ppsspp/Core/MIPS/ARM/ArmRegCacheFPU.cpp

389 lines
10 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/logging.h"
#include "Common/ArmEmitter.h"
#include "Common/CPUDetect.h"
#include "Core/MIPS/ARM/ArmRegCacheFPU.h"
using namespace ArmGen;
ArmRegCacheFPU::ArmRegCacheFPU(MIPSState *mips) : mips_(mips), vr(mr + 32) {
}
void ArmRegCacheFPU::Init(ARMXEmitter *emitter) {
emit_ = emitter;
}
void ArmRegCacheFPU::Start(MIPSAnalyst::AnalysisResults &stats) {
for (int i = 0; i < NUM_ARMFPUREG; i++) {
ar[i].mipsReg = -1;
ar[i].isDirty = false;
}
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
mr[i].loc = ML_MEM;
mr[i].reg = INVALID_REG;
mr[i].spillLock = false;
mr[i].tempLock = false;
}
}
static const ARMReg *GetMIPSAllocationOrder(int &count) {
// We reserve S0-S1 as scratch. Can afford two registers. Maybe even four, which could simplify some things.
static const ARMReg allocationOrder[] = {
S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15
};
// With NEON, we have many more.
static const ARMReg allocationOrderNEON[] = {
S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15,
S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31
};
// Disabled the NEON path due to issues so we limit ourselves to 16.
if (false && cpu_info.bNEON) {
count = sizeof(allocationOrderNEON) / sizeof(const int);
return allocationOrderNEON;
} else {
count = sizeof(allocationOrder) / sizeof(const int);
return allocationOrder;
}
}
ARMReg ArmRegCacheFPU::MapReg(MIPSReg mipsReg, int mapFlags) {
// Let's see if it's already mapped. If so we just need to update the dirty flag.
// We don't need to check for ML_NOINIT because we assume that anyone who maps
// with that flag immediately writes a "known" value to the register.
if (mr[mipsReg].loc == ML_ARMREG) {
if (ar[mr[mipsReg].reg].mipsReg != mipsReg) {
ERROR_LOG(JIT, "Register mapping out of sync! %i", mipsReg);
}
if (mapFlags & MAP_DIRTY) {
ar[mr[mipsReg].reg].isDirty = true;
}
//INFO_LOG(JIT, "Already mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARMReg)(mr[mipsReg].reg + S0);
}
// Okay, not mapped, so we need to allocate an ARM register.
int allocCount;
const ARMReg *allocOrder = GetMIPSAllocationOrder(allocCount);
allocate:
for (int i = 0; i < allocCount; i++) {
int reg = allocOrder[i] - S0;
if (ar[reg].mipsReg == -1) {
// That means it's free. Grab it, and load the value into it (if requested).
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
if (!(mapFlags & MAP_NOINIT)) {
if (mr[mipsReg].loc == ML_MEM && mipsReg < TEMP0) {
emit_->VLDR((ARMReg)(reg + S0), CTXREG, GetMipsRegOffset(mipsReg));
}
}
ar[reg].mipsReg = mipsReg;
mr[mipsReg].loc = ML_ARMREG;
mr[mipsReg].reg = reg;
//INFO_LOG(JIT, "Mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARMReg)(reg + S0);
}
}
// Still nothing. Let's spill a reg and goto 10.
// TODO: Use age or something to choose which register to spill?
// TODO: Spill dirty regs first? or opposite?
int bestToSpill = -1;
for (int i = 0; i < allocCount; i++) {
int reg = allocOrder[i] - S0;
if (ar[reg].mipsReg != -1 && (mr[ar[reg].mipsReg].spillLock || mr[ar[reg].mipsReg].tempLock))
continue;
bestToSpill = reg;
break;
}
if (bestToSpill != -1) {
FlushArmReg((ARMReg)(S0 + bestToSpill));
goto allocate;
}
// Uh oh, we have all them spilllocked....
ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", mips_->pc);
return INVALID_REG;
}
void ArmRegCacheFPU::MapInIn(MIPSReg rd, MIPSReg rs) {
SpillLock(rd, rs);
MapReg(rd);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void ArmRegCacheFPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) {
SpillLock(rd, rs);
bool overlap = avoidLoad && rd == rs;
MapReg(rd, MAP_DIRTY | (overlap ? 0 : MAP_NOINIT));
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void ArmRegCacheFPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
SpillLock(rd, rs, rt);
bool overlap = avoidLoad && (rd == rs || rd == rt);
MapReg(rd, MAP_DIRTY | (overlap ? 0 : MAP_NOINIT));
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
ReleaseSpillLock(rt);
}
void ArmRegCacheFPU::SpillLockV(const u8 *v, VectorSize sz) {
for (int i = 0; i < GetNumVectorElements(sz); i++) {
vr[v[i]].spillLock = true;
}
}
void ArmRegCacheFPU::SpillLockV(int vec, VectorSize sz) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
}
void ArmRegCacheFPU::MapRegV(int vreg, int flags) {
MapReg(vreg + 32, flags);
}
void ArmRegCacheFPU::LoadToRegV(ARMReg armReg, int vreg) {
if (vr[vreg].loc == ML_ARMREG) {
emit_->VMOV(armReg, (ARMReg)(S0 + vr[vreg].reg));
} else {
MapRegV(vreg);
emit_->VMOV(armReg, V(vreg));
}
}
void ArmRegCacheFPU::MapRegsAndSpillLockV(int vec, VectorSize sz, int flags) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void ArmRegCacheFPU::MapRegsAndSpillLockV(const u8 *v, VectorSize sz, int flags) {
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void ArmRegCacheFPU::MapInInV(int vs, int vt) {
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void ArmRegCacheFPU::MapDirtyInV(int vd, int vs, bool avoidLoad) {
bool overlap = avoidLoad && (vd == vs);
SpillLockV(vd);
SpillLockV(vs);
MapRegV(vd, MAP_DIRTY | (overlap ? 0 : MAP_NOINIT));
MapRegV(vs);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
}
void ArmRegCacheFPU::MapDirtyInInV(int vd, int vs, int vt, bool avoidLoad) {
bool overlap = avoidLoad && ((vd == vs) || (vd == vt));
SpillLockV(vd);
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vd, MAP_DIRTY | (overlap ? 0 : MAP_NOINIT));
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void ArmRegCacheFPU::FlushArmReg(ARMReg r) {
int reg = r - S0;
if (ar[reg].mipsReg == -1) {
// Nothing to do, reg not mapped.
return;
}
if (ar[reg].mipsReg != -1) {
if (ar[reg].isDirty && mr[ar[reg].mipsReg].loc == ML_ARMREG)
{
//INFO_LOG(JIT, "Flushing ARM reg %i", reg);
emit_->VSTR(r, CTXREG, GetMipsRegOffset(ar[reg].mipsReg));
}
// IMMs won't be in an ARM reg.
mr[ar[reg].mipsReg].loc = ML_MEM;
mr[ar[reg].mipsReg].reg = INVALID_REG;
} else {
ERROR_LOG(JIT, "Dirty but no mipsreg?");
}
ar[reg].isDirty = false;
ar[reg].mipsReg = -1;
}
void ArmRegCacheFPU::FlushR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == (int)INVALID_REG) {
ERROR_LOG(JIT, "FlushR: MipsReg had bad ArmReg");
}
if (ar[mr[r].reg].isDirty) {
//INFO_LOG(JIT, "Flushing dirty reg %i", mr[r].reg);
emit_->VSTR((ARMReg)(mr[r].reg + S0), CTXREG, GetMipsRegOffset(r));
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = -1;
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
}
void ArmRegCacheFPU::DiscardR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == (int)INVALID_REG) {
ERROR_LOG(JIT, "DiscardR: MipsReg had bad ArmReg");
}
// Note that we DO NOT write it back here. That's the whole point of Discard.
ar[mr[r].reg].isDirty = false;
ar[mr[r].reg].mipsReg = -1;
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
mr[r].tempLock = false;
mr[r].spillLock = false;
}
bool ArmRegCacheFPU::IsTempX(ARMReg r) const {
return ar[r - S0].mipsReg >= TEMP0;
}
int ArmRegCacheFPU::GetTempR() {
for (int r = TEMP0; r < TEMP0 + NUM_TEMPS; ++r) {
if (mr[r].loc == ML_MEM && !mr[r].tempLock) {
mr[r].tempLock = true;
return r;
}
}
ERROR_LOG(CPU, "Out of temp regs! Might need to DiscardR() some");
_assert_msg_(JIT, 0, "Regcache ran out of temp regs, might need to DiscardR() some.");
return -1;
}
void ArmRegCacheFPU::FlushAll() {
// Discard temps!
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; i++) {
DiscardR(i);
}
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
FlushR(i);
}
// Sanity check
for (int i = 0; i < NUM_ARMFPUREG; i++) {
if (ar[i].mipsReg != -1) {
ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
}
}
}
int ArmRegCacheFPU::GetMipsRegOffset(MIPSReg r) {
// These are offsets within the MIPSState structure. First there are the GPRS, then FPRS, then the "VFPURs", then the VFPU ctrls.
if (r < 32 + 128 + NUM_TEMPS)
return (r + 32) << 2;
ERROR_LOG(JIT, "bad mips register %i, out of range", r);
return 0; // or what?
}
void ArmRegCacheFPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) {
mr[r1].spillLock = true;
if (r2 != -1) mr[r2].spillLock = true;
if (r3 != -1) mr[r3].spillLock = true;
if (r4 != -1) mr[r4].spillLock = true;
}
// This is actually pretty slow with all the 160 regs...
void ArmRegCacheFPU::ReleaseSpillLocksAndDiscardTemps() {
for (int i = 0; i < NUM_MIPSFPUREG; i++)
mr[i].spillLock = false;
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; ++i)
DiscardR(i);
}
ARMReg ArmRegCacheFPU::R(int mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG) {
return (ARMReg)(mr[mipsReg].reg + S0);
} else {
if (mipsReg < 32) {
ERROR_LOG(JIT, "FReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg, compilerPC_, currentMIPS->DisasmAt(compilerPC_));
} else if (mipsReg < 32 + 128) {
ERROR_LOG(JIT, "VReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 32, compilerPC_, currentMIPS->DisasmAt(compilerPC_));
} else {
ERROR_LOG(JIT, "Tempreg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 128 - 32, compilerPC_, currentMIPS->DisasmAt(compilerPC_));
}
return INVALID_REG; // BAAAD
}
}