// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "gfx_es2/gpu_features.h" #if defined(_WIN32) && defined(_DEBUG) #include "Common/CommonWindows.h" #endif #include "base/stringutil.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "Core/Config.h" #include "GPU/GLES/VertexShaderGenerator.h" #include "GPU/GLES/ShaderManager.h" #include "GPU/Common/VertexDecoderCommon.h" // SDL 1.2 on Apple does not have support for OpenGL 3 and hence needs // special treatment in the shader generator. #ifdef __APPLE__ #define FORCE_OPENGL_2_0 #endif #undef WRITE #define WRITE p+=sprintf bool CanUseHardwareTransform(int prim) { if (!g_Config.bHardwareTransform) return false; return !gstate.isModeThrough() && prim != GE_PRIM_RECTANGLES; } void ComputeVertexShaderID(ShaderID *id, u32 vertType, bool useHWTransform) { bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = gstate.getShadeMode() == GE_SHADE_FLAT && !gstate.isModeClear(); bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0; bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); int id0 = 0; int id1 = 0; id0 = lmode & 1; id0 |= (gstate.isModeThrough() & 1) << 1; id0 |= (enableFog & 1) << 2; id0 |= (hasColor & 1) << 3; if (doTexture) { id0 |= 1 << 4; id0 |= (gstate_c.flipTexture & 1) << 5; id0 |= (doTextureProjection & 1) << 6; } if (useHWTransform) { id0 |= 1 << 8; id0 |= (hasNormal & 1) << 9; // UV generation mode id0 |= gstate.getUVGenMode() << 16; // The next bits are used differently depending on UVgen mode if (doTextureProjection) { id0 |= gstate.getUVProjMode() << 18; } else if (doShadeMapping) { id0 |= gstate.getUVLS0() << 18; id0 |= gstate.getUVLS1() << 20; } // Bones if (vertTypeIsSkinningEnabled(vertType)) id0 |= (TranslateNumBones(vertTypeGetNumBoneWeights(vertType)) - 1) << 22; // Okay, d[1] coming up. ============== if (gstate.isLightingEnabled() || doShadeMapping) { // Light bits for (int i = 0; i < 4; i++) { id1 |= gstate.getLightComputation(i) << (i * 4); id1 |= gstate.getLightType(i) << (i * 4 + 2); } id1 |= (gstate.materialupdate & 7) << 16; for (int i = 0; i < 4; i++) { id1 |= (gstate.isLightChanEnabled(i) & 1) << (20 + i); } // doShadeMapping is stored as UVGenMode, so this is enough for isLightingEnabled. id1 |= 1 << 24; } // 2 bits. id1 |= (vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT) << 25; id1 |= (gstate.areNormalsReversed() & 1) << 27; if (doTextureProjection && gstate.getUVProjMode() == GE_PROJMAP_UV) { id1 |= ((vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT) << 28; // two bits } else { id1 |= (hasTexcoord & 1) << 28; } } id1 |= (doFlatShading & 1) << 29; id->d[0] = id0; id->d[1] = id1; } static const char * const boneWeightAttrDecl[9] = { "#ERROR#", "attribute mediump float w1;\n", "attribute mediump vec2 w1;\n", "attribute mediump vec3 w1;\n", "attribute mediump vec4 w1;\n", "attribute mediump vec4 w1;\nattribute mediump float w2;\n", "attribute mediump vec4 w1;\nattribute mediump vec2 w2;\n", "attribute mediump vec4 w1;\nattribute mediump vec3 w2;\n", "attribute mediump vec4 w1, w2;\n", }; static const char * const boneWeightInDecl[9] = { "#ERROR#", "in mediump float w1;\n", "in mediump vec2 w1;\n", "in mediump vec3 w1;\n", "in mediump vec4 w1;\n", "in mediump vec4 w1;\nin mediump float w2;\n", "in mediump vec4 w1;\nin mediump vec2 w2;\n", "in mediump vec4 w1;\nin mediump vec3 w2;\n", "in mediump vec4 w1, w2;\n", }; enum DoLightComputation { LIGHT_OFF, LIGHT_SHADE, LIGHT_FULL, }; void GenerateVertexShader(int prim, u32 vertType, char *buffer, bool useHWTransform) { char *p = buffer; // #define USE_FOR_LOOP // In GLSL ES 3.0, you use "out" variables instead. bool glslES30 = false; const char *varying = "varying"; const char *attribute = "attribute"; const char * const * boneWeightDecl = boneWeightAttrDecl; bool highpFog = false; bool highpTexcoord = false; #if defined(USING_GLES2) // Let's wait until we have a real use for this. // ES doesn't support dual source alpha :( if (gl_extensions.GLES3) { WRITE(p, "#version 300 es\n"); glslES30 = true; } else { WRITE(p, "#version 100\n"); // GLSL ES 1.0 } WRITE(p, "precision highp float;\n"); // PowerVR needs highp to do the fog in MHU correctly. // Others don't, and some can't handle highp in the fragment shader. highpFog = (gl_extensions.bugs & BUG_PVR_SHADER_PRECISION_BAD) ? true : false; highpTexcoord = highpFog; #elif !defined(FORCE_OPENGL_2_0) if (gl_extensions.VersionGEThan(3, 3, 0)) { glslES30 = true; WRITE(p, "#version 330\n"); WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); } else if (gl_extensions.VersionGEThan(3, 0, 0)) { WRITE(p, "#version 130\n"); // Remove lowp/mediump in non-mobile non-glsl 3 implementations WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); } else { WRITE(p, "#version 110\n"); // Remove lowp/mediump in non-mobile non-glsl 3 implementations WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); } #else // Need to remove lowp/mediump for Mac WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); #endif if (glslES30) { attribute = "in"; varying = "out"; boneWeightDecl = boneWeightInDecl; } bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled() && !gstate.isModeThrough(); bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = gstate.getShadeMode() == GE_SHADE_FLAT && !gstate.isModeClear(); bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0 || !useHWTransform; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0 && useHWTransform; bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0 || !useHWTransform; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool flipV = gstate_c.flipTexture; // This also means that we are texturing from a render target bool flipNormal = gstate.areNormalsReversed(); const char *shading = ""; if (glslES30) shading = doFlatShading ? "flat" : ""; DoLightComputation doLight[4] = {LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF}; if (useHWTransform) { int shadeLight0 = doShadeMapping ? gstate.getUVLS0() : -1; int shadeLight1 = doShadeMapping ? gstate.getUVLS1() : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (gstate.isLightingEnabled() && gstate.isLightChanEnabled(i)) doLight[i] = LIGHT_FULL; } } if (vertTypeIsSkinningEnabled(vertType)) { WRITE(p, "%s", boneWeightDecl[TranslateNumBones(vertTypeGetNumBoneWeights(vertType))]); } if (useHWTransform) WRITE(p, "%s vec3 position;\n", attribute); else WRITE(p, "%s vec4 position;\n", attribute); // need to pass the fog coord in w if (useHWTransform && hasNormal) WRITE(p, "%s mediump vec3 normal;\n", attribute); if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureProjection && !throughmode) WRITE(p, "%s vec3 texcoord;\n", attribute); else WRITE(p, "%s vec2 texcoord;\n", attribute); } if (hasColor) { WRITE(p, "%s lowp vec4 color0;\n", attribute); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "%s lowp vec3 color1;\n", attribute); } if (gstate.isModeThrough()) { WRITE(p, "uniform mat4 u_proj_through;\n"); } else { WRITE(p, "uniform mat4 u_proj;\n"); // Add all the uniforms we'll need to transform properly. } bool prescale = g_Config.bPrescaleUV && !throughmode && (gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_COORDS || gstate.getUVGenMode() == GE_TEXMAP_UNKNOWN); if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "uniform mat4 u_world;\n"); WRITE(p, "uniform mat4 u_view;\n"); if (doTextureProjection) WRITE(p, "uniform mediump mat4 u_texmtx;\n"); if (vertTypeIsSkinningEnabled(vertType)) { int numBones = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); #ifdef USE_BONE_ARRAY WRITE(p, "uniform mediump mat4 u_bone[%i];\n", numBones); #else for (int i = 0; i < numBones; i++) { WRITE(p, "uniform mat4 u_bone%i;\n", i); } #endif } if (doTexture && (flipV || !prescale || gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP || gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX)) { WRITE(p, "uniform vec4 u_uvscaleoffset;\n"); } for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "uniform vec3 u_lightpos%i;\n", i); } if (doLight[i] == LIGHT_FULL) { GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i); WRITE(p, "uniform mediump float u_lightangle%i;\n", i); WRITE(p, "uniform mediump float u_lightspotCoef%i;\n", i); } WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i); WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i); if (gstate.isUsingSpecularLight(i)) WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i); } } if (gstate.isLightingEnabled()) { WRITE(p, "uniform lowp vec4 u_ambient;\n"); if ((gstate.materialupdate & 2) == 0 || !hasColor) WRITE(p, "uniform lowp vec3 u_matdiffuse;\n"); // if ((gstate.materialupdate & 4) == 0) WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha WRITE(p, "uniform lowp vec3 u_matemissive;\n"); } } if (useHWTransform || !hasColor) WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha if (enableFog) { WRITE(p, "uniform highp vec2 u_fogcoef;\n"); } WRITE(p, "%s %s lowp vec4 v_color0;\n", shading, varying); if (lmode) { WRITE(p, "%s %s lowp vec3 v_color1;\n", shading, varying); } if (doTexture) { if (doTextureProjection) WRITE(p, "%s %s vec3 v_texcoord;\n", varying, highpTexcoord ? "highp" : "mediump"); else WRITE(p, "%s %s vec2 v_texcoord;\n", varying, highpTexcoord ? "highp" : "mediump"); } if (enableFog) { // See the fragment shader generator if (highpFog) { WRITE(p, "%s highp float v_fogdepth;\n", varying); } else { WRITE(p, "%s mediump float v_fogdepth;\n", varying); } } WRITE(p, "void main() {\n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (throughmode && doTextureProjection) { WRITE(p, " v_texcoord = vec3(texcoord, 1.0);\n"); } else { WRITE(p, " v_texcoord = texcoord;\n"); } } if (hasColor) { WRITE(p, " v_color0 = color0;\n"); if (lmode) WRITE(p, " v_color1 = color1;\n"); } else { WRITE(p, " v_color0 = u_matambientalpha;\n"); if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " v_fogdepth = position.w;\n"); } if (gstate.isModeThrough()) { WRITE(p, " gl_Position = u_proj_through * vec4(position.xyz, 1.0);\n"); } else { WRITE(p, " gl_Position = u_proj * vec4(position.xyz, 1.0);\n"); } } else { // Step 1: World Transform / Skinning if (!vertTypeIsSkinningEnabled(vertType)) { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = (u_world * vec4(position.xyz, 1.0)).xyz;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(%snormal, 0.0)).xyz);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } else { int numWeights = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); static const char *rescale[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; #if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY) // To loop through the weights, we unfortunately need to put them in a float array. // GLSL ES sucks - no way to directly initialize an array! switch (numWeights) { case 1: WRITE(p, " float w[1]; w[0] = w1;\n"); break; case 2: WRITE(p, " float w[2]; w[0] = w1.x; w[1] = w1.y;\n"); break; case 3: WRITE(p, " float w[3]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z;\n"); break; case 4: WRITE(p, " float w[4]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w;\n"); break; case 5: WRITE(p, " float w[5]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2;\n"); break; case 6: WRITE(p, " float w[6]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y;\n"); break; case 7: WRITE(p, " float w[7]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z;\n"); break; case 8: WRITE(p, " float w[8]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z; w[7] = w2.w;\n"); break; } WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n"); if (numWeights > 1) { WRITE(p, " for (int i = 1; i < %i; i++) {\n", numWeights); WRITE(p, " skinMatrix += w[i] * u_bone[i];\n"); WRITE(p, " }\n"); } #else #ifdef USE_BONE_ARRAY if (numWeights == 1) WRITE(p, " mat4 skinMatrix = w1 * u_bone[0]"); else WRITE(p, " mat4 skinMatrix = w1.x * u_bone[0]"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "w1"; if (numWeights == 5 && i == 4) weightAttr = "w2"; WRITE(p, " + %s * u_bone[%i]", weightAttr, i); } #else // Uncomment this to screw up bone shaders to check the vertex shader software fallback // WRITE(p, "THIS SHOULD ERROR! #error"); if (numWeights == 1) WRITE(p, " mat4 skinMatrix = w1 * u_bone0"); else WRITE(p, " mat4 skinMatrix = w1.x * u_bone0"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "w1"; if (numWeights == 5 && i == 4) weightAttr = "w2"; WRITE(p, " + %s * u_bone%i", weightAttr, i); } #endif #endif WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = (skinMatrix * vec4(position, 1.0)).xyz %s;\n", factor); WRITE(p, " vec3 worldpos = (u_world * vec4(skinnedpos, 1.0)).xyz;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(%snormal, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor); } else { WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(0.0, 0.0, %s1.0, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor); } WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(skinnednormal, 0.0)).xyz);\n"); } WRITE(p, " vec4 viewPos = u_view * vec4(worldpos, 1.0);\n"); // Final view and projection transforms. WRITE(p, " gl_Position = u_proj * viewPos;\n"); // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "color0" : "u_matambientalpha"; const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "color0.rgb" : "u_matdiffuse"; const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "color0.rgb" : "u_matspecular.rgb"; bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (gstate.isLightingEnabled()) { WRITE(p, " lowp vec4 lightSum0 = u_ambient * %s + vec4(u_matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (gstate.isUsingSpecularLight(i)) specularIsZero = false; GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " lowp vec3 lightSum1 = vec3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " lowp vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " lowp float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = gstate.getLightType(i); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = u_lightpos%i;\n", i); } else { WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = gstate.isUsingSpecularLight(i); bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(i); WRITE(p, " mediump float dot%i = max(dot(toLight, worldnormal), 0.0);\n", i); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (dot%i == 0.0 && u_matspecular.a == 0.0) {\n", i); WRITE(p, " dot%i = 1.0;\n", i); WRITE(p, " } else {\n"); WRITE(p, " dot%i = pow(dot%i, u_matspecular.a);\n", i, i); WRITE(p, " }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " lowp float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i); WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * dot%i;\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (gstate.isLightingEnabled()) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " v_color1 = vec3(0.0);\n"); } else { WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { WRITE(p, " v_color0 = color0;\n"); } else { WRITE(p, " v_color0 = u_matambientalpha;\n"); } if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } // Step 3: UV generation if (doTexture) { switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (prescale && !flipV) { if (hasTexcoord) { WRITE(p, " v_texcoord = texcoord;\n"); } else { WRITE(p, " v_texcoord = vec2(0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " v_texcoord = texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n"); } else { WRITE(p, " v_texcoord = u_uvscaleoffset.zw;\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { // prescale is false here. if (hasTexcoord) { static const char *rescaleuv[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescaleuv[(vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT]; temp_tc = StringFromFormat("vec4(texcoord.xy %s, 0.0, 1.0)", factor); } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " v_texcoord = (u_texmtx * %s).xyz * vec3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " v_texcoord = u_uvscaleoffset.xy * vec2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 + dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1()); break; default: // ILLEGAL break; } // Will flip in the fragment for GE_TEXMAP_TEXTURE_MATRIX. if (flipV && gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_MATRIX) WRITE(p, " v_texcoord.y = 1.0 - v_texcoord.y;\n"); } // Compute fogdepth if (enableFog) WRITE(p, " v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n"); } WRITE(p, "}\n"); }