ppsspp/Core/HLE/HLE.cpp
Unknown W. Brackets e150cc5c03 Correct skipped parameter for deferred resched.
Forgot to check callbacks, oops.
2012-12-09 15:08:44 -08:00

274 lines
7.1 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "HLE.h"
#include <map>
#include "../MemMap.h"
#include "HLETables.h"
#include "../System.h"
#include "sceDisplay.h"
#include "sceIo.h"
#include "sceAudio.h"
#include "sceKernelMemory.h"
#include "sceKernelThread.h"
#include "../MIPS/MIPSCodeUtils.h"
enum
{
// Do nothing after the syscall.
HLE_AFTER_NOTHING = 0x00,
// Reschedule immediately after the syscall.
HLE_AFTER_RESCHED = 0x01,
// Call current thread's callbacks after the syscall.
HLE_AFTER_CURRENT_CALLBACKS = 0x02,
// Check all threads' callbacks after the syscall.
HLE_AFTER_ALL_CALLBACKS = 0x04,
// Reschedule and process current thread's callbacks after the syscall.
HLE_AFTER_RESCHED_CALLBACKS = 0x08,
};
static std::vector<HLEModule> moduleDB;
static std::vector<Syscall> unresolvedSyscalls;
static int hleAfterSyscall = HLE_AFTER_NOTHING;
static char hleAfterSyscallReschedReason[512];
void HLEInit()
{
RegisterAllModules();
}
void HLEShutdown()
{
moduleDB.clear();
}
void RegisterModule(const char *name, int numFunctions, const HLEFunction *funcTable)
{
HLEModule module = {name, numFunctions, funcTable};
moduleDB.push_back(module);
}
int GetModuleIndex(const char *moduleName)
{
for (size_t i = 0; i < moduleDB.size(); i++)
if (strcmp(moduleName, moduleDB[i].name) == 0)
return (int)i;
return -1;
}
int GetFuncIndex(int moduleIndex, u32 nib)
{
const HLEModule &module = moduleDB[moduleIndex];
for (int i = 0; i < module.numFunctions; i++)
{
if (module.funcTable[i].ID == nib)
return i;
}
return -1;
}
u32 GetNibByName(const char *moduleName, const char *function)
{
int moduleIndex = GetModuleIndex(moduleName);
const HLEModule &module = moduleDB[moduleIndex];
for (int i = 0; i < module.numFunctions; i++)
{
if (!strcmp(module.funcTable[i].name, function))
return module.funcTable[i].ID;
}
return -1;
}
const HLEFunction *GetFunc(const char *moduleName, u32 nib)
{
int moduleIndex = GetModuleIndex(moduleName);
if (moduleIndex != -1)
{
int idx = GetFuncIndex(moduleIndex, nib);
if (idx != -1)
return &(moduleDB[moduleIndex].funcTable[idx]);
}
return 0;
}
const char *GetFuncName(const char *moduleName, u32 nib)
{
const HLEFunction *func = GetFunc(moduleName,nib);
if (func)
return func->name;
else
{
static char temp[256];
sprintf(temp,"[UNK: 0x%08x ]",nib);
return temp;
}
}
u32 GetSyscallOp(const char *moduleName, u32 nib)
{
int modindex = GetModuleIndex(moduleName);
if (modindex != -1)
{
int funcindex = GetFuncIndex(modindex, nib);
if (funcindex != -1)
{
return (0x0000000c | (modindex<<18) | (funcindex<<6));
}
else
{
return (0x0003FFCC | (modindex<<18)); // invalid syscall
}
}
else
{
ERROR_LOG(HLE, "Unknown module %s!", moduleName);
return (0x0003FFCC); // invalid syscall
}
}
void WriteSyscall(const char *moduleName, u32 nib, u32 address)
{
if (nib == 0)
{
Memory::Write_U32(MIPS_MAKE_JR_RA(), address); //patched out?
Memory::Write_U32(MIPS_MAKE_NOP(), address+4); //patched out?
return;
}
int modindex = GetModuleIndex(moduleName);
if (modindex != -1)
{
Memory::Write_U32(MIPS_MAKE_JR_RA(), address); // jr ra
Memory::Write_U32(GetSyscallOp(moduleName, nib), address + 4);
}
else
{
// Module inexistent.. for now; let's store the syscall for it to be resolved later
INFO_LOG(HLE,"Syscall (%s,%08x) unresolved, storing for later resolving", moduleName, nib);
Syscall sysc = {"", address, nib};
strncpy(sysc.moduleName, moduleName, 32);
sysc.moduleName[31] = '\0';
unresolvedSyscalls.push_back(sysc);
}
}
void ResolveSyscall(const char *moduleName, u32 nib, u32 address)
{
for (size_t i = 0; i < unresolvedSyscalls.size(); i++)
{
Syscall *sysc = &unresolvedSyscalls[i];
if (strncmp(sysc->moduleName, moduleName, 32) == 0 && sysc->nid == nib)
{
INFO_LOG(HLE,"Resolving %s/%08x",moduleName,nib);
// Note: doing that, we can't trace external module calls, so maybe something else should be done to debug more efficiently
Memory::Write_U32(MIPS_MAKE_JAL(address), sysc->symAddr);
Memory::Write_U32(MIPS_MAKE_NOP(), sysc->symAddr + 4);
}
}
}
const char *GetFuncName(int moduleIndex, int func)
{
if (moduleIndex >= 0 && moduleIndex < (int)moduleDB.size())
{
const HLEModule &module = moduleDB[moduleIndex];
if (func>=0 && func <= module.numFunctions)
{
return module.funcTable[func].name;
}
}
return "[unknown]";
}
void hleCheckAllCallbacks()
{
hleAfterSyscall |= HLE_AFTER_ALL_CALLBACKS;
}
void hleCheckCurrentCallbacks()
{
hleAfterSyscall |= HLE_AFTER_CURRENT_CALLBACKS;
}
void hleReSchedule(const char *reason)
{
_dbg_assert_msg_(HLE, reason != 0, "hleReSchedule: Expecting a valid reason.");
_dbg_assert_msg_(HLE, strlen(reason) < 256, "hleReSchedule: Not too long reason.");
hleAfterSyscall |= HLE_AFTER_RESCHED;
if (!reason)
strcpy(hleAfterSyscallReschedReason, "Invalid reason");
// You can't seriously need a reason that long, can you?
else if (strlen(reason) >= sizeof(hleAfterSyscallReschedReason))
{
memcpy(hleAfterSyscallReschedReason, reason, sizeof(hleAfterSyscallReschedReason) - 1);
hleAfterSyscallReschedReason[sizeof(hleAfterSyscallReschedReason) - 1] = 0;
}
else
strcpy(hleAfterSyscallReschedReason, reason);
}
void hleReSchedule(bool callbacks, const char *reason)
{
hleReSchedule(reason);
if (callbacks)
hleAfterSyscall |= HLE_AFTER_RESCHED_CALLBACKS;
}
inline void hleFinishSyscall()
{
if ((hleAfterSyscall & HLE_AFTER_CURRENT_CALLBACKS) != 0)
__KernelForceCallbacks();
// Rescheduling will also do HLE_AFTER_ALL_CALLBACKS.
if ((hleAfterSyscall & HLE_AFTER_RESCHED_CALLBACKS) != 0)
__KernelReSchedule(true, hleAfterSyscallReschedReason);
else if ((hleAfterSyscall & HLE_AFTER_RESCHED) != 0)
__KernelReSchedule(hleAfterSyscallReschedReason);
else if ((hleAfterSyscall & HLE_AFTER_ALL_CALLBACKS) != 0)
__KernelCheckCallbacks();
hleAfterSyscall = HLE_AFTER_NOTHING;
hleAfterSyscallReschedReason[0] = 0;
}
void CallSyscall(u32 op)
{
u32 callno = (op >> 6) & 0xFFFFF; //20 bits
int funcnum = callno & 0xFFF;
int modulenum = (callno & 0xFF000) >> 12;
if (funcnum == 0xfff)
{
_dbg_assert_msg_(HLE,0,"Unknown syscall");
ERROR_LOG(HLE,"Unknown syscall: Module: %s", moduleDB[modulenum].name);
return;
}
HLEFunc func = moduleDB[modulenum].funcTable[funcnum].func;
if (func)
{
func();
if (hleAfterSyscall != HLE_AFTER_NOTHING)
hleFinishSyscall();
}
else
{
ERROR_LOG(HLE,"Unimplemented HLE function %s", moduleDB[modulenum].funcTable[funcnum].name);
}
}