mirror of
https://github.com/libretro/ppsspp.git
synced 2025-01-08 09:31:56 +00:00
98 lines
2.8 KiB
C++
98 lines
2.8 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
// IWYU pragma: private, include "Common/Atomic.h"
|
|
|
|
#pragma once
|
|
|
|
#include <intrin.h>
|
|
|
|
#include "CommonTypes.h"
|
|
#include "CommonWindows.h"
|
|
|
|
// Atomic operations are performed in a single step by the CPU. It is
|
|
// impossible for other threads to see the operation "half-done."
|
|
//
|
|
// Some atomic operations can be combined with different types of memory
|
|
// barriers called "Acquire semantics" and "Release semantics", defined below.
|
|
//
|
|
// Acquire semantics: Future memory accesses cannot be relocated to before the
|
|
// operation.
|
|
//
|
|
// Release semantics: Past memory accesses cannot be relocated to after the
|
|
// operation.
|
|
//
|
|
// These barriers affect not only the compiler, but also the CPU.
|
|
//
|
|
// NOTE: Acquire and Release are not differentiated right now. They perform a
|
|
// full memory barrier instead of a "one-way" memory barrier. The newest
|
|
// Windows SDK has Acquire and Release versions of some Interlocked* functions.
|
|
|
|
namespace Common
|
|
{
|
|
|
|
inline void AtomicAdd(volatile u32& target, u32 value)
|
|
{
|
|
_InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
|
|
}
|
|
|
|
inline void AtomicAnd(volatile u32& target, u32 value)
|
|
{
|
|
_InterlockedAnd((volatile LONG*)&target, (LONG)value);
|
|
}
|
|
|
|
inline void AtomicIncrement(volatile u32& target)
|
|
{
|
|
_InterlockedIncrement((volatile LONG*)&target);
|
|
}
|
|
|
|
inline void AtomicDecrement(volatile u32& target)
|
|
{
|
|
_InterlockedDecrement((volatile LONG*)&target);
|
|
}
|
|
|
|
inline void AtomicOr(volatile u32& target, u32 value)
|
|
{
|
|
_InterlockedOr((volatile LONG*)&target, (LONG)value);
|
|
}
|
|
|
|
// For the comment below to hold, better only use this with 32-bit types..
|
|
template <typename T>
|
|
inline T AtomicLoad(volatile T& src)
|
|
{
|
|
return src; // 32-bit reads are always atomic.
|
|
}
|
|
|
|
// For the comment below to hold, better only use this with 32-bit types..
|
|
template <typename T>
|
|
inline T AtomicLoadAcquire(volatile T& src)
|
|
{
|
|
T result = src; // 32-bit reads are always atomic.
|
|
_ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics.
|
|
return result;
|
|
}
|
|
|
|
// For the comment below to hold, better only use this with 32-bit types..
|
|
template <typename T, typename U>
|
|
inline void AtomicStore(volatile T& dest, U value)
|
|
{
|
|
dest = (T)value; // 32-bit writes are always atomic.
|
|
}
|
|
|
|
// For the comment below to hold, better only use this with 32-bit types..
|
|
template <typename T, typename U>
|
|
inline void AtomicStoreRelease(volatile T& dest, U value)
|
|
{
|
|
_WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics.
|
|
dest = (T)value; // 32-bit writes are always atomic
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval)
|
|
{
|
|
return (T*)_InterlockedExchangePointer_acq((void* volatile*)&loc, (void*)newval);
|
|
}
|
|
|
|
}
|