 shift = (exp - prevExp) & 0xF; mantissa = mantissa >> shift; } else { s8 shift = (prevExp - exp) & 0xF; mantissa = mantissa << shift; } d.u[i] = sigbit | (mantissa & 0x007FFFFF) | (exp << 23); } else { d.u[i] = s.u[i] | (exp << 23); } } ApplyPrefixD(d.f, sz); WriteVector(d.f, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsbn(MIPSOpcode op) { int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); FloatBits d; FloatBits s; u8 exp = (u8)(127 + VI(vt)); ReadVector(s.f, sz, vs); // TODO: Test swizzle, t? ApplySwizzleS(s.f, sz); if (sz != V_Single) { ERROR_LOG_REPORT(CPU, "vsbn not implemented for size %d", GetNumVectorElements(sz)); } for (int i = 0; i < GetNumVectorElements(sz); ++i) { // Simply replace the exponent bits. u32 prev = s.u[i] & 0x7F800000; if (prev != 0 && prev != 0x7F800000) { d.u[i] = (s.u[i] & ~0x7F800000) | (exp << 23); } else { d.u[i] = s.u[i]; } } ApplyPrefixD(d.f, sz); WriteVector(d.f, sz, vd); PC += 4; EatPrefixes(); } void Int_Vsbz(MIPSOpcode op) { Reporting::ReportMessage("vsbz not implemented"); if (!PSP_CoreParameter().headLess) { _dbg_assert_msg_(CPU,0,"vsbz not implemented"); } PC += 4; EatPrefixes(); } }